請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳忠幟(Chung-Chih Wu) | |
| dc.contributor.author | Yu-Chun Liu | en |
| dc.contributor.author | 劉育均 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:16:40Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-23T09:16:40Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-30 | |
| dc.identifier.citation | [1] Pope M., Kallmann H. P., and Magnante P. (1963). Electroluminescence in organic crystals. The Journal of Chemical Physics, 38, 2042-2043. [2] Helfrich W., and Schneider W. G. (1965). Recombination radiation in anthracene crystals. Physical Review Letters, 14, 229-231. [3] Vincett P. S., Barlow W. A., Hann R. A., and Roberts G. G. (1982). Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin solid Films, 94(2), 171-183. [4] Tang C. W., and VanSlyke S. A. (1987). Organic electroluminescent diodes. Applied physics letters, 51, 913-915. [5] Burroughes J. H., Bradley D. D. C., Brown A. R., Marks R. N., Mackay K., Friend R. H., Burns P. L., and Holmes A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347, 539-541. [6] Kido J., Kimura M., and Nagai K. (1995). Multilayer White Light-Emitting Organic Electroluminescent Device. Science, 267, 1332-1334. [7] Baldo M. A., O’Brien D. F., You Y., Shoustikov A., Sibley S., Thompson M. E., and Forrest S. R. (1998). Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395, 151-154 [8] Koden M. (2016). OLED Displays and Lighting. John Wiley Sons, 1,13-21. [9] Chang C. H., Cheng H. C., Lu Y. J., Tien K. C., Lin H. W., Yang C. J., and Wu C. C. (2010). Enhancing color gamut of white OLED displays by using microcavity green pixels. Organic Electronics, 11, 247-254. [10] Jeon S. K., Lee H. L., Yook K. S., and Lee J. Y. (2019). Recent Progress of the Lifetime of Organic Light-Emitting Diodes based on Thermally Activated Delayed Fluorescent Material. Advanced Materials, 31, 1803524. [11] Baldo M. A., Thompson M. E., and Forrest S. R. (2000). High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature, 403, 750-753. [12] Grover R., Srivastava R., Kamalasanan M. N., and Mehta D. S. (2014). Light outcoupling efficiency enhancement in organic light emitting diodes using an organic scattering layer. Physica status solidi-rapid research letters, 8, 81-85. [13] Son J. H., Yu H. K., and Lee J. J. (2010). MgO nano-pyramids structure for enhancement of light extraction efficiency in vertical light-emitting diodes. Optics Express, 18, A403-A410. [14] Park Y. S., Han K. H., Kim J., Cho D. H., Lee J., Han Y., Lim J. T., Cho N. S., Yu B., Lee J. I., and Kim J. J. (2017). Crystallization-assisted nano-lens array fabrication for highly efficient and color stable organic light emitting diodes. Nanoscale, 9, 230-236. [15] D. H., and Lee H. N. (2016). Patternless light outcoupling enhancement method for top-emission organic light-emitting diodes. Japanese Journal of Applied Physics, 55, 112102. [16] Tang S., Li W., Shen F., Liu D., Yang B., and Ma Y. (2012). Highly efficient deep-blue electroluminescence based on the triphenylaminecored and peripheral blue emitters with segregative HOMO-LUMO characteristics. Journal of Materials Chemistry, 22, 4401. [17] Zhen C. G., Dai Y. F., Zeng W. J., Ma Z., Chen Z. K., and Kieffer J. (2011). Achieving highly efficient fluorescent blue organic light emitting diodes through optimizing molecular structures and device configuration. Advanced Functional Materials, 21, 699. [18] Dos Santos P. L., Ward J. S., Bryce M. R., and Monkman A. P. (2016). Using Guest-Host Interactions to optimize the efficiency of TADF OLEDs. The Journal of Physical Chemistry Letters, 7, 3341-3346. [19] Wong M. Y., and Zysman-Colman E. (2017). Purely Organic Thermally Activated Delayed Fluorescence Materials of Organic Light-emitting Diodes. Advanced Materials, 29, 1605444. [20] Im Y., Kim M., Cho Y. J., Seo J. A., Yook K. S., and Lee J. Y. (2017). Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters. American Chemical Society Chemistry of Materials, 29, 1946-1963. [21] Uoyama H., Goushi K., Shizu K., Nomura H., and Adachi C. (2012). Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 492, 234-238. [22] Lin T. A., Chatterjee T., Tsai W. L., Lee W. K., Wu M. J., Jiao M., Pan K. C., Yi C. L., Chung C. L., Wong K. T., and Wu C. C. (2016). Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid. Advanced Materials, 28, 6976. [23] Lee D. R., Kim B. S., Lee C. W., Im Y., Yook K. S., Hwang S. H., and Lee J. Y. (2015). Above 30% external quantum efficiency in green delayed fluorescent organic light-mitting diodes. ACS Applied Materials Interfaces, 7, 9625. [24] Kim J. U., Park I. S., Chan C. Y., Tanaka M., Tsuchiya Y., Nakanotani H., and Adachi C. (2020). Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nature Communications, 11, 1765. [25] Kim D. H., Inada K., Zhao L., Komino T., Matsumoto N., Ribierre J. C., and Adachi C. (2017). Organic light emitting diodes with horizontally oriented thermally activated delayed fluorescence emitters. Journal of Materials Chemistry, 5, 1216-1223. [26] Kim K. H., and Kim J. J. (2018). Origin and control of Orientation of Phosphorescent and TADF Dyes for High-Efficiency OLEDs. Advanced Materials, 30, 1705600. [27] Schmidt T. D., Lampe T., Daniel Sylvinson M. R., Djurovich P. I., Thompson M. E., and Brütting W. (2017). Emitter Orientation as a Key Parameter in Organic Light-Emitting Diodes. Physical Review Applied, 8, 037001. [28] Frischeisen J., Yokoyama D., Adachi C., and Brütting W. (2010). Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Applied Physics Letters, 96, 073302. [29] Yokoyama D. Molecular orientation in small-molecule organic light-emitting diodes. (2011). Journal of Materials Chemistry, 21, 19187-19202. [30] Chan C. Y., Cui L. S., Kim J. U., Nakanotani H., and Adachi C. (2018). Rational Molecular Design for Deep-Blue Thermally Activated Delayed Fluorescence Emitters. Advanced Functional Materials, 28, 1706023. [31] Ahn D. H., Kim S. W., Lee H., Ko I.J., Karthik D., Lee J. Y., and Kwon J.H. (2019). Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nature Photonics, 13, 540–546. [32] Lim H., Cheon H. J., Woo S. J., Kwon S. K., Kim Y. H., Kim J. J. (2020). Highly Efficient Deep-Blue OLEDs using a TADF Emitter with a Narrow Emission Spectrum and High Horizontal Emitting Dipole Ratio. Advanced Materials, 32, 2004083. [33] Neyts K. A. (1998). Simulation of light emission from thin-film microcavities. Journal of the Optical Society of America, 15, 962. [34] Lin C. L., Chang H. C., Tien K. C., and Wu C. C. (2007). Influences of resonant wavelengths on performances of microcavity organic light-emitting devices. Applied Physics Letters, 90, 071111. [35] Lin C. L., Cho T. Y., Chang C. H., and Wu C. C. (2006). Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode. Applied Physics Letters, 88, 081114. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79918 | - |
| dc.description.abstract | "有機發光二極體(OLED)歷經長時間的發展至今已成為顯示、照明產品的重要技術之一。近年來隨著熱激活化延遲螢光(TADF)材料的發展,其低成本、高效率和易於調整分子結構的特性吸引了廣泛的注意和研究。有著TADF材料的助力,有機發光二極體的外部量子效率(EQE)屢創新高,EQE超過30%的元件也已出現。近期的研究指出,高內部量子效率(IQE)、高水平發光偶極比(Horizontal dipole ratio)是達成高EQE的關鍵因素,而此兩因素會大幅地受到分子特性所影響。 在本篇論文的第一部分,我們研究兩種新的TADF藍光材料SOBA和S2OBA的薄膜光物理特性與元件特性,並與已發表過的分子DOBA進行比較。我們的研究表明,SOBA和S2OBA的薄膜其PLQY可分別達88.5%與86.7%,水平發光偶極比可達86%與88%。在與適當的材料搭配且未使用額外的光學出光結構下,兩種分子製成的元件可分別表現出最高29.3%和17.9%的EQE (25.7%、13.1%, at 1000 cd/m2),同時擁有更藍的光色。 本篇論文的第二部分,我們探討於SOBA的基礎上,另外設計的兩種藍光TADF材料pCzSOBA和mCzSOBA的薄膜光物理特性與元件特性。實驗中兩種分子分別表現出高達87.0%和88.7%的PLQY和86%與81%的水平發光偶極比。兩種分子製成的元件可表現出最高24.0%和24.3%的EQE (18.4%、20.6%, at 1000 cd/m2),同時擁有與SOBA相似的光色。這些結果有助於發展一系列性能相似的分子,使日後對於TADF材料分子的研究能有更多創新的空間。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:16:40Z (GMT). No. of bitstreams: 1 U0001-2807202117052500.pdf: 3783138 bytes, checksum: bd13c1e0382ff4dad4c6b68328354747 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝………………………………………………………………………………………I 摘要……………………………………………………………………………………II ABSTRACT…………………………………………………………………………III 目錄……………………………………………………………………………………V 圖目錄…………………………………………………………………………………VII 表目錄…………………………………………………………………………………IX 第一章 緒論…………………………………………………………………………1 1.1 有機發光二極體簡介………………………………………………………1 1.2 發光材料發展………………………………………………………………2 1.3 研究動機與論文架構………………………………………………………3 第一章圖表………………………………………………………………………5 第二章 高水平發光偶極比藍光熱激活化延遲螢光有機發光材料及元件………7 2.1 前言…………………………………………………………………………7 2.2 研究方法……………………………………………………………………8 2.2.1 材料…………………………………………………………………8 2.2.2 光物理特性…………………………………………………………8 2.2.3 水平發光偶極比…………………………………………………9 2.2.4 元件製作與量測…………………………………………………10 2.3 結果與討論………………………………………………………………10 2.3.1 光物理特性……………………………………………………10 2.3.2 水平發光偶極比…………………………………………………12 2.3.3 元件特性…………………………………………………………12 2.3.4 光學模擬與討論…………………………………………………14 2.4 總結………………………………………………………………………15 第二章圖表………………………………………………………………………16 第三章 新型藍光熱激活化延遲螢光有機發光材料及元件……………………30 3.1 前言………………………………………………………………………30 3.2 研究方法…………………………………………………………………30 3.2.1 材料………………………………………………………………30 3.2.2 光物理特性………………………………………………………31 3.2.3 水平發光偶極比…………………………………………………31 3.2.4 元件製作與量測…………………………………………………31 3.3 結果與討論………………………………………………………………31 3.3.1 光物理特性………………………………………………………31 3.3.2 水平發光偶極比…………………………………………………33 3.3.3 元件特性…………………………………………………………33 3.3.4 光學模擬與討論…………………………………………………34 3.4 總結………………………………………………………………………35 第三章圖表………………………………………………………………………37 第四章 總結與未來展望……………………………………………………………52 參考資料………………………………………………………………………………53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水平發光偶極比 | zh_TW |
| dc.subject | 有機發光元件 | zh_TW |
| dc.subject | 熱激活化延遲螢光 | zh_TW |
| dc.subject | Organic light-emitting diodes | en |
| dc.subject | thermally activated delayed fluorescence | en |
| dc.subject | horizontal dipole ratio | en |
| dc.title | 高水平發光偶極比藍光熱激活化延遲螢光材料及發光元件之研究 | zh_TW |
| dc.title | Investigation on high horizontal dipole ratio blue thermally activated delayed fluorescence organic emitters and devices | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俐吟(Hsin-Tsai Liu),蔡志宏(Chih-Yang Tseng) | |
| dc.subject.keyword | 有機發光元件,熱激活化延遲螢光,水平發光偶極比, | zh_TW |
| dc.subject.keyword | Organic light-emitting diodes,thermally activated delayed fluorescence,horizontal dipole ratio, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202101858 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202117052500.pdf | 3.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
