請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79915完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林國儀(Kuo-I Lin) | |
| dc.contributor.author | Li-Wen Lo | en |
| dc.contributor.author | 羅麗紋 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:16:32Z | - |
| dc.date.available | 2021-08-18 | |
| dc.date.available | 2022-11-23T09:16:32Z | - |
| dc.date.copyright | 2021-08-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-04 | |
| dc.identifier.citation | 1. Cooper, M.D., Peterson, R.D. Good, R.A. DELINEATION OF THE THYMIC AND BURSAL LYMPHOID SYSTEMS IN THE CHICKEN. Nature 205, 143-146 (1965). 2. Vazquez, M.I., Catalan-Dibene, J. Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 74, 318-326 (2015). 3. Bao, Y. Cao, X. The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review. Journal of autoimmunity 55, 10-23 (2014). 4. David, M.Z. Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23, 616-687 (2010). 5. Dorshkind, K. Montecino-Rodriguez, E. Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nature reviews. Immunology 7, 213-219 (2007). 6. Montecino-Rodriguez, E. Dorshkind, K. B-1 B cell development in the fetus and adult. Immunity 36, 13-21 (2012). 7. Khan, W.N. B Cell Receptor and BAFF Receptor Signaling Regulation of B Cell Homeostasis. The Journal of Immunology 183, 3561 (2009). 8. Berland, R. Wortis, H.H. Origins and functions of B-1 cells with notes on the role of CD5. Annual review of immunology 20, 253-300 (2002). 9. Krop, I. et al. Self-renewal of B-1 lymphocytes is dependent on CD19. European journal of immunology 26, 238-242 (1996). 10. Graf, R. et al. BCR-dependent lineage plasticity in mature B cells. Science (New York, N.Y.) 363, 748-753 (2019). 11. Pillai, S. Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nature reviews. Immunology 9, 767-777 (2009). 12. Yuan, Z., Friedmann, D.R., VanderWielen, B.D., Collins, K.J. Kovall, R.A. Characterization of CSL (CBF-1, Su(H), Lag-1) mutants reveals differences in signaling mediated by Notch1 and Notch2. The Journal of biological chemistry 287, 34904-34916 (2012). 13. Zhu, G. et al. Both Notch1 and its ligands in B cells promote antibody production. Molecular Immunology 91, 17-23 (2017). 14. Tanigaki, K. et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nature immunology 3, 443-450 (2002). 15. Bronte, V. Pittet, M.J. The spleen in local and systemic regulation of immunity. Immunity 39, 806-818 (2013). 16. Cerutti, A., Cols, M. Puga, I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nature reviews. Immunology 13, 118-132 (2013). 17. Martin, F. Kearney, J.F. Marginal-zone B cells. Nature Reviews Immunology 2, 323-335 (2002). 18. Pone, E.J. et al. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-kappaB pathway. Nature communications 3, 767 (2012). 19. Lino, A.C., Mohr, E. Demengeot, J. Naturally secreted immunoglobulins limit B1 and MZ B-cell numbers through a microbiota-independent mechanism. Blood 122, 209-218 (2013). 20. Lopes-Carvalho, T. Kearney, J.F. Development and selection of marginal zone B cells. Immunological reviews 197, 192-205 (2004). 21. Martin, F., Oliver, A.M. Kearney, J.F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617-629 (2001). 22. Tellier, J. Nutt, S.L. Standing out from the crowd: How to identify plasma cells. European journal of immunology 47, 1276-1279 (2017). 23. Revilla, I.D.R. et al. The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis. The EMBO journal 31, 3130-3146 (2012). 24. Medvedovic, J., Ebert, A., Tagoh, H. Busslinger, M. Pax5: a master regulator of B cell development and leukemogenesis. Advances in immunology 111, 179-206 (2011). 25. Nera, K.P. et al. Loss of Pax5 promotes plasma cell differentiation. Immunity 24, 283-293 (2006). 26. Lin, K.I., Angelin-Duclos, C., Kuo, T.C. Calame, K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol Cell Biol 22, 4771-4780 (2002). 27. Manz, R.A. Radbruch, A. Plasma cells for a lifetime? European journal of immunology 32, 923-927 (2002). 28. Bortnick, A. Allman, D. What is and what should always have been: long-lived plasma cells induced by T cell-independent antigens. Journal of immunology (Baltimore, Md. : 1950) 190, 5913-5918 (2013). 29. Khodadadi, L., Cheng, Q., Radbruch, A. Hiepe, F. The Maintenance of Memory Plasma Cells. Frontiers in immunology 10, 721 (2019). 30. Shapiro-Shelef, M. Calame, K. Regulation of plasma-cell development. Nature Reviews Immunology 5, 230-242 (2005). 31. Noviski, M. et al. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. Elife 7, e35074 (2018). 32. Blandino, R. Baumgarth, N. Secreted IgM: New tricks for an old molecule. Journal of leukocyte biology 106, 1021-1034 (2019). 33. Baumgarth, N. et al. B-1 and B-2 Cell–Derived Immunoglobulin M Antibodies Are Nonredundant Components of the Protective Response to Influenza Virus Infection. Journal of Experimental Medicine 192, 271-280 (2000). 34. Selle, M. et al. Global antibody response to Staphylococcus aureus live-cell vaccination. Scientific Reports 6, 24754 (2016). 35. Honda, S. et al. Marginal zone B cells exacerbate endotoxic shock via interleukin-6 secretion induced by Fcalpha/muR-coupled TLR4 signalling. Nature communications 7, 11498 (2016). 36. Shibuya, A., Honda, S.I. Shibuya, K. A pro-inflammatory role of Fcα/μR on marginal zone B cells in sepsis. International immunology 29, 519-524 (2017). 37. Barr, T.A. et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. The Journal of experimental medicine 209, 1001-1010 (2012). 38. Wolf, J., Rose-John, S. Garbers, C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 70, 11-20 (2014). 39. Choy, E. Rose-John, S. Interleukin-6 as a Multifunctional Regulator: Inflammation, Immune Response, and Fibrosis. Journal of Scleroderma and Related Disorders 2, S1-S5 (2017). 40. Tanaka, T., Narazaki, M. Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6, a016295-a016295 (2014). 41. Kaplanski, G., Marin, V., Montero-Julian, F., Mantovani, A. Farnarier, C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends in immunology 24, 25-29 (2003). 42. Scheller, J., Chalaris, A., Schmidt-Arras, D. Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et biophysica acta 1813, 878-888 (2011). 43. Stein, J.V. Nombela-Arrieta, C. Chemokine control of lymphocyte trafficking: a general overview. Immunology 116, 1-12 (2005). 44. Arimont, M. et al. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 60, 4735-4779 (2017). 45. Vissers, J.L., Hartgers, F.C., Lindhout, E., Figdor, C.G. Adema, G.J. BLC (CXCL13) is expressed by different dendritic cell subsets in vitro and in vivo. European journal of immunology 31, 1544-1549 (2001). 46. Ansel, K.M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309-314 (2000). 47. Cheng, Q. et al. CXCR4-CXCL12 interaction is important for plasma cell homing and survival in NZB/W mice. European journal of immunology 48, 1020-1029 (2018). 48. Eash, K.J., Greenbaum, A.M., Gopalan, P.K. Link, D.C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. The Journal of clinical investigation 120, 2423-2431 (2010). 49. Rouault, C. et al. Roles of Chemokine Ligand-2 (CXCL2) and Neutrophils in Influencing Endothelial Cell Function and Inflammation of Human Adipose Tissue. Endocrinology 154, 1069-1079 (2013). 50. Wolpe, S.D. et al. Identification and characterization of macrophage inflammatory protein 2. Proceedings of the National Academy of Sciences of the United States of America 86, 612-616 (1989). 51. Iida, N. Grotendorst, G.R. Cloning and sequencing of a new gro transcript from activated human monocytes: expression in leukocytes and wound tissue. Mol Cell Biol 10, 5596-5599 (1990). 52. Iba, T., Hashiguchi, N., Nagaoka, I., Tabe, Y. Murai, M. Neutrophil cell death in response to infection and its relation to coagulation. J Intensive Care 1, 13-13 (2013). 53. Ley, K., Laudanna, C., Cybulsky, M.I. Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology 7, 678-689 (2007). 54. Colotta, F., Re, F., Polentarutti, N., Sozzani, S. Mantovani, A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80, 2012-2020 (1992). 55. Medeiros, A.I. et al. Histoplasma capsulatum inhibits apoptosis and Mac-1 expression in leucocytes. Scandinavian journal of immunology 56, 392-398 (2002). 56. Rosales, C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front Physiol 9, 113-113 (2018). 57. Mantovani, A., Cassatella, M.A., Costantini, C. Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature reviews. Immunology 11, 519-531 (2011). 58. Puga, I. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nature immunology 13, 170-180 (2011). 59. Parsa, R. et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. The Journal of experimental medicine 213, 1537-1553 (2016). 60. Kienle, K. Lämmermann, T. Neutrophil swarming: an essential process of the neutrophil tissue response. Immunological reviews 273, 76-93 (2016). 61. Scapini, P. Cassatella, M.A. Social networking of human neutrophils within the immune system. Blood 124, 710-719 (2014). 62. Futosi, K., Fodor, S. Mócsai, A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17, 638-650 (2013). 63. Mortaz, E., Alipoor, S.D., Adcock, I.M., Mumby, S. Koenderman, L. Update on Neutrophil Function in Severe Inflammation. Frontiers in immunology 9, 2171 (2018). 64. Rosales, C., Demaurex, N., Lowell, C.A. Uribe-Querol, E. Neutrophils: Their Role in Innate and Adaptive Immunity. Journal of immunology research 2016, 1469780-1469780 (2016). 65. Kluytmans, J., van Belkum, A. Verbrugh, H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clinical microbiology reviews 10, 505-520 (1997). 66. Teufelberger, A.R., Bröker, B.M., Krysko, D.V., Bachert, C. Krysko, O. Staphylococcus aureus Orchestrates Type 2 Airway Diseases. Trends in molecular medicine 25, 696-707 (2019). 67. Gjertsson, I., Jonsson, I.M., Peschel, A., Tarkowski, A. Lindholm, C. Formylated peptides are important virulence factors in Staphylococcus aureus arthritis in mice. J Infect Dis 205, 305-311 (2012). 68. Schmaler, M., Jann, N.J., Ferracin, F. Landmann, R. T and B cells are not required for clearing Staphylococcus aureus in systemic infection despite a strong TLR2-MyD88-dependent T cell activation. J Immunol 186, 443-452 (2011). 69. Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L. Fowler, V.G., Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28, 603-661 (2015). 70. Faust, N., Varas, F., Kelly, L.M., Heck, S. Graf, T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96, 719-726 (2000). 71. Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. European journal of immunology 47, 1584-1797 (2017). 72. Swamydas, M., Luo, Y., Dorf, M.E. Lionakis, M.S. Isolation of Mouse Neutrophils. Curr Protoc Immunol 110, 3.20.21-23.20.15 (2015). 73. Calzetti, F., Tamassia, N., Arruda-Silva, F., Gasperini, S. Cassatella, M.A. The importance of being 'pure' neutrophils. J Allergy Clin Immunol 139, 352-355.e356 (2017). 74. Snippert, H.J., Schepers, A.G., Delconte, G., Siersema, P.D. Clevers, H. Slide preparation for single-cell–resolution imaging of fluorescent proteins in their three-dimensional near-native environment. Nature protocols 6, 1221-1228 (2011). 75. Shim, K. Vibratome sectioning for enhanced preservation of the cytoarchitecture of the mammalian organ of Corti. J Vis Exp, 2793 (2011). 76. Clancy, B. Cauller, L.J. Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. Journal of neuroscience methods 83, 97-102 (1998). 77. Fellah, J.S., Wiles, M.V., Charlemagne, J. Schwager, J. Evolution of vertebrate IgM: complete amino acid sequence of the constant region of Ambystoma mexicanum mu chain deduced from cDNA sequence. European journal of immunology 22, 2595-2601 (1992). 78. Boes, M. Role of natural and immune IgM antibodies in immune responses. Molecular immunology 37, 1141-1149 (2000). 79. Racine, R. Winslow, G.M. IgM in microbial infections: taken for granted? Immunology letters 125, 79-85 (2009). 80. Lund, F.E. Cytokine-producing B lymphocytes-key regulators of immunity. Current opinion in immunology 20, 332-338 (2008). 81. Zhiming, W., Luman, W., Tingting, Q. Yiwei, C. Chemokines and receptors in intestinal B lymphocytes. Journal of leukocyte biology 103, 807-819 (2018). 82. Vollmer, W., Blanot, D. De Pedro, M.A. Peptidoglycan structure and architecture. FEMS Microbiology Reviews 32, 149-167 (2008). 83. Vardam, T.D. et al. Regulation of a lymphocyte-endothelial-IL-6 trans-signaling axis by fever-range thermal stress: hot spot of immune surveillance. Cytokine 39, 84-96 (2007). 84. Li, Y. et al. Regulation of Leukocyte Recruitment to the Spleen and Peritoneal Cavity during Pristane-Induced Inflammation. Journal of immunology research 2017, 9891348-9891348 (2017). 85. Belperio, J.A. et al. CXC chemokines in angiogenesis. Journal of leukocyte biology 68, 1-8 (2000). 86. Graves, D.T. Jiang, Y. Chemokines, a family of chemotactic cytokines. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 6, 109-118 (1995). 87. Zouali, M. Richard, Y. Marginal zone B-cells, a gatekeeper of innate immunity. Frontiers in immunology 2, 63 (2011). 88. Garis, M. Garrett-Sinha, L.A. Notch Signaling in B Cell Immune Responses. Frontiers in immunology 11 (2021). 89. Kang, J.A., Kim, W.S. Park, S.G. Notch1 is an important mediator for enhancing of B-cell activation and antibody secretion by Notch ligand. Immunology 143, 550-559 (2014). 90. Thomas, M. et al. Notch activity synergizes with B-cell–receptor and CD40 signaling to enhance B-cell activation. Blood 109, 3342-3350 (2006). 91. Zhang, Z. et al. Notch-RBP-J-independent marginal zone B cell development in IgH transgenic mice with VH derived from a natural polyreactive antibody. PLoS One 7, e38894 (2012). 92. Hirano, T. et al. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proceedings of the National Academy of Sciences of the United States of America 82, 5490-5494 (1985). 93. Jourdan, M. et al. IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors. Leukemia 28, 1647-1656 (2014). 94. Arkatkar, T. et al. B cell-derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity. The Journal of experimental medicine 214, 3207-3217 (2017). 95. Fielding, C.A. et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol 181, 2189-2195 (2008). 96. Lentini, G. et al. Neutrophils Enhance Their Own Influx to Sites of Bacterial Infection via Endosomal TLR-Dependent Cxcl2 Production. The Journal of Immunology 204, 660 (2020). 97. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science (New York, N.Y.) 330, 362-366 (2010). 98. Irimia, D. Neutrophil Swarms Are More Than the Accumulation of Cells. Microbiology insights 13, 1178636120978272 (2020). 99. Gosselin, E.J., Wardwell, K., Rigby, W.F. Guyre, P.M. Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-gamma, and IL-3. J Immunol 151, 1482-1490 (1993). 100. Radsak, M., Iking-Konert, C., Stegmaier, S., Andrassy, K. Hänsch, G.M. Polymorphonuclear neutrophils as accessory cells for T-cell activation: major histocompatibility complex class II restricted antigen-dependent induction of T-cell proliferation. Immunology 101, 521-530 (2000). 101. Guinamard, R., Okigaki, M., Schlessinger, J. Ravetch, J.V. Absence of marginal zone B cells in Pyk-2–deficient mice defines their role in the humoral response. Nature immunology 1, 31-36 (2000). 102. Sintes, J. et al. mTOR intersects antibody-inducing signals from TACI in marginal zone B cells. Nature communications 8, 1462 (2017). 103. Datta, R., Heaster, T.M., Sharick, J.T., Gillette, A.A. Skala, M.C. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. Journal of biomedical optics 25, 1-43 (2020). 104. Wang, K., Wei, G. Liu, D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Experimental Hematology Oncology 1, 36 (2012). 105. Jones, M.R. et al. Roles of interleukin-6 in activation of STAT proteins and recruitment of neutrophils during Escherichia coli pneumonia. J Infect Dis 193, 360-369 (2006). 106. Navarini, A.A. et al. Innate immune-induced depletion of bone marrow neutrophils aggravates systemic bacterial infections. Proceedings of the National Academy of Sciences of the United States of America 106, 7107-7112 (2009). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79915 | - |
| dc.description.abstract | "長期以來在適應性免疫系統中B淋巴細胞扮演著至關重要的角色。由於這些B細胞不僅能產生體液免疫的抗體來調節免疫作用,還可以通過釋放細胞因子來影響免疫應答。然而B細胞除了能產生病原特異性抗體功能外,是否還透過其他的免疫機制來進一步參與病原感染的清除作用目前仍有許多疑問。邊緣區B細胞是一群位於脾臟濾泡區邊界的B細胞子集,可以通過多種機制迅速反應細菌的入侵並且提供第一波抗體的保護。另外,當嗜中性粒細胞探測到血源性細菌感染後會迅速遷移到感染部位進行細菌清除,並且會湧入脾臟邊緣區,有關在感染初期邊緣區嗜中性粒細胞積累的現象目前尚不清楚。本研究的目的就是要去釐清邊緣區B細胞如何對抗血源性細菌感染的作用機制,以及瞭解邊緣區B細胞可否與嗜中性粒細胞產生交互作用,來進一步協同發揮先天性免疫作用和適應性免疫作用的功能,啟動快速對抗細菌入侵的保護模式。我們使用邊緣區B細胞缺陷小鼠模式來分析抵抗細菌感染的作用,結果發現邊緣區B細胞缺陷型小鼠比野生型小鼠更容易受到系統性金黃色葡萄球菌的感染。在經過金黃色葡萄球菌感染後3-4小時,小鼠體內邊緣區B細胞中的白介素(IL)-6和趨化因子CXCLl/CXCL2的表達水平會顯著增加,但又會在感染後24小時降低。另一項結果也發現,經過金黃色葡萄球菌感染後脾臟內嗜中性粒細胞會顯著性增加趨化因子受體CXCR2的表達。利用共軛焦顯微鏡觀察小鼠脾臟經過螢光染色後厚組織切片的影像結果顯示,野生型小鼠中的脾臟嗜中性粒細胞在感染後3小時會形成嗜中性粒細胞簇並與邊緣區B細胞產生緊密接觸。而在邊緣區B細胞缺陷型小鼠和IL-6缺陷型模式小鼠中,這種脾臟嗜中性粒細胞簇的形成維持不久且都相對的少。若在金黃色葡萄球菌感染前1小時通過靜脈注射抗CXCL1和抗CXCL2抗體,先阻斷體內CXCL1/CXCL2的作用後,再將金黃色葡萄球菌以尾靜脈注射方式感染小鼠3小時,可以顯著的抑制脾臟嗜中性粒細胞向邊緣區的募集作用。利用體外細胞培養比較兩組實驗,一組是邊緣區B細胞加入肽聚醣(PGN)刺激後的單獨培養,另一組是邊緣區B細胞與嗜中性粒細胞也加入肽聚醣刺激下的共同培養,後者的實驗結果顯示細胞共同培養進一步增強了邊緣區B細胞的活化和分化的現象。通過螢光壽命成像(FLIM-FRET)所進行的Förster共振能量轉移分析,我們觀察到經過肽聚醣刺激後邊緣區B細胞和嗜中性粒細胞之間有細胞跟細胞直接相互作用的證據。此外,利用中和抗體耗竭小鼠體內的嗜中性粒細胞後,再經過金黃色葡萄球菌以尾靜脈感染24小時後,測到小鼠體內的金黃色葡萄球菌特異性免疫球蛋白IgM的產量顯著性的減少。綜合上述結果,我們的研究顯示邊緣區B細胞在系統性金黃色葡萄球菌感染的早期階段,會迅速調節嗜中性粒細胞湧入脾臟中,再經由與嗜中性粒細胞的相互作用有助於邊緣區B細胞分化為分泌IgM的細胞,產生快速清除系統性細菌感染的免疫反應。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:16:32Z (GMT). No. of bitstreams: 1 U0001-2807202117583700.pdf: 5007179 bytes, checksum: 2e969b206cc939af3ce21cd825b68127 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 I 誌謝 II 中文摘要 III Abstract V Content Pages VIII Chapter 1 Introduction 1 1.1 B cell development 1 1.2 MZ B cell 3 1.3 Plasma cell 4 1.4 Immunoglobulin M (IgM) 5 1.5 Interleukin IL-6 6 1.6 Chemokine CXCL2 and receptor CXCR2 7 1.7 Neutrophil 8 1.8 Staphylococcus aureus 10 1.9 Aim of this thesis study 11 Chapter 2 Materials and Methods 13 2.1 Mice 13 2.2 Flow cytometry analysis 13 2.3 S. aureus infection and preparation of S. aureus lysates 14 2.4 Measurement of S. aureus-specific IgM by enzyme-linked immunosorbent assay (ELISA) 15 2.5 Neutrophil isolation 16 2.6 Microarray analysis 16 2.7 Real-time PCR analysis 17 2.8 Cytokine measurement 18 2.9 Confocal microscopy analysis of thick tissue sections 19 2.10 Förster resonance energy transfer by fluorescence lifetime imaging (FLIM-FRET) analysis 20 2.11 Statistical analysis 21 Chapter 3 Results 22 3.1 Mice lacking MZ B cells are more susceptible to S. aureus infection 22 3.2 S. aureus-specific IgM antibody production following bacterial infection 23 3.3 Cytokine IL-6 and chemokine CXCL2 were upregulated in MZ B cells after S. aureus infection 24 3.4 Neutrophils express increased levels of multiple chemokine receptors after S. aureus infection 26 3.5 IL-6 and CXCL1/CXCL2 are important for neutrophil swarming to the MZ area in response to systemic S. aureus infection 27 3.6 The neutrophil–MZ B cell interaction promotes IgM production 29 3.7 Neutrophil depletion affects MZ B-cell differentiation after bacterial infection 32 Chapter 4 Discussion 33 Chapter 5 References 43 Chapter 6 Figures 54 Figure 1. Defective MZB cells in RBP-J CKO mice. 54 Figure 2. The survival rate and body weight loss in RBP-J KO and WT mice after S. aureus infections. 55 Figure 3. The S. aureus-specific IgM antibodies released by MZ B cells after infection. 56 Figure 4. Kinetics of plasma cells in RBP-J CKO mice and WT mice during S. aureus infection. 57 Figure 5. The plasma cells in RBP-J CKO mice and WT mice 24 h after S. aureus infection. 58 Figure 6. Changes of cytokine and chemokine expression in MZ B cells and neutrophils in the early stage of S. aureus infection. 59 Figure 7. RT-qPCR analysis of the expression of chemokine-related genes in MZ B cells at 4 and 24 hours after S. aureus infection. 60 Figure 8. MZ B cells released the increased levels of cytokines IL-6, TNF, and IL-10 24 hours after PGN stimulation. 61 Figure 9. Kinetics of IL-6 in spleen of RBP-J CKO mice and WT mice during S. aureus infection. 62 Figure 10. MZ B cells produce IL-6 in response to S. aureus. 63 Figure 11. RT-qPCR analysis showing the expression of Cxcr1/Cxcr2 mRNA in splenic neutrophils after S. aureus infection. 64 Figure 12. Kinetics of the splenic neutrophils in RBP-J CKO mice and WT mice after systemic S. aureus infection. 65 Figure 13. Real time in vivo tracking of neutrophil swarming in spleen. 66 Figure 14. Kinetics of neutrophil swarming and regression in the MZ zone after S. aureus infection. 67 Figure 15. Confocal imaging analysis identifying the Ly6G-labeled area and CD1d-labeled area in MZ at indicated time points after systemic S. aureus infection. 69 Figure 16. Fluorescent labeling areas of Ly6G and CD1d positive area inside the white pulp from confocal microscope acquired images were calculated by MetaMorph software. 70 Figure 17. RT-qPCR analysis showing the expression of Cxcl1/Cxcl2 mRNA levels in MZ B cells of IL-6 KO mice after S. aureus infection. 71 Figure 18. Depletion of anti-Cxcl1/Cxcl2 in mice before S. aureus infection significantly prevents the recruitment of neutrophils to the spleen. 72 Figure 19. Confocal imaging analysis identifying the Ly6G-labeled area and CD1d-labeled area in MZ 3h after systemic S. aureus infection. 73 Figure 20. Confocal images illustrate that both populations of MZ B cells and neutrophils are closely together after infection. 74 Figure 21. Confocal images showing MZ B cells colocalized with neutrophils. 75 Figure 22. Schematic diagram of the co-culture experiment. 76 Figure 23. Flow cytometric analysis showing the up-regulation of CD69 and CD86 on MZ B cells co-cultured with neutrophils 3 hours after PGN stimulation. 77 Figure 24. Flow cytometric analysis showing the up-regulation of CD69 and CD86 on MZ B cells co-cultured with neutrophils 3 hours after heat-killed S. aureus stimulation. 78 Figure 25. FLIM-FRET analysis verifies the direct contact of neutrophils and MZ B cells after PGN stimulation. 79 Figure 26. The IgM production by MZ B cells co-cultured with neutrophils after PGN stimulation. 80 Figure 27. The IgM production by MZ B cells co-cultured with neutrophils after heat-killed S. aureus stimulation. 81 Figure 28. Neutrophil depletion in mice was confirmed by flow cytometry. 82 Figure 29 Depletion of neutrophils affects the survival of mice after S. aureus infection. 83 Figure 30. Effect of neutrophil deficiency on the activation of MZ B cells and IgM production in S. aureus-infected mice. 84 Figure 31. The population of macrophages present in RBP-J CKO mice. 85 Figure 32. MZ B cells recruit neutrophils to help the activation and differentiation of MZ B cells. 86" | |
| dc.language.iso | en | |
| dc.subject | 金黃色葡萄球菌 | zh_TW |
| dc.subject | 螢光共振能量轉移 | zh_TW |
| dc.subject | 白介素-6 | zh_TW |
| dc.subject | CXC-趨化因子受體2 | zh_TW |
| dc.subject | CXC-趨化因子2 | zh_TW |
| dc.subject | 邊緣區B細胞 | zh_TW |
| dc.subject | 嗜中性粒細胞 | zh_TW |
| dc.subject | neutrophil | en |
| dc.subject | CXCL2 | en |
| dc.subject | FLIM-FRET | en |
| dc.subject | IL-6 | en |
| dc.subject | Staphylococcus aureus | en |
| dc.subject | CXCR2 | en |
| dc.subject | Marginal zone B cell | en |
| dc.title | 邊緣區B細胞招募中性粒細胞來協助對抗系統性金黃色葡萄球菌感染之研究 | zh_TW |
| dc.title | Marginal zone B cells assist with neutrophil accumulation to fight against systemic Staphylococcus aureus infection | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李建國(Hsin-Tsai Liu),顧家綺(Chih-Yang Tseng),徐立中,徐嘉琳 | |
| dc.subject.keyword | 邊緣區B細胞,嗜中性粒細胞,金黃色葡萄球菌,白介素-6,CXC-趨化因子2,CXC-趨化因子受體2,螢光共振能量轉移, | zh_TW |
| dc.subject.keyword | Marginal zone B cell,neutrophil,Staphylococcus aureus,IL-6,CXCL2,CXCR2,FLIM-FRET, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU202101862 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202117583700.pdf | 4.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
