Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢義隆(I-Lung Chien)
dc.contributor.authorYa-Hsin Loen
dc.contributor.author羅雅欣zh_TW
dc.date.accessioned2022-11-23T09:15:59Z-
dc.date.available2023-08-01
dc.date.available2022-11-23T09:15:59Z-
dc.date.copyright2021-08-10
dc.date.issued2021
dc.date.submitted2021-08-02
dc.identifier.citation1.Shenvi, A. A.; Herron, D. M.; Agrawal, R., Energy efficiency limitations of the conventional heat integrated distillation column (HIDiC) configuration for binary distillation. Industrial engineering chemistry research 2011, 50 (1), 119-130. 2.Kiss, A. A.; Landaeta, S. J. F.; Ferreira, C. A. I., Towards energy efficient distillation technologies–Making the right choice. Energy 2012, 47 (1), 531-542. 3.Ewell, R.; Harrison, J.; Berg, L., Azeotropic distillation. Industrial Engineering Chemistry 1944, 36 (10), 871-875. 4.Aptel, P.; Challard, N.; Cuny, J.; Neel, J., Application of the pervaporation process to separate azeotropic mixtures. Journal of Membrane Science 1976, 1, 271-287. 5.Cao, Y.; Li, M.; Wang, Y.; Zhao, T.; Li, X.; Zhu, Z.; Wang, Y., Effect of feed temperature on economics and controllability of pressure-swing distillation for separating binary azeotrope. Chemical Engineering and Processing: Process Intensification 2016, 110, 160-171. 6.Zhu, Z.; Yu, X.; Ma, Y.; Yang, J.; Wang, Y.; Cui, P.; Li, X., Efficient extractive distillation design for separating binary azeotrope via thermodynamic and dynamic analyses. Separation and Purification Technology 2020, 238, 116425. 7.Yi, C.-C.; Shen, W.; Chien, I.-L., Design and control of an energy-efficient alternative process for the separation of methanol/toluene/water ternary azeotropic mixture. Separation and Purification Technology 2018, 207, 489-497. 8.Tsai, M.-L.; Chien, I.-L., Design and control of an energy-efficient process for the separation of benzene/isopropanol/water ternary mixture. Separation and Purification Technology 2021, 255, 117694. 9.Yang, A.; Shen, W.; Wei, S. a.; Dong, L.; Li, J.; Gerbaud, V., Design and control of pressure‐swing distillation for separating ternary systems with three binary minimum azeotropes. AIChE Journal 2019, 65 (4), 1281-1293. 10.Zhang, Y.-R.; Wu, T.-W.; Chien, I.-L., Energy-efficient heterogeneous azeotropic distillation coupling with pressure swing distillation for the separation of IPA/DIPE/Water mixture. Journal of the Taiwan Institute of Chemical Engineers 2021. 11.Lin, K.-Y.; Tsai, M.-L.; Chien, I.-L., Energy-efficient separation design of diisopropylether/isopropanol/water system having three distillation regions and liquid-liquid envelope. Separation and Purification Technology 2020, 251, 117292. 12.Yang, A.; Su, Y.; Chien, I.-L.; Jin, S.; Yan, C.; Shen, W., Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane. Energy 2019, 186, 115756. 13.Kaymak, D. B., Design and control of an alternative intensified process configuration for separation of butanol-butyl acetate-methyl isobutyl ketone system. Chemical Engineering and Processing-Process Intensification 2021, 159, 108233. 14.Wang, C.; Guang, C.; Cui, Y.; Zhang, Z.; Zhang, X., Separation of a ternary mixture with multiple azeotropes via pressure‐swing distillation. Journal of Chemical Technology Biotechnology 2019, 94 (6), 2023-2033. 15.Zhang, Q.; Liu, M.; Li, W.; Li, C.; Zeng, A., Heat-integrated triple-column pressure-swing distillation process with multi-recycle streams for the separation of ternary azeotropic mixture of acetonitrile/methanol/benzene. Separation and Purification Technology 2019, 211, 40-53. 16.Zhao, L.; Lyu, X.; Wang, W.; Shan, J.; Qiu, T., Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation. Computers Chemical Engineering 2017, 100, 27-37. 17.Logsdon, J. E.; Loke, R. A., Isopropyl alcohol. Kirk‐Othmer Encyclopedia of Chemical Technology 2000. 18.王春梅; 姜曉暉; 侯學偉, 二異丙醚的氣相色譜分析. 合成技術及應用 2002, 17 (1), 57-58. 19.Luo, H.; Liang, K.; Li, W.; Li, Y.; Xia, M.; Xu, C., Comparison of pressure-swing distillation and extractive distillation methods for isopropyl alcohol/diisopropyl ether separation. Industrial Engineering Chemistry Research 2014, 53 (39), 15167-15182. 20.You, X.; Rodriguez-Donis, I.; Gerbaud, V., Low pressure design for reducing energy cost of extractive distillation for separating diisopropyl ether and isopropyl alcohol. Chemical Engineering Research and Design 2016, 109, 540-552. 21.Ma, S.; Shang, X.; Zhu, M.; Li, J.; Sun, L., Design, optimization and control of extractive distillation for the separation of isopropanol-water using ionic liquids. Separation and Purification Technology 2019, 209, 833-850. 22.Guang, C.; Shi, X.; Zhang, Z.; Wang, C.; Wang, C.; Gao, J., Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures. Chemical Engineering Research and Design 2019, 143, 249-260. 23.Qi, J.; Tang, J.; Zhang, Q.; Wang, Y.; Chen, H.; Zhao, H.; Zhang, L., Heat-Integrated Azeotropic Distillation and Extractive Distillation for the Separation of Heterogeneous Ternary Azeotropes of Diisopropyl Ether/Isopropyl Alcohol/Water. Industrial Engineering Chemistry Research 2019, 58 (45), 20734-20745. 24.Qi, J.; Zhu, R.; Han, X.; Zhao, H.; Li, Q.; Lei, Z., Ionic liquid extractive distillation for the recovery of diisopropyl ether and isopropanol from industrial effluent: Experiment and simulation. Journal of Cleaner Production 2020, 254, 120132. 25.Guang, C.; Shi, X.; Zhao, X.; Zhang, Z.; Li, G., Development and intensification of a four-column hybrid process of heteroazeotropic distillation and pressure-swing distillation. Chemical Engineering and Processing-Process Intensification 2020, 107875. 26.Guang, C.; Zhao, X.; Zhang, Z.; Gao, J.; Li, M., Optimal design and performance enhancement of heteroazeotropic and pressure-swing coupling distillation for downstream isopropanol separation. Separation and Purification Technology 2020, 242, 116836. 27.Dai, Y.; Li, S.; Meng, D.; Yang, J.; Cui, P.; Wang, Y.; Zhu, Z.; Gao, J.; Ma, Y., Economic and Environmental Evaluation for Purification of Diisopropyl Ether and Isopropyl Alcohol via Combining Distillation and Pervaporation Membrane. ACS Sustainable Chemistry Engineering 2019, 7 (24), 20170-20179. 28.Lladosa, E.; Montón, J. B.; Burguet, M.; de la Torre, J., Isobaric (vapour+ liquid+ liquid) equilibrium data for (di-n-propyl ether+ n-propyl alcohol+ water) and (diisopropyl ether+ isopropyl alcohol+ water) systems at 100 kPa. The Journal of Chemical Thermodynamics 2008, 40 (5), 867-873. 29.Luyben, W. L., Distillation design and control using Aspen simulation. John Wiley Sons: 2013. 30.Jana, A. K., Heat integrated distillation operation. Applied Energy 2010, 87 (5), 1477-1494. 31.Luyben, W. L., Principles and case studies of simultaneous design. John Wiley Sons: 2012. 32.Li, W.; Shi, L.; Yu, B.; Xia, M.; Luo, J.; Shi, H.; Xu, C., New pressure-swing distillation for separating pressure-insensitive maximum boiling azeotrope via introducing a heavy entrainer: design and control. Industrial Engineering Chemistry Research 2013, 52 (23), 7836-7853. 33.Chen, Y.; Liu, C.; Geng, Z., Design and control of fully heat-integrated pressure swing distillation with a side withdrawal for separating the methanol/methyl acetate/acetaldehyde ternary mixture. Chemical Engineering and Processing-Process Intensification 2018, 123, 233-248. 34.Tyreus, B. D.; Luyben, W. L., Tuning PI controllers for integrator/dead time processes. Industrial Engineering Chemistry Research 1992, 31 (11), 2625-2628.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79902-
dc.description.abstract本研究論文探討異丙醚(DIPE)/異丙醇(IPA)/水(water)的三成分共沸混合物之分離,此混合物在三成分圖中被蒸餾邊界分成異丙醚蒸餾區域、異丙醇蒸餾區域和水蒸餾區域,其具有三個二元共沸物、一個三元共沸物與液-液分相區域,而本研究探討進料組成在常壓下,位於接近在僅含少量異丙醇的異丙醚與水兩蒸餾區域之蒸餾邊界的分離系統。利用此三種成分本身在常溫常壓下具有液-液分相的現象,能跨越蒸餾邊界的限制;並在蒸餾塔操作時,改變不同蒸餾塔的操作壓力,使得蒸餾區域可因為壓力不同而變化,擴增蒸餾區域,使整體系統內部回流減少,並且都不需要添加額外的物質來達到分離成效。因此相較於變壓蒸餾、共沸蒸餾與萃取蒸餾等常見的共沸分離方法,本研究中的分離方法能夠使多共沸物三成分混合物的分離,具有更佳的經濟優勢。本論文探討兩種不同的穩態分離程序,分別為複合式的雙液液分相槽結合變壓蒸餾分離流程與複合式的單液液分相槽結合變壓蒸餾分離流程,並對其做更節能環保的熱整合策略,讓系統進行最適化分析,使年度總成本達最小化。最後再對兩種最經濟的設計流程,分別進行動態控制策略設計,證明進料組成擾動與新鮮進料流量改變所帶來的製程干擾,能夠有效地被排除。 利用複合式雙液液分相槽結合變壓蒸餾程序,相較文獻中較具經濟的傳統三塔進料預熱萃取蒸餾程序的回流流量,可由7293 kg/hr減少至2587.34 kg/hr。且三塔進料預熱萃取蒸餾之熱源由高壓、中壓、低壓蒸汽提供,但是在複合式雙液液分相槽結合變壓蒸餾設計中,皆由低壓蒸汽提供熱源,使得複合式雙液液分相槽結合變壓蒸餾程序能更加節省能源且環保。在最佳化熱整合設計當中,複合式雙液液分相槽結合變壓蒸餾程序可以透過部分熱整合及加裝熱交換器預熱異丙醚塔(C1塔)等節能策略,讓其操作成本減少50.51%,年度總成本減少34.33%;而利用複合式單液液分相槽結合變壓蒸餾程序,蒸餾系統的回流能減少至5354.08 kg/hr,熱源也都由低壓蒸汽提供,並且利用部分熱整合及加裝熱交換器預熱異丙醚塔的設計,讓其操作成本可以減少34.63%,年度總成本則減少24.85%。 本論文對複合式雙液液分相槽結合變壓蒸餾程序建立五種不同的控制架構,以排除進料組成及新鮮進料流量變化的干擾,結果顯示控制架構五:固定C1塔再沸器熱負荷對C1塔進料流量比(QR1/CF1),C1、C2與C3塔皆為單點溫度控制,在面對4種10 mass%水進料組成擾動時,除了C進料組成干擾顯示出此控制架構對異丙醚產品純度控制稍差一點,其餘A、B、D進料組成干擾皆維持各產物純度在規範標準附近;而面對±10%新鮮進料流量改變時,控制架構五亦能控制住所有產物的純度。對複合式單液液分相槽結合變壓蒸餾程序建立兩種不同的控制架構,結果顯示控制架構二,根據開環路與閉環路敏感度測試找出適合的溫度控制板數,C1為雙點溫度控制,C2與C3塔皆為單點溫度控制,在面對4種20 mass%水進料組成擾動時,各組成干擾皆可維持各產物純度在規範標準附近且偏差極小;而面對±10%新鮮進料流量改變時,控制架構二也能保持產物的純度。 綜合上述,對於異丙醚/異丙醇/水的三成分共沸混合物之分離,利用複合式雙液液分相槽結合變壓蒸餾程序能得到最節省能源,並且為最經濟的設計流程;而利用複合式單液液分相槽結合變壓蒸餾程序,本研究設計出其他文獻所缺少的控制策略,並且控制架構能在不使用組成控制器的條件下,有效排除大量進料組成干擾與新鮮進料流量改變所帶來的影響。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:15:59Z (GMT). No. of bitstreams: 1
U0001-2907202119175300.pdf: 15013421 bytes, checksum: 232c4357b24c43adf123c0764298146f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents1.緒論(1) 1.1 前言(1) 1.2 文獻回顧(3) 1.2.1 三成分共沸組成分離系統(3) 1.2.2 異丙醚/異丙醇/水(4) 1.3 研究動機(6) 1.4 組織架構(7) 2.異丙醚/異丙醇/水分離系統(8) 2.1 前言(8) 2.2 熱力學模型(9) 3.穩態模擬與最適化設計(14) 3.1 前言(14) 3.2 水蒸餾區域進料組成系統探討(15) 3.2.1 再現三塔進料預熱萃取蒸餾分離程序(15) 3.2.2 水蒸餾區域進料的新穎雙分相槽分離程序概念(17) 3.2.3 新穎雙分相槽分離程序之最適化分析(21) 3.2.4 熱整合節能設計(27) 3.2.5 加裝熱交換器節能設計(29) 3.2.5.1 加裝熱交換器結合部分熱整合之新穎雙分相槽分離程序最適化分析(29) 3.2.6 水蒸餾區域進料的單分相槽分離程序概念(38) 3.2.7 結果與比較(47) 4.動態模擬與控制策略(48) 4.1 前言(48) 4.2 異丙醚/異丙醇/水雙分相槽分離系統(49) 4.2.1 調節與庫存控制環路(49) 4.2.2 完美控制閉環路敏感度分析(53) 4.2.3 進料組成擾動排除(58) 4.2.3.1 控制架構一(58) 4.2.3.2 控制架構二(64) 4.2.3.3 控制架構三(71) 4.2.3.4 控制架構四(76) 4.2.3.5 控制架構五(80) 4.2.3.6 進料組成擾動排除比較(84) 4.2.4 新鮮進料流量干擾排除(88) 4.2.5 小結(91) 4.3 異丙醚/異丙醇/水單分相槽分離系統(93) 4.3.1 調節與庫存控制環路(93) 4.3.2 完美控制閉環路敏感度分析(96) 4.3.3 進料組成擾動排除(100) 4.3.3.1 控制架構一(100) 4.3.3.2 控制架構二(106) 4.3.3.3 進料組成擾動排除比較(113) 4.3.4 新鮮進料流量干擾排除(115) 4.3.5 小結(118) 5.結論(119) 參考文獻(122) 附錄 年度總成本計算公式(127)
dc.language.isozh-TW
dc.subject程序設計與控制zh_TW
dc.subject熱整合zh_TW
dc.subject變壓蒸餾zh_TW
dc.subject液-液分相zh_TW
dc.subject多共沸物三成分系統zh_TW
dc.subjectprocess design and control.en
dc.subjectliquid-liquid separationen
dc.subjectpressure-swing distillationen
dc.subjectheat integrationen
dc.subjectmultiple azeotropesen
dc.title利用液-液分離和變壓蒸餾分離異丙醚/異丙醇/水三元混合物的節能程序設計與控制zh_TW
dc.titleDesign and Control of An Energy-Efficient Process for the Separation of Diisopropylether/Isopropanol/Water Ternary Mixture by Liquid-Liquid Separation and Pressure Swingen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳誠亮(Hsin-Tsai Liu),吳哲夫(Chih-Yang Tseng),汪上曉, 鄭西顯
dc.subject.keyword液-液分相,變壓蒸餾,熱整合,多共沸物三成分系統,程序設計與控制,zh_TW
dc.subject.keywordliquid-liquid separation,pressure-swing distillation,heat integration,multiple azeotropes,process design and control.,en
dc.relation.page129
dc.identifier.doi10.6342/NTU202101911
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2023-08-01-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2907202119175300.pdf14.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved