Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79889
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛煥彰(Huan-Jang Keh)
dc.contributor.authorMeng-Xuan Lien
dc.contributor.author李孟軒zh_TW
dc.date.accessioned2022-11-23T09:15:27Z-
dc.date.available2021-08-06
dc.date.available2022-11-23T09:15:27Z-
dc.date.copyright2021-08-06
dc.date.issued2021
dc.date.submitted2021-08-02
dc.identifier.citation[1] G.G. Stokes, On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids, Trans. Camb. Phil. Soc. 8 (1845) 287-319. [2] G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, Trans. Camb. Phil. Soc. 9 (1851) 8-106. [3] R. Pit, H. Hervet, L. Leger, Direct experimental evidence of slip in hexadecane: solid interfaces, Phys. Rev. Lett. 85 (2000) 980-983. [4] C. Cottin-Bizonne, A. Steinberger, B. Cross, O. Raccurt, E. Charlaix, Nanohydrodynamics: The intrinsic flow boundary condition on smooth surfaces, Langmuir 24 (2008) 1165-1172. [5] A. Martini, A. Roxin, R.Q. Snurr, Q. Wang, S. Lichter, Molecular mechanisms of liquid slip, J. Fluid Mech. 600 (2008) 257-269. [6] D.C. Tretheway, C.D. Meinhart, Apparent fluid slip at hydrophobic microchannel walls, Phys. Fluids 14 (2002) L9-L12. [7] C.H. Choi, U. Ulmanella, J. Kim, C.M. Ho, C.J. Kim, Effective slip and friction reduction in nanograted superhydrophobic microchannels, Phys. Fluids 18 (2006) 087105-1-8. [8] P.G. Saffman, On the boundary condition at the surface of a porous medium, Studies Appl. Math. 50 (1971) 93-101. [9] A. Nir, Linear shear flow past a porous particle, Appl. Sci. Res. 32 (1976) 313-325. [10] F. Sharipov, D. Kalempa, Velocity slip and temperature jump coefficients for gaseous mixtures. I. Viscous slip coefficient, Phys. Fluids 15 (2003) 1800-1806. [11] R.S. Myong, J.M. Reese, R.W. Barber, D.R. Emerson, Velocity slip in microscale cylindrical Couette flow: The Langmuir model, Phys. Fluids 17 (2005) 087105-1-11. [12] B.U. Felderhof, Hydrodynamic interaction between two spheres, Physica 89A (1977) 373-384. [13] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Nijhoff, Dordrecht, Netherlands, 1983. [14] A.B. Basset, A Treatise on Hydrodynamics, Vol. 2, Deighton, Bell and Co., Cambridge, 1888. [15] M.C. Lee, H.J. Keh, Effects of inertia on the slow rotation of a slip spherical particle, Eur. J. Mech. B Fluids 88 (2021) 67-71. [16] Q. Liu, A. Prosperetti, Wall effects on a rotating sphere, J. Fluid Mech. 657 (2010) 1-21. [17] D. Papavassiliou, G.P. Alexander, Exact solutions for hydrodynamic interactions of two squirming spheres, J. Fluid Mech. 813 (2017) 618-646. [18] J. Dauparas, E. Lauga, Leading-order Stokes flows near a corner, IMA J. Appl. Math. 83 (2018) 590-633. [19] C. Kuehn, F. Romanò, H.C. Kuhlmann, Tracking particles in flows near invariant manifolds via balance functions, Nonlinear Dyn. 92 (2018) 983-1000. [20] F. Romanò, P.-E. des Boscs, H.C. Kuhlmann, Forces and torques on a sphere moving near a dihedral corner in creeping flow, Eur. J. Mech. B Fluids 84 (2020) 110-121. [21] H.J. Keh, J.H. Chang, Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity, Chem. Eng. Sci. 53 (1998) 2365-2377. [22] M.S. Faltas, E.I. Saad, Stokes flow between eccentric rotating spheres with slip regime, Z. Angew. Math. Phys. 63 (2012) 905-919. [23] T.C. Lee, H.J. Keh, Slow motion of a spherical particle in a spherical cavity with slip surfaces, Int. J. Eng. Sci. 69 (2013) 1-15. [24] C.Y. Chou, H.J. Keh, Slow rotation of a spherical particle in an eccentric spherical cavity with slip surfaces, Eur. J. Mech. B Fluids 86 (2021) 150-156. [25] V.L. Sennitskii, Unsteady rotation of a cylinder in a viscous fluid, J. Appl. Mech. Tech. Phys. 21 (1980) 347-349. [26] S. Buonocore, M. Sen, F. Semperlotti, A fractional-order approach for transient creeping flow of spheres, AIP Advances 9 (2019) 085323-1-6. [27] S.C.R. Dennis, P.W. Duck, Unsteady flow due to an impulsively started rotating sphere, Comp. Fluids 16 (1988) 291-310. [28] S.A.W. Calabretto, B. Levy, J.P. Denier, T.W. Mattner, The unsteady flow due to an impulsively rotated sphere, Proc. R. Soc. A 471 (2015) 20150299-1-20. [29] A.R. Premlata, H.-H. Wei, Re-entrant history force transition for stick-slip Janus swimmers: mixed Basset and slip-induced memory effects, J. Fluid Mech. 882 (2020) A7-1-15. [30] J. Feng, D.D. Joseph, The unsteady motion of solid bodies in creeping flows, J. Fluid Mech. 303 (1995) 83-102. [31] E.A. Ashmawy, Unsteady rotational motion of a slip spherical particle in a viscous fluid, ISRN Math. Phys. 2012 (2012) 513717-1-8. [32] V. Zakian, Numerical inversion of Laplace transform, Electron. Lett. 5 (1969) 120-121. [33] H. Stehfest, Algorithm 368 Numerical inversion of Laplace transforms, Comm. ACM 13 (1970) 47-49.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79889-
dc.description.abstract本論文探討一個具滑移表面之球形粒子在一同心且具滑移表面之孔洞中,突然受到外加力矩作用所進行的暫態轉動現象。吾人以暫態Stokes方程式配合拉普拉斯轉換求得流體流動速度,再利用粒子受力平衡及拉普拉斯數值解逆轉換獲得粒子暫態角速度,以探討無因次化暫態角速度與其相關的無因次參數之關係。   本研究結果顯示粒子角速度會隨時間從零逐漸成長到達終端角速度,而粒子角加速度則會隨時間的增加而單調遞減。當孔洞表面足夠滑移時,粒子之轉動會被增強,暫態角速度會隨粒子對孔洞之半徑比的增加而增加。當孔洞表面比較不滑移時,粒子之轉動會被滯緩,暫態角速度會隨粒子對孔洞之半徑比的增加而減少。而當孔洞表面滑移程度介於前述兩者之間的情形時,粒子暫態角速度則不是粒子對孔洞之半徑比的敏感函數。儘管粒子暫態角速度隨其表面或孔洞表面的黏著性減少(即滑移性增加)而增加,粒子在有較大的與流體相對密度、較小的粒子對孔洞之半徑比、或較滑移的粒子表面(或較滑移的孔洞表面)時,相較於其對應的狀態,粒子角速度隨時間到達終端角速度的成長都會比較落後。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:15:27Z (GMT). No. of bitstreams: 1
U0001-3007202117181300.pdf: 2544229 bytes, checksum: 62c65e8b1c26bdeb12af0470b1b04ae3 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 I Abstract II Table of Contents IV List of Figures V Chapter 1 Introduction 1 Chapter 2 Analysis 4 2.1 Governing Equation and Boundary Conditions 4 2.2 Solution for the Fluid Velocity 5 2.3 Transient Angular Velocity of the Particle 6 Chapter 3 Result and Discussion 9 3.1 Transient Rotation of an Unconfined Particle 9 3.2 Transient Angular Velocity of a Confined Particle 11 Chapter 4 Conclusions 28 List of Symbols 30 References 32
dc.language.isoen
dc.subject滑移孔洞zh_TW
dc.subject蠕動流zh_TW
dc.subject起始旋轉運動zh_TW
dc.subject滑移粒子zh_TW
dc.subject暫態角速度zh_TW
dc.subjectSlip particleen
dc.subjectStart-up rotationen
dc.subjectCreeping flowen
dc.subjectSlip cavityen
dc.subjectTransient angular velocityen
dc.title具滑移表面之球形粒子在同心孔洞之暫態轉動zh_TW
dc.titleTransient rotation of a spherical particle in a concentric cavity with slip surfacesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王大銘(Hsin-Tsai Liu),謝之真(Chih-Yang Tseng)
dc.subject.keyword起始旋轉運動,滑移粒子,暫態角速度,滑移孔洞,蠕動流,zh_TW
dc.subject.keywordStart-up rotation,Slip particle,Transient angular velocity,Slip cavity,Creeping flow,en
dc.relation.page34
dc.identifier.doi10.6342/NTU202101945
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-3007202117181300.pdf2.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved