Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79883
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭榮和(Jung-Ho Cheng)
dc.contributor.authorChih-Wei Changen
dc.contributor.author張智維zh_TW
dc.date.accessioned2022-11-23T09:15:12Z-
dc.date.available2021-08-11
dc.date.available2022-11-23T09:15:12Z-
dc.date.copyright2021-08-11
dc.date.issued2021
dc.date.submitted2021-07-30
dc.identifier.citation[1] C. Chen. 'New Energy Vehicle Sales Grow Against Headwinds by 19.8% in 2020, with Significant Growth Expected for 2021, Says TrendForce.' https://www.trendforce.com/presscenter/news/20201127-10573.html (accessed. [2] P. WARRENDALE. 'SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles.' https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (accessed. [3] Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems, N. H. T. S. Administration, 2007. [4] 車輛安全檢測基準 第四十二之三項動態煞車, 中華民國交通部, 2014. [5] H. Pacejka, Tire and vehicle dynamics. Elsevier, 2005. [6] R. Rajamani, Vehicle dynamics and control. Springer Science Business Media, 2011. [7] H. Kang, M. A. Jalil, and M. Mailah, 'Development of a Vehicle Dynamic Model (VDM) for Virtual Driving Simulation.' [8] G. Gissinger, C. Menard, and A. Constans, 'A mechatronic conception of a new intelligent braking system,' Control Engineering Practice, vol. 11, no. 2, pp. 163-170, 2003. [9] V. P. S. Sager Sanjay Dawange, 'Introduction to Antilock Breaking System (ABS),' Recent Trends in Automation and Automobile Engineering, vol. 2, no. 3, p. 6, 2019. [10] V. D. Gowda and A. Ramachandra, 'Slip ratio control of anti-lock braking system with bang-bang controller,' Int. J. Comput. Tech, vol. 4, no. 1, pp. 97-104, 2017. [11] H. R. More, A. A. Digrase, and A. V. Wayse, 'Linear PID control technique for single wheel ABS (anti-lock braking system) of motorcycle,' in 2017 2nd International Conference for Convergence in Technology (I2CT), 2017: IEEE, pp. 277-281. [12] S. Solyom, A. Rantzer, and J. Lüdemann, 'Synthesis of a model-based tire slip controller,' Vehicle System Dynamics, vol. 41, no. 6, pp. 475-499, 2004. [13] H. Unbehauen, Control systems, robotics and automation. Eolss Publishers Company Limited Oxford, 2009. [14] Y.-K. Chin, W. C. Lin, D. M. Sidlosky, D. S. Rule, and M. S. Sparschu, 'Sliding-mode ABS wheel-slip control,' in 1992 American Control Conference, 1992: IEEE, pp. 1-8. [15] J. P. Ferro, 'Design and Simulation of an ABS Control Scheme for a Formula Student Prototype,' Thesis, Instituto Superior Técnico de Lisboa, 2014. [16] J.-m. Zhang, B.-y. Song, and G. Sun, 'An advanced control method for ABS fuzzy control system,' in 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA), 2008, vol. 1: IEEE, pp. 845-849. [17] B. Lu, Y. Wang, J.-j. Wu, and J.-p. Li, 'ABS system design based on improved fuzzy PID control,' in 2010 Sixth International Conference on Natural Computation, 2010, vol. 1: IEEE, pp. 62-65. [18] C.-M. Lin and C.-F. Hsu, 'Self-learning fuzzy sliding-mode control for antilock braking systems,' IEEE Transactions on Control Systems Technology, vol. 11, no. 2, pp. 273-278, 2003. [19] R. BOSCH, BOSCH AUTOMOTIVE HANDBOOK. SAE SOC OF AUTOMOTIVE ENG, 2018. [20] 'Understanding the Traction Control System and its Capabilities.' https://www.sellanycar.com/cars-related/understanding-traction-control-system-capabilities/ (accessed. [21] A. H. Ahangarnejad, A. Radmehr, and M. Ahmadian, 'A review of vehicle active safety control methods: From antilock brakes to semiautonomy,' Journal of Vibration and Control, p. 1077546320948656, 2020. [22] T. Akiba, R. Shirato, T. Fujita, and J. Tamura, 'A study of novel traction control method for electric motor driven vehicle,' in 2007 Power Conversion Conference-Nagoya, 2007: IEEE, pp. 699-704. [23] D. Yin, S. Oh, and Y. Hori, 'A novel traction control for EV based on maximum transmissible torque estimation,' IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2086-2094, 2009. [24] Y. Hori, Y. Toyoda, and Y. Tsuruoka, 'Traction control of electric vehicle: basic experimental results using the test EV' UOT electric march',' IEEE transactions on Industry Applications, vol. 34, no. 5, pp. 1131-1138, 1998. [25] L. Martini. 'Hardware-in-the-Loop Simulation.' https://www.embedded.com/hardware-in-the-loop-simulation-2/ (accessed. [26] C. Kleijn, 'Introduction to hardware-in-the-loop simulation,' Control Lab, vol. 7521, 2014. [27] W. Zhao, Q. Song, W. Liu, M. Ahmad, and Y. Li, 'Distributed Electric Powertrain Test Bench With Dynamic Load Controlled by Neuron PI Speed-Tracking Method,' IEEE Transactions on Transportation Electrification, vol. 5, no. 2, pp. 433-443, 2019. [28] Z. Weiqiang, C. Zong, H. Zheng, H. Wang, and S. Yang, 'Integrated HIL test and development system for pneumatic ABS/EBS ECU of commercial vehicles,' SAE Technical Paper, 0148-7191, 2012. [29] 'BL BOSCH 5.3 ABS System Description.' HYUNDAI. http://sorento.kia-club.ru/Repair_manual/download/DOWN/BL%20BOSCH%20ABS%205.3.pdf (accessed. [30] J. R. Vaughn, 'A fundamental approximation in MATLAB of the efficiency of an automotive differential in transmitting rotational kinetic energy,' 2012. [31] V. Colli, G. Tomassi, and M. Scarano, '' Single Wheel' longitudinal traction control for electric vehicles,' IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 799-808, 2006. [32] N. Lin, C. Zong, and S. Shi, 'The method of mass estimation considering system error in vehicle longitudinal dynamics,' Energies, vol. 12, no. 1, p. 52, 2019. [33] T. Ghotikar, 'Estimation of vehicle mass and road grade,' 2008. [34] C. K. Song, M. Uchanski, and J. K. Hedrick, 'Vehicle speed estimation using accelerometer and wheel speed measurements,' SAE Technical Paper, 0148-7191, 2002. [35] C.-K. Chen and M.-C. Shih, 'PID-Type Fuzzy Control for Anti-Lock Brake Systems with Parameter Adaptation,' JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 47, no. 2, pp. 675-685, 2004. [36] 葉雲諺, '機車防鎖死煞車系統控制之硬體迴路模擬,' 碩士, 車輛工程系, 國立臺北科技大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/7tj543 [37] C. Ahn, B. Kim, and M. Lee, 'Modeling and control of an anti-lock brake and steering system for cooperative control on split-mu surfaces,' International Journal of Automotive Technology, vol. 13, no. 4, pp. 571-581, 2012. [38] 林庭合, '應用於線控車輛之硬體在環驗證平台開發,' 國立臺灣大學機械工程學研究所學位論文, 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79883-
dc.description.abstract線控車輛(X-by-wire Vehicle)為自駕技術關鍵之一,利用電子訊號取代傳統車輛油門踏板等機械結構,能更有效率的實現自動駕駛。為了滿足國內安全法規並確保自動駕駛的安全性,本研究發展一套應用於線控車輛的防鎖死煞車與牽引力控制系統,避免車輪產生空轉或鎖死的現象,並使線控車輛的加減速性能進一步提升。本研究首先根據輪速訊號與加速度訊號估測輪胎縱向力、整車重量、車身速度、輪胎滑差等控制器所需訊號,以此為基礎發展TCS與ABS控制策略,前者TCS利用最大可傳遞力矩估測(MTTE)限制馬達輸出扭力避免驅動輪空轉,並且會通過PI回授控制修正估測誤差,後者ABS利用模糊控制技術控制煞車油壓避免輪胎鎖死並最大化煞車性能。在ABS與TCS性能驗證方面首先利用dSPACE ASM 整車模型進行模型在環驗證(MiL),確認控制方法的可行性。接著架設動力系統與煞車系統硬體測試平台,同時整合控制策略、車輛模型、線控硬體進行硬體在環測試驗證(HiL)。由測試結果可以證明本研究發展的TCS與ABS能有效提升車輛加減速性能,且滿足國內相關安全法規的要求。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:15:12Z (GMT). No. of bitstreams: 1
U0001-3007202122082800.pdf: 16222591 bytes, checksum: 11a3a888e5bc9bd93044edd0677899dc (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 I 摘要 II ABSTRACT III 圖目錄 IX 表目錄 XVI 縮寫表 XIX 參數表 XX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目標 4 1.3 研究方法與假設 5 1.4 研究流程與架構 6 1.5 論文架構 9 第二章 文獻回顧 10 2.1 輪胎摩擦力理論 10 2.2 ABS概念與控制方法 13 2.2.1 滑差開關控制 13 2.2.2 滑差PID控制 14 2.2.3 適應性控制 15 2.2.4 滑動模式控制 15 2.2.5 模糊控制 17 2.2.6 Bosch輪速閥值控制 19 2.2.7 小結 21 2.3 TCS概念與控制方法 22 2.3.1 基於模型控制 22 2.3.2 最大可傳遞力矩估測 25 2.3.3 滑差控制 27 2.3.4 小結 27 2.4 硬體在環驗證 27 2.4.1 硬體在環測試簡介 27 2.4.2 動力系統驗證平台 29 2.4.3 ABS系統驗證平台 30 2.5 文獻回顧總結 31 第三章 車輛規格展開與建模 32 3.1 線控底盤車系統展開 32 3.1.1 線控底盤車整車規格 32 3.1.2 線控驅動系統 34 3.1.3 線控煞車系統 37 3.2 車輛數學模型 42 3.2.1 車輛模型架構 42 3.2.2 動力與傳動系統模型 43 3.2.3 煞車系統模型 45 3.2.4 輪胎模型 49 3.2.5 車輛動態計算 51 3.3 車輛建模總結 52 第四章 參數估測系統設計 53 4.1 參數估測系統目標與架構 53 4.2 車輛幾何參數定義 55 4.3 車輛動態估測 56 4.3.1 摩擦力估測 56 4.3.2 車身質量估測 59 4.3.3 正向力估測 63 4.3.4 有效輪徑估測 65 4.3.5 車輛速度估測 66 4.3.6 動態估測性能測試 69 4.4 最佳滑差估測 76 4.4.1 基於輪胎模型識別最佳滑差 76 4.4.2 基於加速度識別最佳滑差 79 4.4.3 最佳滑差估測總結 81 4.5 小結 82 第五章 ABS與TCS控制策略 83 5.1 車輛控制架構 83 5.2 TCS控制器設計 85 5.2.1 TCS運作流程 85 5.2.2 TCS控制架構 86 5.2.3 TCS控制狀態切換 87 5.2.4 TCS空轉抑制 88 5.2.5 TCS滑差控制 88 5.2.6 TCS控制小結 92 5.3 ABS控制器設計 94 5.3.1 煞車系統運作架構 94 5.3.2 ABS控制器架構 96 5.3.3 ABS控制狀態切換 98 5.3.4 ABS滑差控制 100 5.3.5 Split μ車身穩定控制 108 5.3.6 ABS控制小結 109 第六章 MiL模擬與分析 111 6.1 ABS與TCS性能指標 112 6.1.1 ABS煞車性能指標 112 6.1.2 ABS左右輪穩定性指標 113 6.1.3 TCS加速性能指標 113 6.2 TCS模擬分析 114 6.2.1 空載冰面起步 115 6.2.2 空載濕滑路面起步 119 6.2.3 滿載冰面起步 123 6.2.4 滿載濕滑路面起步 127 6.2.5 Split-μ路面起步 128 6.2.6 TCS模擬結果小結 131 6.3 ABS模擬分析 132 6.3.1 空載冰面急煞 134 6.3.2 空載濕滑路面急煞 138 6.3.3 滿載冰面急煞 142 6.3.4 滿載濕滑路面急煞 146 6.3.5 Split-μ路面急煞 150 6.3.6 ABS模擬成果小結 154 第七章 實驗平台架設與HiL驗證 155 7.1 HiL實驗平台架設 155 7.1.1 整體實驗平台架構 155 7.1.2 雙軸動力計系統 156 7.1.3 RT模擬系統 159 7.1.4 中控電腦 160 7.1.5 線控驅動系統 161 7.1.6 線控煞車系統 162 7.1.7 小結 166 7.2 HiL測試架構 168 7.3 TCS硬體在環驗證 170 7.3.1 空載冰面起步模擬結果 171 7.3.2 空載冰面起步結果分析 172 7.3.3 空載濕滑路面起步模擬結果 174 7.3.4 空載濕滑路面起步結果分析 175 7.3.5 滿載冰面起步模擬結果 177 7.3.6 滿載冰面起步結果分析 178 7.3.7 Split-μ路面起步模擬結果 180 7.3.8 Split-μ路面起步結果分析 181 7.4 ABS硬體在環驗證 183 7.4.1 空載冰面急煞模擬結果 184 7.4.2 空載冰面急煞結果分析 185 7.4.3 空載濕滑路面急煞模擬結果 188 7.4.4 空載濕滑路面急煞結果分析 189 7.4.5 滿載冰面急煞模擬結果 191 7.4.6 滿載冰面路面急煞結果分析 192 7.4.7 Split-μ路面急煞模擬結果 194 7.4.8 Split-μ路面急煞結果分析 195 7.5 硬體在環測試總結 197 7.5.1 TCS硬體在環測試總結 197 7.5.2 ABS硬體在環測試總結 198 第八章 結論與未來方向 199 8.1 研究成果與貢獻 199 8.2 未來方向 201 參考文獻 202
dc.language.isozh-TW
dc.subject駕駛輔助系統zh_TW
dc.subject防鎖死煞車系統zh_TW
dc.subject牽引力控制系統zh_TW
dc.subject模糊控制zh_TW
dc.subject硬體在環測試驗證zh_TW
dc.subject線控煞車zh_TW
dc.subject線控驅動zh_TW
dc.subjectfuzzy controlen
dc.subjectadvanced driver. assistance systemsen
dc.subjecthardware-in-the-loopen
dc.subjectdrive-by-wireen
dc.subjectanti-lock braking systemen
dc.subjecttraction control systemen
dc.subjectbrake-by-wireen
dc.title應用於線控車輛的牽引力控制和防鎖死煞車策略開發與硬體在環測試驗證zh_TW
dc.titleDevelopment and HiL Validation of Antilock Braking System and Traction Control System for X-by-Wire Vehicleen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉霆(Hsin-Tsai Liu),蘇偉儁(Chih-Yang Tseng),陳明彥
dc.subject.keyword防鎖死煞車系統,牽引力控制系統,模糊控制,硬體在環測試驗證,線控煞車,線控驅動,駕駛輔助系統,zh_TW
dc.subject.keywordanti-lock braking system,traction control system,fuzzy control,brake-by-wire,drive-by-wire,hardware-in-the-loop,advanced driver. assistance systems,en
dc.relation.page233
dc.identifier.doi10.6342/NTU202101952
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-3007202122082800.pdf15.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved