請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79873完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 錢義隆(I-Lung Chien) | |
| dc.contributor.author | Yin-Rui Zhang | en |
| dc.contributor.author | 張尹睿 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:14:47Z | - |
| dc.date.available | 2023-08-31 | |
| dc.date.available | 2022-11-23T09:14:47Z | - |
| dc.date.copyright | 2021-08-10 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-02 | |
| dc.identifier.citation | 1. Lin, K.-Y., M.-L. Tsai, and I.L. Chien, Energy-efficient separation design of diisopropylether/isopropanol/water system having three distillation regions and liquid-liquid envelope. Separation and Purification Technology, 2020. 251. 2. Sun, S., W. Chun, A. Yang, W. Shen, P. Cui, and J. Ren, The separation of ternary azeotropic mixture: Thermodynamic insight and improved multi-objective optimization. Energy, 2020. 206. 3. Wang, Y., G. Bu, X. Geng, Z. Zhu, P. Cui, and Z. Liao, Design optimization and operating pressure effects in the separation of acetonitrile/methanol/water mixture by ternary extractive distillation. Journal of Cleaner Production, 2019. 218: p. 212-224. 4. Yang, A., Y. Su, I.L. Chien, S. Jin, C. Yan, S.a. Wei, and W. Shen, Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane. Energy, 2019. 186. 5. Zhang, Q., M. Liu, W. Li, C. Li, and A. Zeng, Heat-integrated triple-column pressure-swing distillation process with multi-recycle streams for the separation of ternary azeotropic mixture of acetonitrile/methanol/benzene. Separation and Purification Technology, 2019. 211: p. 40-53. 6. Tavan, Y. and S.H. Hosseini, A novel integrated process to break the ethanol/water azeotrope using reactive distillation – Part I: Parametric study. Separation and Purification Technology, 2013. 118: p. 455-462. 7. Kaymak, D.B., Design and Control of an Alternative Process for Biobutanol Purification from ABE Fermentation. Industrial Engineering Chemistry Research, 2019. 58(5): p. 1957-1965. 8. Errico, M., C. Madeddu, M. Flemming Bindseil, S. Dall Madsen, S. Braekevelt, and M.S. Camilleri-Rumbau, Membrane assisted reactive distillation for bioethanol purification. Chemical Engineering and Processing - Process Intensification, 2020. 157. 9. Guzmán-Martínez, C.E., R. Maya-Yescas, A.J. Castro-Montoya, and F. Nápoles Rivera, Dynamic simulation of control systems for bioethanol reactive dehydration: Conventional and intensified case studies. Chemical Engineering and Processing - Process Intensification, 2021. 159. 10. Hu, X., H. Cheng, X. Kang, L. Chen, X. Yuan, and Z. Qi, Analysis of direct synthesis of dimethyl carbonate from methanol and CO 2 intensified by in-situ hydration-assisted reactive distillation with side reactor. Chemical Engineering and Processing - Process Intensification, 2018. 129: p. 109-117. 11. Yang, A., Y. Su, L. Teng, S. Jin, T. Zhou, and W. Shen, Investigation of energy-efficient and sustainable reactive/pressure-swing distillation processes to recover tetrahydrofuran and ethanol from the industrial effluent. Separation and Purification Technology, 2020. 250. 12. Wang, C., Y. Zhuang, L. Liu, L. Zhang, and J. Du, Design and comparison of energy-saving double column and triple column reactive-extractive hybrid distillation processes for ternary multi-azeotrope dehydration. Separation and Purification Technology, 2021. 259. 13. Yang, A., L. Lv, W. Shen, L. Dong, J. Li, and X. Xiao, Optimal Design and Effective Control of thetert-Amyl Methyl Ether Production Process Using an Integrated Reactive Dividing Wall and Pressure Swing Columns. Industrial Engineering Chemistry Research, 2017. 56(49): p. 14565-14581. 14. Lee, H.-Y., C.-Y. Chen, J.-L. Chen, J.R. Alcántara-Avila, M. Terasaki, K.-I. Sotowa, and T. Horikawa, Design and control of diphenyl carbonate reactive distillation process with thermally coupled and heat-integrated stages configuration. Computers Chemical Engineering, 2019. 121: p. 130-147. 15. Logsdon, J.E. and R.A. Loke, Isopropyl alcohol. Kirk‐Othmer Encyclopedia of Chemical Technology, 2000. 16. Guang, C., X. Shi, Z. Zhang, C. Wang, C. Wang, and J. Gao, Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures. Chemical Engineering Research and Design, 2019. 143: p. 249-260. 17. Qi, J., R. Zhu, X. Han, H. Zhao, Q. Li, and Z. Lei, Ionic liquid extractive distillation for the recovery of diisopropyl ether and isopropanol from industrial effluent: Experiment and simulation. Journal of Cleaner Production, 2020. 254. 18. Dai, Y., S. Li, D. Meng, J. Yang, P. Cui, Y. Wang, Z. Zhu, J. Gao, and Y. Ma, Economic and Environmental Evaluation for Purification of Diisopropyl Ether and Isopropyl Alcohol via Combining Distillation and Pervaporation Membrane. ACS Sustainable Chemistry Engineering, 2019. 7(24): p. 20170-20179. 19. Qi, J., J. Tang, Q. Zhang, Y. Wang, H. Chen, H. Zhao, and L. Zhang, Heat-Integrated Azeotropic Distillation and Extractive Distillation for the Separation of Heterogeneous Ternary Azeotropes of Diisopropyl Ether/Isopropyl Alcohol/Water. Industrial Engineering Chemistry Research, 2019. 58(45): p. 20734-20745. 20. Shi, X., X. Zhu, X. Zhao, and Z. Zhang, Performance evaluation of different extractive distillation processes for separating ethanol/tert-butanol/water mixture. Process Safety and Environmental Protection, 2020. 137: p. 246-260. 21. Yang, A., W. Shen, S.a. Wei, L. Dong, J. Li, and V. Gerbaud, Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes. AIChE Journal, 2019. 65(4): p. 1281-1293. 22. Su, Y., A. Yang, S. Jin, W. Shen, P. Cui, and J. Ren, Investigation on ternary system tetrahydrofuran/ethanol/water with three azeotropes separation via the combination of reactive and extractive distillation. Journal of Cleaner Production, 2020. 273. 23. Wang, N., Q. Ye, L. Chen, H. Zhang, and J. Zhong, Improving the economy and energy efficiency of separating water/acetonitrile/isopropanol mixture via triple-column pressure-swing distillation with heat-pump technology. Energy, 2021. 215. 24. Li, Y., Q. Ye, N. Wang, L. Chen, H. Zhang, and Y. Xu, Energy-efficient extractive distillation combined with heat-integrated and intermediate reboilers for separating acetonitrile/isopropanol/water mixture. Separation and Purification Technology, 2021. 262. 25. Lladosa, E., J.B. Montón, M. Burguet, and J. de la Torre, Isobaric (vapour+liquid+liquid) equilibrium data for (di-n-propyl ether+n-propyl alcohol+water) and (diisopropyl ether+isopropyl alcohol+water) systems at 100kPa. The Journal of Chemical Thermodynamics, 2008. 40(5): p. 867-873. 26. Tsai, M.-L., Y.-R. Zhang, and I.L. Chien, Improved design of separation system for the recovery of benzene and isopropanol from wastewater. Separation and Purification Technology, 2021. 260. 27. Luyben, W.L., Principles and case studies of simultaneous design. 2012: John Wiley Sons. 28. Seader, J., W.D. Seider, and D.R. Lewin, Product and process design principles: synthesis, analysis and evaluation. 2004: Wiley. 29. Luyben, W.L., Practical distillation control. 2012: Springer Science Business Media. 30. Tsai, M.-L., Y.-H. Wang, and I.L. Chien, Novel Control Strategy for Maximum Boiling Extractive Distillation Systems: Acetone/Chloroform Separation. Industrial Engineering Chemistry Research, 2020. 59(18): p. 8740-8756. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79873 | - |
| dc.description.abstract | 本論文中提出兩種分離具多共沸物之三成分混合物的方法,第一種為利用三成分系統中的液液分相區,使用一分相槽去跨過蒸餾邊界,再透過變壓蒸餾,擴大蒸餾區域進而減少系統內回流量,在此方法中不需引用額外的成分作為夾帶劑增加成分間相對揮發度,也無需使用高壓蒸汽作為再沸器熱源。第二種為利用環氧乙烷與水的反應,用一反應蒸餾塔除去新鮮進料中非主要產物的水,再透過相對揮發度提升圖及成分間的T-xy圖,選乙二醇作為重夾帶劑,使用萃取蒸餾分離剩餘的主要產物,可進一步進行程序整合,將原先的反應蒸餾與萃取蒸餾在同一個單元中進行,藉此省去相關的設備成本與操作成本。 第一種方法選水/異丙醚/異丙醇為例,在此論文中使用一分相槽與三根蒸餾塔,相較於傳統的萃取蒸餾程序,系統內回流量從8596.9 kg/hr減至4667.2 kg/hr,減少了每根蒸餾塔的操作量,此外透過加裝熱交換器及執行熱整合等節能策略,最後所提出之程序可節省33.0%的操作成本及23.0%的年度總成本。此程序也選做進一步的動態模擬討論,透過開環與閉環敏感度分析,固定C1塔回流比,在C1塔及C2塔使用單點溫度控制,在C3塔使用雙點溫度控制,因而提出兩種控制架構,結果顯示兩種控制架構皆可有效地處理四種成分擾動及10%的新鮮進料流量擾動。 第二種方法選水/乙醇/叔丁醇、水/乙醇/四氫呋喃及水/異丙醇/乙腈系統為例,在此論文中先提出三塔複合式反應萃取蒸餾,因為在反應蒸餾塔中,水已經由環氧乙烷反應除去,因此所需填加的重夾帶劑量變少,進而在溶劑回收塔中所需再沸器熱負荷也會降低,此程序可進行程序強化,將反應蒸餾與萃取蒸餾塔合併,再透過加裝熱交換器等節能策略,最終提出之程序的節能效果皆顯著。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:14:47Z (GMT). No. of bitstreams: 1 U0001-0108202117152400.pdf: 6254676 bytes, checksum: 391a149e9fa2285a17d6fad1111dfabc (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 1. 緒論 1 1.1. 前言 1 1.2. 文獻回顧 4 1.2.1. 水/異丙醚/異丙醇系統 4 1.2.2. 水/乙醇/叔丁醇系統 7 1.2.3. 水/乙醇/四氫呋喃系統 8 1.2.4. 水/異丙醇/乙腈系統 10 1.3. 研究動機 11 1.4. 組織架構 12 2. 水/異丙醚/異丙醇系統 13 2.1. 前言 13 2.2. 熱力學模型 14 2.3. 再現四塔萃取蒸餾程序 16 2.4. 新穎分離程序設計 19 2.4.1. 新穎分離程序之概念設計 19 2.4.2. 分離程序之最適化分析 22 2.4.3. 節能策略 26 2.5. 小結與討論 30 3. 複合式反應萃取蒸餾程序 32 3.1. 前言 32 3.2. 熱力學及動力學模型 33 3.2.1. 環氧乙烷除水反應之動力學 33 3.2.2. 熱力學模型 33 3.3. 概念設計及合適的混合物系統 37 3.3.1. 程序流程之演變 37 3.3.2. 適合之三成分混合物系統(A/B/Water) 39 3.4. 水/乙醇/叔丁醇系統 40 3.4.1. 再現三塔萃取蒸餾程序 40 3.4.2. 複合式反應萃取蒸餾程序 41 3.4.3. 加裝熱交換器之節能策略 46 3.4.4. 小結與討論 48 3.5. 水/乙醇/四氫呋喃系統 51 3.5.1. 再現三塔反應萃取蒸餾分離程序 51 3.5.2. 複合式反應萃取蒸餾程序及節能策略 53 3.5.3. 小結與討論 57 3.6. 水/異丙醇/乙腈系統 60 3.6.1. 再現三塔萃取蒸餾程序 60 3.6.2. 複合式反應萃取蒸餾程序及節能策略 62 3.6.3. 小結與討論 66 4. 動態模擬與控制策略 69 4.1. 前言 69 4.2. 調節及儲量控制 70 4.3. 品質控制分析與策略 73 4.4. 動態控制響應 77 4.4.1. 控制架構一 77 4.4.2. 控制架構二 88 4.5. 小結與討論 97 5. 結論與未來工作 100 5.1. 結論 100 5.2. 未來工作 102 參考文獻 103 附錄 年度總成本計算公式 109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 程序控制 | zh_TW |
| dc.subject | 三成分含水系統分離 | zh_TW |
| dc.subject | 多共沸物組成 | zh_TW |
| dc.subject | 液-液分相 | zh_TW |
| dc.subject | 變壓蒸餾 | zh_TW |
| dc.subject | 反應蒸餾 | zh_TW |
| dc.subject | 萃取蒸餾 | zh_TW |
| dc.subject | 程序設計 | zh_TW |
| dc.subject | process design | en |
| dc.subject | process control | en |
| dc.subject | ternary system containing water | en |
| dc.subject | multiple azeotrope | en |
| dc.subject | liquid-liquid separation | en |
| dc.subject | pressure-swing distillation | en |
| dc.subject | reaction distillation | en |
| dc.subject | extractive distillation | en |
| dc.title | 分離具多共沸物的三成份系統之兩種程序的設計 | zh_TW |
| dc.title | Two Different Methods for the Separation of Various Ternary Mixture Having Multiple Azeotropes | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳誠亮(Hsin-Tsai Liu),吳哲夫(Chih-Yang Tseng),汪上曉,鄭西顯 | |
| dc.subject.keyword | 三成分含水系統分離,多共沸物組成,液-液分相,變壓蒸餾,反應蒸餾,萃取蒸餾,程序設計,程序控制, | zh_TW |
| dc.subject.keyword | ternary system containing water,multiple azeotrope,liquid-liquid separation,pressure-swing distillation,reaction distillation,extractive distillation,process design,process control, | en |
| dc.relation.page | 112 | |
| dc.identifier.doi | 10.6342/NTU202101976 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-31 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0108202117152400.pdf | 6.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
