Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79867
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復(Cheng-Fu Chou)
dc.contributor.authorHung-Chi Hsiehen
dc.contributor.author謝宏祺zh_TW
dc.date.accessioned2022-11-23T09:14:31Z-
dc.date.available2021-11-06
dc.date.available2022-11-23T09:14:31Z-
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-10-08
dc.identifier.citationJa­Der Liang, Xiao­Ou Ping, Yi­Ju Tseng, Guan­Tarn Huang, Feipei Lai, and Pei­Ming Yang. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selectionmethods. Computer Methods and Programs in Biomedicine, 117(3):425–434, 2014. Po­Wen Chen. Recurrence predictive models for patients with hepatocellular carci­noma after radiofrequency ablation based on machine learning algorithm. Master’s thesis, National Taiwan University, Taipei, August 2019. Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. Cancer statistics, 2020. CA Cancer J Clin., 70(1):7–30, 2020. F Xavier Bosch, Josepa Ribes, Mireia Díaz, and Ramon Cléries. Primary liver can­cer: Worldwide incidence and trends. Gastroenterology, 127(5):S5–S16, 2004. Isabella Lurje, Zoltan Czigany, Jan Bednarsch, Christoph Roderbur, Peter Isfort,Ulf Peter Neumann, and Georg Lurje. Treatment strategies for hepatocellular carci­noma a multidisciplinary approach. Int J Mol Sci., 20(6):1465, 2019. Yasunori Minami, Naoshi Nishida, and Masatoshi Kudo. Therapeutic response as­sessment of rfa for hcc: contrast-­enhanced us, ct and mri. World J Gastroenterol.,20(15):4160–4166, 2014. F Xavier Bosch, Josepa Ribes, Mireia Díaz, and Ramon Cléries. Feature selec­tion based on mutual information: Criteria of max­-dependency, max­-relevance, and min-­redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence,27:1226–1238, 2005. Vincent Wai­To Lam, Kelvin Kwok­Chai Ng, Kenneth Siu­Ho Chok, Tan­To Che­ung, Jimmy Yuen, Helen Tung, Wai­Kuen Tso, Sheung­Tat Fan, and Ronnie T PPoon. Risk factors and prognostic factors of local recurrence after radiofrequency ablation of hepatocellular carcinoma. J Am Coll Surg., 207(1):20–29, 2008. Kazue Shiozawa, Manabu Watanabe, Noritaka Wakui, Takashi Ikehara, KazunariIida, and Yasukiyo Sumino. Risk factors for the local recurrence of hepatocellular carcinoma after single­-session percutaneous radiofrequency ablation with a single electrode insertion. Mol Med Rep., 2(1):89–95, 2009. Lun­Xiu Qin and Zhao­You Tang. The prognostic significance of clinical and patho­logical features in hepatocellular carcinoma. World J Gastroenterol., 8(2):193–199,2002. Jeong Han Kim, Hyung Joon Yim, Kwang Gyun Lee, Seung Young Kim, Eun SukJung, Young Kul Jung, Ji Hoon Kim, Yeon Seok Seo, Jong Eun Yeon, Hong SikLee, Soon Ho Um, Kwan Soo Byun, and Ho Sang Ryu. Recurrence rates and factors for recurrence after radiofrequency ablation combined with transarterial chemoem­bolization for hepatocellular carcinoma: a retrospective cohort study. Hepatol Int.,6(2):505–510, 2002. Kazuhiro Nouso, Eiji Matsumoto, Yoshiyuki Kobayashi, Shin­Ichiro Nakamura, Hi­ronori Tanaka, Toshiya Osawa, Hiroshi Ikeda, Yasuyuki Araki, Kohsaku Sakaguchi, and Yasushi Shiratori. Risk factors for local and distant recurrence of hepatocellular carcinomas after local ablation therapies. J Gastroenterol Hepatol., 23(3):453–458,2008. Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In ICML, 2013. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, and Ilya Sutskever. Dropout:A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014. F Xavier Bosch, Josepa Ribes, Mireia Díaz, and Ramon Cléries. Adaptive subgra­dient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79867-
dc.description.abstract肝細胞癌在各種癌症中的死亡率常年位居前列,即使病患診斷出肝癌腫瘤並且接受治療,術後仍有很高的機率復發。因此,透過病患術前的檢體採檢資料以及各項影像報告的整合分析,輔以術後的檢體採檢做為追蹤,建立復發的預測模型,可以提早的發現腫瘤的復發或者轉移並且及時治療。 本篇論文使用的資料是於2007-2019年間,以射頻灼燒術作為第一次肝癌治療的病患。資料樣本總數為1477筆,其中362筆術後一年內復發的病患,562筆為術後一年以上復發,其餘553筆為一年以上未復發。這份資料集取自台大醫院資料庫,先前有團隊研究了2007-2009以及2007-2013年間的資料,並且發表數篇研究成果,包括建立資料庫、特徵提取以及資料缺值插補等主題。其中也包含復發預測模型的建立,但僅使用支援向量機與簡單深度神經網路,且特徵也僅包含術前資料,並無術後的追蹤。 本篇論文聚焦於整合文字報告與檢體採檢同時的異質輸入、術後追蹤的時序關係以及使用搜索的方式找出這些特徵的線性組合來擴增特徵,同時與之前團隊之研究成果進行比較。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:14:31Z (GMT). No. of bitstreams: 1
U0001-0208202101590400.pdf: 1414297 bytes, checksum: 5733a18bfb0eef86d59e19ec99083392 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i 致謝 iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Related Work 3 2.1 Recurrence Predictive Model using SVM. . . . . . . . . . . . . . . 3 2.2 Predictive Model based on machine learning algorithm. . . . . . . . 4 2.3 FeatureWiz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.1 SULOV method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.2 Recursive XGBoost. . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 3Dataset9 3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Free­text report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 laboratory inspection data from Department of Laboratory Medicine. 11 Chapter 4 Method 13 4.1 Data preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.1 Free­text reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.2 laboratory inspection data. . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Base method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.1 Model description. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.2 Hyperparameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Method based on feature selection. . . . . . . . . . . . . . . . . . . 23 4.3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3.2 Search Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.3 Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.4 Training with Reinforcement. . . . . . . . . . . . . . . . . . . . . 25 Chapter 5 Experiments and Results 27 5.1 Evaluation metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Experiments and Results. . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.1 Simple test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.2 K­fold Cross validation. . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.3 Three­year recurrence prediction. . . . . . . . . . . . . . . . . . . 33 Chapter 6 Conclusion 35 References 37
dc.language.isoen
dc.subject異質輸入zh_TW
dc.subject肝癌zh_TW
dc.subject機器學習zh_TW
dc.subject特徵搜索zh_TW
dc.subjectHepatocellular carcinomaen
dc.subjectHeterogeneous inputen
dc.subjectFeature searchingen
dc.subjectMachine learningen
dc.title基於特徵搜索與異質輸入的射頻灼燒術後肝癌復發預測模型zh_TW
dc.titleRecurrence Predictive Models for Patients with Hepatocellular Carcinoma after Radiofrequency Ablation based on Feature Searching and Heterogeneous Inputen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳曉光(Hsin-Tsai Liu),林澤(Chih-Yang Tseng),梁嘉德,李明穗
dc.subject.keyword肝癌,異質輸入,特徵搜索,機器學習,zh_TW
dc.subject.keywordHepatocellular carcinoma,Heterogeneous input,Feature searching,Machine learning,en
dc.relation.page39
dc.identifier.doi10.6342/NTU202101983
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
U0001-0208202101590400.pdf1.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved