Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79854
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰(Shiang-Tai Lin)
dc.contributor.authorHsiu-Li Wenen
dc.contributor.author温修立zh_TW
dc.date.accessioned2022-11-23T09:13:58Z-
dc.date.available2021-08-10
dc.date.available2022-11-23T09:13:58Z-
dc.date.copyright2021-08-10
dc.date.issued2021
dc.date.submitted2021-08-04
dc.identifier.citationTsai, C.C. and S.T. Lin, Integration of modern computational chemistry and ASPEN PLUS for chemical process design. AIChE Journal, 2020. 66(10): p. e16987. Zhang, X., et al., Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide. Energy, 2007. 32(4): p. 591-599. Fan, J., H. Hong, and H. Jin, Power generation based on chemical looping combustion: will it qualify to reduce greenhouse gas emissions from life-cycle assessment? ACS Sustainable Chemistry Engineering, 2018. 6(5): p. 6730-6737. Chakraborty, A., et al., Thermodynamic modelling of a solid state thermoelectric cooling device: Temperature–entropy analysis. International Journal of Heat and Mass Transfer, 2006. 49(19-20): p. 3547-3554. Bang-Møller, C. and M. Rokni, Thermodynamic performance study of biomass gasification, solid oxide fuel cell and micro gas turbine hybrid systems. Energy Conversion and Management, 2010. 51(11): p. 2330-2339. Gilfillan, S.M., et al., Solubility trapping in formation water as dominant CO 2 sink in natural gas fields. Nature, 2009. 458(7238): p. 614-618. Gaillard, F., B. Scaillet, and N.T. Arndt, Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature, 2011. 478(7368): p. 229-232. Nieto-Draghi, C., et al., A general guidebook for the theoretical prediction of physicochemical properties of chemicals for regulatory purposes. Chemical reviews, 2015. 115(24): p. 13093-13164. Ungerer, P., et al., Molecular simulation of the thermophysical properties of fluids: From understanding toward quantitative predictions. Journal of Molecular Liquids, 2007. 134(1-3): p. 71-89. Duan, Z. and Z. Zhang, Equation of state of the H2O, CO2, and H2O–CO2 systems up to 10 GPa and 2573.15 K: Molecular dynamics simulations with ab initio potential surface. Geochimica et cosmochimica acta, 2006. 70(9): p. 2311-2324. Guardia, E. and J. Marti, Density and temperature effects on the orientational and dielectric properties of supercritical water. Physical Review E, 2004. 69(1): p. 011502. Abrams, D.S. and J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE Journal, 1975. 21(1): p. 116-128. Fredenslund, A., R.L. Jones, and J.M. Prausnitz, Group‐contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 1975. 21(6): p. 1086-1099. Renon, H. and J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures. AIChE journal, 1968. 14(1): p. 135-144. Klamt, A., Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry, 1995. 99(7): p. 2224-2235. Lin, S.-T. and S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model. Industrial engineering chemistry research, 2002. 41(5): p. 899-913. Zhang, Z. and Z. Duan, An optimized molecular potential for carbon dioxide. The Journal of chemical physics, 2005. 122(21): p. 214507. Feng, X.-J., et al., Gaseous pvTx properties of mixtures of carbon dioxide and propane with the Burnett isochoric method. Journal of Chemical Engineering Data, 2010. 55(9): p. 3400-3409. Sandler, S.I., The generalized van der Waals partition function. I. Basic theory. Fluid Phase Equilibria, 1985. 19(3): p. 238-257. Lopez-Echeverry, J.S., S. Reif-Acherman, and E. Araujo-Lopez, Peng-Robinson equation of state: 40 years through cubics. Fluid Phase Equilibria, 2017. 447: p. 39-71. Ma, J., et al., Thermodynamic properties and vapor–liquid equilibria of associating fluids, Peng–Robinson equation of state coupled with shield-sticky model. Fluid phase equilibria, 2012. 330: p. 1-11. Arvelos, S., et al., Evaluation of different contribution methods over the performance of Peng–Robinson and CPA equation of state in the correlation of VLE of triglycerides, fatty esters and glycerol+ CO2 and alcohol. Fluid Phase Equilibria, 2014. 362: p. 136-146. Zhao, H. and S.N. Lvov, Phase behavior of the CO2–H2O system at temperatures of 273–623 K and pressures of 0.1–200 MPa using Peng-Robinson-Stryjek-Vera equation of state with a modified Wong-Sandler mixing rule: an extension to the CO2–CH4–H2O system. Fluid Phase Equilibria, 2016. 417: p. 96-108. Kontogeorgis, G.M. and G.K. Folas, Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories. 2009: John Wiley Sons. Redlich, O. and J.N.S. Kwong, On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 1949. 44(1): p. 233-244. Soave, G., Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical engineering science, 1972. 27(6): p. 1197-1203. Peng, D.-Y. and D.B. Robinson, A new two-constant equation of state. Industrial Engineering Chemistry Fundamentals, 1976. 15(1): p. 59-64. Venkatasubramanian, V., The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE Journal, 2019. 65(2): p. 466-478. Rupp, M., et al., Fast and accurate modeling of molecular atomization energies with machine learning. Physical review letters, 2012. 108(5): p. 058301. Choi, S., et al., Experimental demonstration of feature extraction and dimensionality reduction using memristor networks. Nano letters, 2017. 17(5): p. 3113-3118. Rossouw, D., et al., Multicomponent signal unmixing from nanoheterostructures: Overcoming the traditional challenges of nanoscale x-ray analysis via machine learning. Nano letters, 2015. 15(4): p. 2716-2720. Huan, T.D., et al., A universal strategy for the creation of machine learning-based atomistic force fields. NPJ Computational Materials, 2017. 3(1): p. 1-8. Brockherde, F., et al., Bypassing the Kohn-Sham equations with machine learning. Nature communications, 2017. 8(1): p. 1-10. Chmiela, S., et al., Machine learning of accurate energy-conserving molecular force fields. Science advances, 2017. 3(5): p. e1603015. Hansen, K., et al., Assessment and validation of machine learning methods for predicting molecular atomization energies. Journal of Chemical Theory and Computation, 2013. 9(8): p. 3404-3419. Schütt, K.T., et al., How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Physical Review B, 2014. 89(20): p. 205118. Hansen, K., et al., Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. The journal of physical chemistry letters, 2015. 6(12): p. 2326-2331. Deringer, V.L. and G. Csányi, Machine learning based interatomic potential for amorphous carbon. Physical Review B, 2017. 95(9): p. 094203. Subramanian, G., et al., Computational modeling of β-secretase 1 (BACE-1) inhibitors using ligand based approaches. Journal of chemical information and modeling, 2016. 56(10): p. 1936-1949. Ash, J. and D. Fourches, Characterizing the chemical space of ERK2 kinase inhibitors using descriptors computed from molecular dynamics trajectories. Journal of chemical information and modeling, 2017. 57(6): p. 1286-1299. Sumpter, B.G., C. Getino, and D.W. Noid, Theory and applications of neural computing in chemical science. Annual Review of Physical Chemistry, 1994. 45(1): p. 439-481. Ward, L., et al., A general-purpose machine learning framework for predicting properties of inorganic materials. npj Computational Materials, 2016. 2(1): p. 1-7. Raccuglia, P., et al., Machine-learning-assisted materials discovery using failed experiments. Nature, 2016. 533(7601): p. 73-76. Ramprasad, R., et al., Machine learning in materials informatics: recent applications and prospects. npj Computational Materials, 2017. 3(1): p. 1-13. Liu, Z., et al., Generative model for the inverse design of metasurfaces. Nano letters, 2018. 18(10): p. 6570-6576. Sanchez-Lengeling, B. and A. Aspuru-Guzik, Inverse molecular design using machine learning: Generative models for matter engineering. Science, 2018. 361(6400): p. 360-365. Zhang, H., et al., Machine learning for novel thermal-materials discovery: early successes, opportunities, and challenges. arXiv preprint arXiv:1901.05801, 2019. Pereira, J.C., E.R. Caffarena, and C.N. Dos Santos, Boosting docking-based virtual screening with deep learning. Journal of chemical information and modeling, 2016. 56(12): p. 2495-2506. Sumpter, B.G., et al., A bridge for accelerating materials by design. NPJ Computational Materials, 2015. 1(1): p. 1-11. Spellings, M. and S.C. Glotzer, Machine learning for crystal identification and discovery. AIChE Journal, 2018. 64(6): p. 2198-2206. Venkatasubramanian, V. and K. Chan, A neural network methodology for process fault diagnosis. AIChE Journal, 1989. 35(12): p. 1993-2002. Himmelblau, D.M., Accounts of experiences in the application of artificial neural networks in chemical engineering. Industrial Engineering Chemistry Research, 2008. 47(16): p. 5782-5796. Geng, Z., et al., Energy optimization and analysis modeling based on extreme learning machine integrated index decomposition analysis: application to complex chemical processes. Energy, 2017. 120: p. 67-78. Yuan, X., et al., Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine. Energy, 2017. 129: p. 122-137. Hoskins, J.C. and D. Himmelblau, Artificial neural network models of knowledge representation in chemical engineering. Computers Chemical Engineering, 1988. 12(9-10): p. 881-890. Ghasemi, A.K., et al., Predicting the Coefficients of Antoine Equation Using the Artificial Neural Network. International Journal of Engineering, 2019. 32(10): p. 1353-1357. Rostamian, H. and M.N. Lotfollahi, Statistical modeling of aspirin solubility in organic solvents by Response Surface Methodology and Artificial Neural Networks. Physica a-Statistical Mechanics and Its Applications, 2020. 540: p. 9. MacQueen, J. Some methods for classification and analysis of multivariate observations. in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. 1967. Oakland, CA, USA. Park, H.-S. and C.-H. Jun, A simple and fast algorithm for K-medoids clustering. Expert systems with applications, 2009. 36(2): p. 3336-3341. Rousseeuw, P.J., Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 1987. 20: p. 53-65. Johnson, S.C., Hierarchical clustering schemes. Psychometrika, 1967. 32(3): p. 241-254. Eldesoky, A., M. Saleh, and N. Sakr. Novel similarity measure for document clustering based on topic phrases. in 2009 International Conference on Networking and Media Convergence. 2009. IEEE. Myatt, G.J. and W.P. Johnson, Making sense of data II: A practical guide to data visualization, advanced data mining methods, and applications. 2009: Wiley Online Library. Lu, Q. and Y. Liang. Multiresolution Learning on Neural Network Classifiers: A Systematic Approach. in 2009 International Conference on Network-Based Information Systems. 2009. IEEE. Ester, M., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. in Kdd. 1996. Ankerst, M., et al., OPTICS: Ordering points to identify the clustering structure. ACM Sigmod record, 1999. 28(2): p. 49-60. Ritter, H., T. Martinetz, and K. Schulten, Neural computation and self-organizing maps: an introduction. 1992: Addison-Wesley Reading, MA. Hall, L.H. and C. Story, Boiling point and critical temperature of a heterogeneous data set: QSAR with atom type electrotopological state indices using artificial neural networks. Journal of chemical information and computer sciences, 1996. 36(5): p. 1004-1014. Vasseghian, Y., et al., Modeling the interfacial tension of water-based binary and ternary systems at high pressures using a neuro-evolutive technique. ACS omega, 2019. 5(1): p. 781-790. Huuskonen, J.J., D.J. Livingstone, and I.V. Tetko, Neural network modeling for estimation of partition coefficient based on atom-type electrotopological state indices. Journal of chemical information and computer sciences, 2000. 40(4): p. 947-955. Lowe, E.W., et al. Comparative analysis of machine learning techniques for the prediction of logP. in 2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). 2011. IEEE. Forte, E., et al., Digitalization in thermodynamics. Chemie Ingenieur Technik, 2019. 91(3): p. 201-214. Liu, Y., W. Hong, and B. Cao, Machine learning for predicting thermodynamic properties of pure fluids and their mixtures. Energy, 2019. 188: p. 116091. Coccia, G., et al., Determination of the Boyle temperature of pure gases using artificial neural networks. Fluid Phase Equilibria, 2019. 493: p. 36-42. Bouzidi, A., et al., Viscosity calculation at moderate pressure for nonpolar gases via neural network. Journal of Applied Sciences, 2007. 7(17): p. 2450-2455. Pirdashti, M., et al., Thermophysical Properties and Experimental and Modeling Density of Alkanol+ Alkane Mixtures Using Neural Networks Developed with Differential Evolution Algorithm. International Journal of Thermophysics, 2020. 41(3): p. 1-29. Santak, P. and G. Conduit, Predicting physical properties of alkanes with neural networks. Fluid Phase Equilibria, 2019. 501: p. 112259. Golzar, K., S. Amjad-Iranagh, and H. Modarress, Prediction of thermophysical properties for binary mixtures of common ionic liquids with water or alcohol at several temperatures and atmospheric pressure by means of artificial neural network. Industrial Engineering Chemistry Research, 2014. 53(17): p. 7247-7262. Şencan, A., İ.İ. Köse, and R. Selbaş, Prediction of thermophysical properties of mixed refrigerants using artificial neural network. Energy conversion and management, 2011. 52(2): p. 958-974. Azari, A., S. Atashrouz, and H. Mirshekar, Prediction the vapor-liquid equilibria of CO2-containing binary refrigerant mixtures using artificial neural networks. International Scholarly Research Notices, 2013. 2013. Saldana, D.A., et al., Prediction of density and viscosity of biofuel compounds using machine learning methods. Energy fuels, 2012. 26(4): p. 2416-2426. Arce, P.F., N.F. Vieira, and E.M.S. Igarashi, Thermodynamic Modeling and Simulation of Biodiesel Systems at Supercritical Conditions. Industrial Engineering Chemistry Research, 2018. 57(2): p. 751-767. Zhu, K. and E.A. Muller, Generating a Machine-Learned Equation of State for Fluid Properties. The Journal of Physical Chemistry B, 2020. 124(39): p. 8628-8639. Lafitte, T., et al., Accurate statistical associating fluid theory for chain molecules formed from Mie segments. The Journal of chemical physics, 2013. 139(15): p. 154504. Kaufman, L. and P.J. Rousseeuw, Finding groups in data: an introduction to cluster analysis. Vol. 344. 2009: John Wiley Sons. Sandler, S.I., Chemical, biochemical, and engineering thermodynamics. 2017: John Wiley Sons. Johnston, D.C., Advances in Thermodynamics of the van der Waals Fluid. 2014: Morgan Claypool San Rafael, CA. Likas, A., N. Vlassis, and J.J. Verbeek, The global k-means clustering algorithm. Pattern recognition, 2003. 36(2): p. 451-461. Kanungo, T., et al., An efficient k-means clustering algorithm: Analysis and implementation. IEEE transactions on pattern analysis and machine intelligence, 2002. 24(7): p. 881-892. Pena, J.M., J.A. Lozano, and P. Larranaga, An empirical comparison of four initialization methods for the k-means algorithm. Pattern recognition letters, 1999. 20(10): p. 1027-1040. Nair, V. and G.E. Hinton. Rectified linear units improve restricted boltzmann machines. in Icml. 2010. Han, J. and C. Moraga. The influence of the sigmoid function parameters on the speed of backpropagation learning. in International Workshop on Artificial Neural Networks. 1995. Springer. Simard, P.Y., D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks applied to visual document analysis. in Icdar. 2003. Citeseer. Chung, J., et al., Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014. Bottou, L., Online learning and stochastic approximations. On-line learning in neural networks, 1998. 17(9): p. 142. Bottou, L. and O. Bousquet, 13 the tradeoffs of large-scale learning. Optimization for machine learning, 2011: p. 351. Bottou, L. and Y. LeCun, Large scale online learning. Advances in neural information processing systems, 2004. 16: p. 217-224. Schaul, T., S. Zhang, and Y. LeCun. No more pesky learning rates. in International Conference on Machine Learning. 2013. PMLR. Duchi, J., E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 2011. 12(7). Tieleman, T. and G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 2012. 4(2): p. 26-31. Sutskever, I., et al. On the importance of initialization and momentum in deep learning. in International conference on machine learning. 2013. PMLR. Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79854-
dc.description.abstract"本研究欲建立一套人工類神經網路模型(Artificial Neural Network, ANN),以準確預測純流體(fluids)的熱力學性質(thermodynamic properties)和相平衡。在人工類神經網路模型的架構中,需要提供大量數據用以訓練其中神經元之參數,因此我們在本研究中選擇使用彭羅賓森狀態方程式(Peng-Robinson Equation of State, PR-EOS)計算大量的純流體熱力學數據,以供後續的模型訓練。以PR-EOS計算純流體熱力學數據的方法大致為:在包含液體、氣體和超臨界流體範圍的對比溫度和對比壓力下,給定合理範圍並隨機亂數分布的大量PR-EOS參數如(a,b,ω)或是(Tc,Pc,ω),如此便可透過PR-EOS計算各種熱力學數據如臨界點、蒸氣壓(Pvap)、標準狀態沸點(Tb)等,若再給定定壓熱容(Cp)還可計算其他熱力學狀態函數如焓、熵和自由能等。 在本研究中,我們特別想要了解ANN模型是否可用於預測處於不同相狀態的純流體性質,並辨認純流體的相變化(phase transition)。經本研究發現,簡單的ANN模型無法準確預測純流體在全相圖範圍的某些熱力學狀態函數;然而,若對純流體的熱力學數據進行分類預處理,將純流體數據根據其相狀態的不同進行分類,再對各類別分別建立ANN模型並且訓練,便能大幅提升模型預測準確性,降低模型預測值與PR-EOS計算值之間約25%~73%左右的誤差。我們更進一步研究使用機器學習(machine learning)方法,對純流體數據自動進行相狀態的分類,本研究應用一種名為k平均聚類(k-means clustering)的非監督式學習演算法進行分類,便可對純流體數據達到約95%以上的分類準確度。因此綜合以上結果,我們藉由結合k平均聚類以及ANN訓練模型,便可自動化預測純彭羅賓森流體在全相圖範圍中的各種熱力學性質。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:13:58Z (GMT). No. of bitstreams: 1
U0001-0308202115515700.pdf: 8231207 bytes, checksum: 94268360fdc877a1f563b9a4a4820e70 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 i 致謝 ii 摘要 iii ABSTRACT iv TABLE OF CONTENTS v LIST OF FIGURES vii LIST OF TABLES xi Chapter 1. Introduction 1 1.1 Importance of Process Design and Modeling in Chemical Engineering 1 1.2 Applications of Machine Learning in Industry 4 1.3 Prediction of Thermodynamic Properties by Machine Learning 5 Chapter 2. Theory 8 2.1 Peng-Robinson Equation of State 8 2.2 Unsupervised Learning and k-Means Clustering 18 2.3 Supervised Learning and Artificial Neural Network 21 Chapter 3. Computational Details 27 3.1 Construction of Database of Thermodynamic Properties 27 3.2 Preprocessing of the Data 30 3.3 Cluster Analysis of Database of Properties with 2 Degrees of Freedom 32 3.4 Building the Artificial Neural Network 35 3.5 Error Analysis and Reliability 36 Chapter 4. Results and Discussion 38 4.1 (Z,Vm,Hm,Um,Sm,Am,Gm,f) 38 4.1.1 No Classification before Training 38 4.1.2 Perfect Classification According to Theory of Phase Differences 45 4.1.3 K-Means Clustering with Tr, Pr, and Z_EOS Being Input 54 4.1.4 K-Means Clustering with Tr, Pr, and Z_predicted Being Input 64 4.1.5 Brief Summary for (Z,Vm,Hm,Um,Sm,Am,Gm,f) 81 4.2 Vapor Pressure Pvap 83 4.3 Normal Boiling Temperature Tb 87 4.4 Critical Point (Tc,Pc) 91 Chapter 5. Conclusion and Future Prospects 96 Reference 98 ABOUT THE AUTHOR 106"
dc.language.isoen
dc.subject人工類神經網路zh_TW
dc.subject熱力學性質zh_TW
dc.subject流體zh_TW
dc.subject彭羅賓森狀態方程式zh_TW
dc.subject相變化zh_TW
dc.subject機器學習zh_TW
dc.subjectk平均聚類zh_TW
dc.subjectk-means clusteringen
dc.subjectartificial neural networken
dc.subjectthermodynamic propertiesen
dc.subjectPeng-Robinson equation of stateen
dc.subjectfluidsen
dc.subjectphase transitionen
dc.subjectmachine learningen
dc.title使用人工類神經網路再現彭羅賓森流體之熱力學性質與相平衡zh_TW
dc.titleReproducing Thermodynamic Properties and Phase Equilibrium of Peng-Robinson Fluids Using Artificial Neural Networken
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊延齡(Hsin-Tsai Liu),謝介銘(Chih-Yang Tseng)
dc.subject.keyword人工類神經網路,熱力學性質,流體,彭羅賓森狀態方程式,相變化,機器學習,k平均聚類,zh_TW
dc.subject.keywordartificial neural network,thermodynamic properties,fluids,Peng-Robinson equation of state,phase transition,machine learning,k-means clustering,en
dc.relation.page106
dc.identifier.doi10.6342/NTU202102048
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-0308202115515700.pdf8.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved