請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79838完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃定洧(Ding-Wei Huang) | |
| dc.contributor.author | Yi-Ren Ma | en |
| dc.contributor.author | 馬宜仁 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:13:20Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.available | 2022-11-23T09:13:20Z | - |
| dc.date.copyright | 2022-02-16 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-08 | |
| dc.identifier.citation | [1] L. Wilson, “International technology roadmap for semiconductors (ITRS),” Semiconductor Industry Association, vol. 1, 2013. [2] B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy, J. Kavalieros, A. Murthy, and R. Chau, “Transistor Elements for 30nm Physical Gate Lengths and Beyond,” Intel Technology Journal, vol. 6, no. 2, 2002. [3] J. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee, K. C. Saraswat, A. Rahman, R. Reif, and J. D. Meindl, “Interconnect limits on gigascale integration (GSI) in the 21st century,” (in English), Proceedings of the Ieee, vol. 89, no. 3, pp. 305-324, Mar 2001, doi: Doi 10.1109/5.915376. [4] L. Benini and G. De Micheli, “Networks on chips: A new SoC paradigm,” (in English), Computer, vol. 35, no. 1, pp. 70-+, Jan 2002, doi: Doi 10.1109/2.976921. [5] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: A scalable, communication-centric embedded system design paradigm,” in 17th International Conference on VLSI Design. Proceedings., 2004: IEEE, pp. 845-851. [6] A. Gerstlauer, D. D. Gajski, R. Domer, and D. Shin, “Automatic network generation for system-on-chip communication design,” in 2005 Third IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS'05), 2005: IEEE, pp. 255-260. [7] C. Gunn, “CMOS photonics for high-speed interconnects,” (in English), Ieee Micro, vol. 26, no. 2, pp. 58-66, Mar-Apr 2006, doi: Doi 10.1109/Mm.2006.32. [8] M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” (in English), Ieee Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1699-1705, Nov-Dec 2006, doi: 10.1109/Jstqe.2006.880615. [9] B. Jalali and S. Fathpour, “Silicon photonics,” Journal of lightwave technology, vol. 24, no. 12, pp. 4600-4615, 2006. [10] R. Soref, “The past, present, and future of silicon photonics,” (in English), Ieee Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1678-1687, Nov-Dec 2006, doi: 10.1109/Jstqe.2006.883151. [11] E. D. Palik, Handbook of optical constants of solids. Academic press, 1998. [12] T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.-i. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.-i. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE Journal of selected topics in quantum electronics, vol. 11, no. 1, pp. 232-240, 2005. [13] D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Optics express, vol. 18, no. 17, pp. 18278-18283, 2010. [14] B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm 2 footprint,” Nature Photonics, vol. 9, no. 6, pp. 378-382, 2015. [15] W. Chang, Y. Ao, L. Lu, S. Fu, L. Deng, M. Cheng, L. Xia, D. Liu, and M. Zhang, “Inverse design and demonstration of ultracompact silicon polarization rotator,” in 2019 Optical Fiber Communications Conference and Exhibition (OFC), 2019: IEEE, pp. 1-3. [16] J. Wang, CMOS-Compatible Key Engineering Devices for High-Speed Silicon-Based Optical Interconnections. Springer, 2018. [17] T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” (in English), Nature Photonics, vol. 1, no. 1, pp. 57-60, Jan 2007, doi: DOI 10.1038/nphoton.2006.41. [18] D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt Express, vol. 19, no. 11, pp. 10940-9, May 23 2011, doi: 10.1364/OE.19.010940. [19] H. Guan, Q. Fang, G.-Q. Lo, and K. Bergman, “High-efficiency biwavelength polarization splitter-rotator on the SOI platform,” IEEE Photonics Technology Letters, vol. 27, no. 5, pp. 518-521, 2014. [20] E. El-Fiky, Y. Wang, S. Bernal, C. Gamache, E. Panorel, A. Kumar, A. Samani, M. Jacques, P.-c. Koh, and D. V. Plant, “High extinction ratio and broadband O-band polarization splitter and rotator on silicon-on-insulator,” in Optical Fiber Communication Conference, 2019: Optical Society of America, p. W1E. 5. [21] M. Ma, A. H. K. Park, Y. Wang, H. Shoman, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Sub-wavelength grating-assisted polarization splitter-rotators for silicon-on-insulator platforms,” Opt Express, vol. 27, no. 13, pp. 17581-17591, Jun 24 2019, doi: 10.1364/OE.27.017581. [22] T. Fan, R. Safian, S. Chakravarty, and L. Zhuang, “A wideband polarization rotator-splitter based on imec iSiPP50G silicon photonics platform,” in Silicon Photonics XVI, 2021, vol. 11691: International Society for Optics and Photonics, p. 1169105. [23] D. Chen, M. Liu, Y. Zhang, L. Wang, X. Hu, P. Feng, X. Xiao, and S. Yu, “C + L band polarization rotator-splitter based on a compact S-bend waveguide mode demultiplexer,” Opt Express, vol. 29, no. 7, pp. 10949-10957, Mar 29 2021, doi: 10.1364/OE.412992. [24] Y. R. R. Bustamante, G. B. de Farias, H. A. de Andrade, and H. E. Hernandez-Figueroa, “Demonstration of a silicon polarization splitter and rotator based on a bow-tie structure,” (in English), Photonics and Nanostructures-Fundamentals and Applications, vol. 45, p. 100921, Jul 2021, doi: ARTN 10092110.1016/j.photonics.2021.100921. [25] X. She, D. Wang, Y. Zhao, H. Huang, H. Liao, J. Zhu, Y. Li, Z. Zhu, R. Huang, and X. Liu, “Broadband and CMOS compatible polarization splitter–rotator based on a bi-level taper,” Applied Optics, vol. 60, no. 31, pp. 9619-9623, 2021. [26] J. Wang, B. Niu, Z. Sheng, A. Wu, X. Wang, S. Zou, M. Qi, and F. Gan, “Design of a SiO(2) top-cladding and compact polarization splitter-rotator based on a rib directional coupler,” Opt Express, vol. 22, no. 4, pp. 4137-43, Feb 24 2014, doi: 10.1364/OE.22.004137. [27] Y. Xiong, J. G. Wanguemert-Perez, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt Lett, vol. 39, no. 24, pp. 6931-4, Dec 15 2014, doi: 10.1364/OL.39.006931. [28] Y. Zhang, Y. He, X. H. Jiang, B. Y. Liu, C. Y. Qiu, Y. K. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” (in English), Apl Photonics, vol. 1, no. 9, p. 091304, Dec 2016, doi: Artn 09130410.1063/1.4965832. [29] K. Yu, L. J. Wang, W. H. Wu, Y. C. Luo, and Y. Yu, “Demonstration of an on-chip broadband polarization splitter and rotator using counter-tapered coupler,” (in English), Optics Communications, vol. 431, pp. 58-62, Jan 15 2019, doi: 10.1016/j.optcom.2018.09.015. [30] Y. Zhang, Q. Zhu, Y. He, and Y. Su, “Silicon polarization splitter and rotator with tolerance to width variations using a nonlinearly-tapered and partially-etched directional coupler,” in Optical Fiber Communication Conference, 2019: Optical Society of America, p. W1E. 4. [31] Y. Liu, S. Wang, Y. Wang, W. Liu, H. Xie, Y. Yao, Q. Song, X. Zhang, Y. Yu, and K. Xu, “Subwavelength polarization splitter-rotator with ultra-compact footprint,” Opt Lett, vol. 44, no. 18, pp. 4495-4498, Sep 15 2019, doi: 10.1364/OL.44.004495. [32] G. B. De Farias, Y. R. Buscamante, H. A. De Andrade, and U. Moura, “Demonstration of a low-loss and broadband Polarization Splitter-Rotator with a Polysilicon waveguide in SOI platform,” in 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC), 2019: IEEE, pp. 1-5. [33] C. Xie, X. Zou, P. Li, L. Yan, and W. Pan, “Ultracompact silicon polarization splitter-rotator using a dual-etched and tapered coupler,” (in English), Appl Opt, vol. 59, no. 30, pp. 9540-9547, Oct 20 2020, doi: 10.1364/AO.404741. [34] H. Zafar, M. F. Pereira, K. L. Kennedy, and D. H. Anjum, “Fabrication-tolerant and CMOS-compatible polarization splitter and rotator based on a compact bent-tapered directional coupler,” (in English), Aip Advances, vol. 10, no. 12, p. 125214, Dec 1 2020, doi: Artn 12521410.1063/5.0030638. [35] Z. Hui, T. Zhang, M. Zhang, D. Pan, D. Han, and A.-H. Soliman, “Inverse asymmetrical ridge taper polarization splitter–rotatorcovering optical fiber communication band from O to U,” Optics Communications, vol. 495, p. 127107, 2021. [36] N. N. Rao, Elements of engineering electromagnetics. Prentice Hall, 1991. [37] R. G. Hunsperger and J. R. Meyer-Arendt, “Integrated optics: theory and technology,” Applied Optics, vol. 31, no. 3, p. 298, 1992. [38] S. L. Chuang and S. L. Chuang, “Physics of optoelectronic devices,” 1995. [39] A. Yariv, “Coupled-Mode Theory for Guided-Wave Optics,” (in English), Ieee Journal of Quantum Electronics, vol. Qe 9, no. 9, pp. 919-933, 1973, doi: Doi 10.1109/Jqe.1973.1077767. [40] K. Okamoto, “Fundamentals of optical waveguides, academic,” ed: Academic Press, San Diago, USA, 2006. [41] W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” JOSA A, vol. 11, no. 3, pp. 963-983, 1994. [42] “MODE - Finite Difference Eigenmode (FDE) solver introduction.” Lumerical Inc,. https://support.lumerical.com/hc/en-us/articles/360034917233-MODE-Finite-Difference-Eigenmode-FDE-solver-introduction (accessed Dec 7, 2021). [43] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302-307, 1966. [44] “Finite Difference Time Domain (FDTD) solver introduction.” Lumerical Inc,. https://support.lumerical.com/hc/en-us/articles/360034914633-Finite-Difference-Time-Domain-FDTD-solver-introduction (accessed Dec 7, 2021). [45] A. Taflove, S. C. Hagness, and M. Piket-May, “Computational electromagnetics: the finite-difference time-domain method,” The Electrical Engineering Handbook, vol. 3, 2005. [46] S. D. Gedney, “Introduction to the finite-difference time-domain (FDTD) method for electromagnetics,” Synthesis Lectures on Computational Electromagnetics, vol. 6, no. 1, pp. 1-250, 2011. [47] D. M. Sullivan, Electromagnetic simulation using the FDTD method. John Wiley Sons, 2013. [48] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” (in English), Ieee Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397-407, Feb 2004, doi: 10.1109/Tap.2004.823969. [49] “Photonic Integrated Circuits.” IMEC,. https://www.imec-int.com/en/what-we-offer/ic-link/photonic-integrated-circuits (accessed Dec 7, 2021). [50] P.-H. Fu, T.-Y. Huang, K.-W. Fan, and D.-W. Huang, “Optimization for ultrabroadband polarization beam splitters using a genetic algorithm,” IEEE Photonics Journal, vol. 11, no. 1, pp. 1-11, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79838 | - |
| dc.description.abstract | 隨著近年來資料傳輸量需求的增加,用積體光路取代傳統電路來傳輸資料已成為新的趨勢,在積體光路中因為 SOI 光波導相容於現有成熟的 CMOS 製程技術而被廣泛使用,然而次微米等級的 SOI 光波導本身存在相當嚴重的極化相依問題,解決此問題較通用的做法為使用極化分離旋轉器,為了同時滿足低製造成本與涵蓋寬頻帶,小尺寸寬頻極化分離旋轉器的設計成為一個關鍵的命題。非對稱定向耦合器因為其結構簡單且能有效讓兩種極化相位匹配條件顯著的不同,因此適合用來設計極化分離旋轉器。本論文以矽波導與多晶矽波導之非對稱定向耦合器設計極化分離旋轉器,並利用自訂的粒子群優化演算法優化元件結構參數,優化後的元件再利用三維時域有限差分法對頻譜響應進行驗證,並且探討製程容忍度以及與矽光晶片的整合。 本論文優化後之元件耦合長度為 4.62 μm,在波長 1420 – 1640 nm 的範圍內,TE 與 TM 的插入損耗皆可低於 1 dB,消光比皆可高於 19 dB,串擾皆可低於 –17 dB。此外,本論文也探討元件的製程誤差,包括光行進方向上的波導寬度誤差、直通埠與交叉埠垂直於光行進方向的相對偏移以及直通埠與交叉埠平行於光行進方向的相對偏移,在製程造成的誤差正負 10 nm之內,元件在波長 1460 – 1620 nm 的範圍內之插入損耗皆可低於 1 dB。本論文所設計的元件與其他文獻相比,擁有最小的耦合長度,並在小尺寸的極化分離旋轉器中有很大的頻寬。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:13:20Z (GMT). No. of bitstreams: 1 U0001-2801202203181100.pdf: 3317357 bytes, checksum: afe590fb3a3752251e17283c8715b4ae (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "誌謝 i 中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 vii 表目錄 x 第1章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 4 第2章 背景理論與數值方法 5 2.1 背景理論 5 2.1.1 馬克斯威爾方程式 (Maxwell’s Equations) 5 2.1.2 波動方程式 (Wave Equations) 6 2.1.3 光波導原理 7 2.1.4 耦合模態理論 (Coupled-Mode Theory, CMT) 12 2.2 數值方法 14 2.2.1 有限差分特徵模態 (Finite Difference Eigenmode, FDE) 求解器 14 2.2.2 時域有限差分法 (Finite-Difference Time-Domain, FDTD) 15 2.2.3 粒子群優化演算法 (Particle Swarm Optimization Algorithm, PSO Algorithm) 16 第3章 文獻回顧 18 3.1 利用錐形波導與非對稱定向耦合器設計之極化分離旋轉器 18 3.2 利用錐形波導非對稱定向耦合器設計之極化分離旋轉器 20 3.3 利用多晶矽波導非對稱定向耦合器設計之極化分離旋轉器 22 3.4 利用漸變式淺蝕刻波導非對稱定向耦合器設計之極化分離旋轉器 24 第4章 基於粒子群優化演算法設計 極小尺寸寬頻極化分離旋轉器 26 4.1 元件結構與設計原理 26 4.2 利用粒子群優化演算法優化元件結構 31 4.2.1 優化元件結構之第一階段 31 4.2.2 優化元件結構之第二階段 34 4.3 模擬結果與討論 36 4.4 製程容忍度分析 42 4.5 考量與矽光晶片整合之討論 46 4.6 與近年文獻中極化分離旋轉器之比較 50 第5章 結論與未來展望 51 5.1 結論 51 5.2 未來展望 51 參考文獻 52" | |
| dc.language.iso | zh-TW | |
| dc.subject | 粒子群優化演算法 | zh_TW |
| dc.subject | 矽光子學 | zh_TW |
| dc.subject | 積體光路 | zh_TW |
| dc.subject | 光互連 | zh_TW |
| dc.subject | 絕緣體覆矽 | zh_TW |
| dc.subject | 互補式金屬氧化物半導體 | zh_TW |
| dc.subject | 極化分離旋轉器 | zh_TW |
| dc.subject | 小尺寸 | zh_TW |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | 非對稱定向耦合器 | zh_TW |
| dc.subject | Polarization Splitter-Rotator | en |
| dc.subject | Silicon on Insulator | en |
| dc.subject | Complementary Metal-Oxide-Semiconductor | en |
| dc.subject | Compact | en |
| dc.subject | Particle Swarm Optimization Algorithm | en |
| dc.subject | Asymmetrical Directional Coupler | en |
| dc.subject | Broadband | en |
| dc.subject | Silicon Photonics | en |
| dc.subject | Integrated Optical Circuit | en |
| dc.subject | Optical Interconnections | en |
| dc.title | 利用粒子群優化演算法設計非對稱定向耦合型極小尺寸寬頻極化分離旋轉器 | zh_TW |
| dc.title | Design of Ultracompact Broadband Asymmetrical Directional Coupler Based Polarization Splitter-Rotator Using Particle Swarm Optimization Algorithm | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖(Keh-Chia Yeh),蕭惠心(Yi-Feng Wang),(Jihn-Sung Lai),(Fong-Zuo Lee) | |
| dc.subject.keyword | 矽光子學,積體光路,光互連,絕緣體覆矽,互補式金屬氧化物半導體,極化分離旋轉器,小尺寸,寬頻,非對稱定向耦合器,粒子群優化演算法, | zh_TW |
| dc.subject.keyword | Silicon Photonics,Integrated Optical Circuit,Optical Interconnections,Silicon on Insulator,Complementary Metal-Oxide-Semiconductor,Polarization Splitter-Rotator,Compact,Broadband,Asymmetrical Directional Coupler,Particle Swarm Optimization Algorithm, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202200248 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2801202203181100.pdf | 3.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
