請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79819完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳玉如(Yu-Ju Chen) | |
| dc.contributor.author | Hung-Ming Chien | en |
| dc.contributor.author | 簡鴻名 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:12:34Z | - |
| dc.date.available | 2021-08-20 | |
| dc.date.available | 2022-11-23T09:12:34Z | - |
| dc.date.copyright | 2021-08-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-11 | |
| dc.identifier.citation | (1) Brown, R. H.; Al-Chalabi, A. Amyotrophic Lateral Sclerosis. New England Journal of Medicine 2017, 377 (2), 162. (2) Balendra, R.; Isaacs, A. M. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. 2018, 14 (9), 544. (3) Petrov, D.; Mansfield, C.; Moussy, A. et al. ALS Clinical Trials Review: 20 Years of Failure. Are We Any Closer to Registering a New Treatment? Front. Aging Neurosci. 2017, 9 (68). (4) Al-Chalabi, A.; Hardiman, O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat. Rev. Neurol. 2013, 9 (11), 617. (5) Ingre, C.; Roos, P. M.; Piehl, F. et al. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol. 2015, 7, 181. (6) Al-Chalabi, A.; Calvo, A.; Chio, A. et al. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. The Lancet. Neurology 2014, 13 (11), 1108. (7) Taylor, J. P.; Brown, R. H.; Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 2016, 539 (7628), 197. (8) Therrien, M.; Dion, P. A.; Rouleau, G. A. ALS: Recent Developments from Genetics Studies. Curr. Neurol. Neurosci. Rep. 2016, 16 (6), 59. (9) Rosen, D. R.; Siddique, T.; Patterson, D. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362 (6415), 59. (10) Bosco, D. A.; Morfini, G.; Karabacak, N. M. et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat. Neurosci. 2010, 13 (11), 1396. (11) Gurney, M. E.; Pu, H.; Chiu, A. Y. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994, 264 (5166), 1772. (12) Arai, T.; Hasegawa, M.; Akiyama, H. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications 2006, 351 (3), 602. (13) Neumann, M.; Sampathu, D. M.; Kwong, L. K. et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 2006, 314 (5796), 130. (14) Prasad, A.; Bharathi, V.; Sivalingam, V. et al. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience 2019, 12 (25). (15) Gendron, T. F.; Josephs, K. A.; Petrucelli, L. Review: Transactive response DNA-binding protein 43 (TDP-43): mechanisms of neurodegeneration. Neuropathol. Appl. Neurobiol. 2010, 36 (2), 97. (16) Cohen, T. J.; Lee, V. M. Y.; Trojanowski, J. Q. TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends Mol. Med. 2011, 17 (11), 659. (17) Ling, S.-C.; Polymenidou, M.; Cleveland, Don W. Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis. Neuron 2013, 79 (3), 416. (18) Tan, R. H.; Ke, Y. D.; Ittner, L. M. et al. ALS/FTLD: experimental models and reality. Acta Neuropathologica 2017, 133 (2), 177. (19) Lee, E. B.; Lee, V. M. Y.; Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 2012, 13 (1), 38. (20) Gao, J.; Wang, L.; Huntley, M. L. et al. Pathomechanisms of TDP-43 in neurodegeneration. J. Neurochem. 2018, 146 (1), 7. (21) Barmada, S. J.; Skibinski, G.; Korb, E. et al. Cytoplasmic Mislocalization of TDP-43 Is Toxic to Neurons and Enhanced by a Mutation Associated with Familial Amyotrophic Lateral Sclerosis. The Journal of Neuroscience 2010, 30 (2), 639. (22) Gendron, T. F.; Rademakers, R.; Petrucelli, L. TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43. Journal of Alzheimer's disease 2013, 33 (S1), S35. (23) Mutihac, R.; Alegre-Abarrategui, J.; Gordon, D. et al. TARDBP pathogenic mutations increase cytoplasmic translocation of TDP-43 and cause reduction of endoplasmic reticulum Ca2+ signaling in motor neurons. Neurobiol. Dis. 2015, 75, 64. (24) Renton, Alan E.; Majounie, E.; Waite, A. et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 2011, 72 (2), 257. (25) DeJesus-Hernandez, M.; Mackenzie, I. R.; Boeve, B. F. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011, 72 (2), 245. (26) Gijselinck, I.; Van Langenhove, T.; van der Zee, J. et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 2012, 11 (1), 54. (27) Haeusler, A. R.; Donnelly, C. J.; Rothstein, J. D. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci. 2016, 17, 383. (28) Rutherford, N. J.; Heckman, M. G.; DeJesus-Hernandez, M. et al. Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype. Neurobiol. Aging 2012, 33 (12), 2950. e5. (29) Van der Zee, J.; Gijselinck, I.; Dillen, L. et al. A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Hum. Mutat. 2013, 34 (2), 363. (30) Harms, M. B.; Cady, J.; Zaidman, C. et al. Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiol. Aging 2013, 34 (9), 2234.e13. (31) Van Blitterswijk, M.; DeJesus-Hernandez, M.; Niemantsverdriet, E. et al. Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurol. 2013, 12 (10), 978. (32) Suh, E.; Lee, E. B.; Neal, D. et al. Semi-automated quantification of C9orf72 expansion size reveals inverse correlation between hexanucleotide repeat number and disease duration in frontotemporal degeneration. Acta Neuropathol 2015, 130 (3), 363. (33) Woollacott, I. O. C.; Mead, S. The C9ORF72 expansion mutation: gene structure, phenotypic and diagnostic issues. Acta Neuropathol 2014, 127 (3), 319. (34) Rizzu, P.; Blauwendraat, C.; Heetveld, S. et al. C9orf72 is differentially expressed in the central nervous system and myeloid cells and consistently reduced in C9orf72, MAPT and GRN mutation carriers. Acta Neuropathol Commun 2016, 4 (1), 37. (35) Waite, A. J.; Bäumer, D.; East, S. et al. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol. Aging 2014, 35 (7), 1779.e5. (36) Zhang, D.; Iyer, L.; He, F. et al. Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease. Frontiers in Genetics 2012, 3 (283). (37) Levine, T. P.; Daniels, R. D.; Gatta, A. T. et al. The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics 2013, 29 (4), 499. (38) Kim, M.-S.; Pinto, S. M.; Getnet, D. et al. A draft map of the human proteome. Nature 2014, 509 (7502), 575. (39) Shi, Y.; Lin, S.; Staats, K. A. et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med. 2018, 24 (3), 313. (40) Lai, J. D.; Ichida, J. K. C9ORF72 protein function and immune dysregulation in amyotrophic lateral sclerosis. Neurosci. Lett. 2019, 713, 134523. (41) Ciura, S.; Lattante, S.; Le Ber, I. et al. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann. Neurol. 2013, 74 (2), 180. (42) Amick, J.; Roczniak-Ferguson, A.; Ferguson, S. M. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Molecular Biology of the Cell 2016, 27 (20), 3040. (43) Sellier, C.; Campanari, M.-L.; Julie Corbier, C. et al. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. The EMBO Journal 2016, 35 (12), 1276. (44) Babi; #x; Leko, M. et al. Molecular Mechanisms of Neurodegeneration Related to C9orf72 Hexanucleotide Repeat Expansion. Behav. Neurol. 2019, 2019, 18. (45) Webster, C. P.; Smith, E. F.; Bauer, C. S. et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. The EMBO Journal 2016, 35 (15), 1656. (46) Xiao, S.; MacNair, L.; McGoldrick, P. et al. Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis. Ann. Neurol. 2015, 78 (4), 568. (47) Sareen, D.; O’Rourke, J. G.; Meera, P. et al. Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion. Sci. Transl. Med. 2013, 5 (208), 208ra149. (48) Haeusler, A. R.; Donnelly, C. J.; Periz, G. et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 2014, 507 (7491), 195. (49) Van Blitterswijk, M.; Gendron, T. F.; Baker, M. C. et al. Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathol 2015, 130 (6), 863. (50) Xi, Z.; Zinman, L.; Moreno, D. et al. Hypermethylation of the CpG Island Near the G4C2 Repeat in ALS with a C9orf72 Expansion. The American Journal of Human Genetics 2013, 92 (6), 981. (51) Gijselinck, I.; Van Mossevelde, S.; van der Zee, J. et al. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol. Psychiatry 2016, 21 (8), 1112. (52) Belzil, V. V.; Bauer, P. O.; Gendron, T. F. et al. Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Res. 2014, 1584, 15. (53) Xi, Z.; Zhang, M.; Bruni, A. C. et al. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol 2015, 129 (5), 715. (54) Donnelly, Christopher J.; Zhang, P.-W.; Pham, Jacqueline T. et al. RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron 2013, 80 (2), 415. (55) Zu, T.; Liu, Y.; Bañez-Coronel, M. et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proceedings of the National Academy of Sciences 2013, 110 (51), E4968. (56) Lagier-Tourenne, C.; Baughn, M.; Rigo, F. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (47), E4530. (57) Reddy, K.; Schmidt, M. H. M.; Geist, J. M. et al. Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability. Nucleic Acids Res. 2014, 42 (16), 10473. (58) Xu, Z.; Poidevin, M.; Li, X. et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proceedings of the National Academy of Sciences 2013, 110 (19), 7778. (59) Zhang, K.; Donnelly, C. J.; Haeusler, A. R. et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 2015, 525, 56. (60) Mori, K.; Nihei, Y.; Arzberger, T. et al. Reduced hnRNPA3 increases C9orf72 repeat RNA levels and dipeptide-repeat protein deposition. EMBO reports 2016, 17 (9), 1314. (61) Mori, K.; Weng, S. M.; Arzberger, T. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013, 339 (6125), 1335. (62) Zu, T.; Gibbens, B.; Doty, N. S. et al. Non-ATG–initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (1), 260. (63) Nguyen, L.; Cleary, J. D.; Ranum, L. P. W. Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease. Annu. Rev. Neurosci. 2019, 42 (1), 227. (64) Freibaum, B. D.; Taylor, J. P. The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. Front. Mol. Neurosci. 2017, 10 (35). (65) Mizielinska, S.; Grönke, S.; Niccoli, T. et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 2014, 345 (6201), 1192. (66) Wen, X.; Tan, W.; Westergard, T. et al. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 2014, 84 (6), 1213. (67) Lee, K. H.; Zhang, P.; Kim, H. J. et al. C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell 2016, 167 (3), 774. (68) Gendron, T. F.; Chew, J.; Stankowski, J. N. et al. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci. Transl. Med. 2017, 9 (383), eaai7866. (69) Kwon, I.; Xiang, S.; Kato, M. et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 2014, 345 (6201), 1139. (70) Molliex, A.; Temirov, J.; Lee, J. et al. Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization. Cell 2015, 163 (1), 123. (71) Lin, Y.; Mori, E.; Kato, M. et al. Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers. Cell 2016, 167 (3), 789. (72) Brangwynne, Clifford P.; Tompa, P.; Pappu, Rohit V. Polymer physics of intracellular phase transitions. Nature Physics 2015, 11 (11), 899. (73) Mier, P.; Paladin, L.; Tamana, S. et al. Disentangling the complexity of low complexity proteins. Brief. Bioinform. 2019, 21 (2), 458. (74) Shi, K. Y.; Mori, E.; Nizami, Z. F. et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (7), E1111. (75) Lopez-Gonzalez, R.; Lu, Y.; Gendron, Tania F. et al. Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons. Neuron 2016, 92 (2), 383. (76) Chang, Y.-J.; Jeng, U.-S.; Chiang, Y.-L. et al. The Glycine-Alanine Dipeptide Repeat from C9orf72 Hexanucleotide Expansions Forms Toxic Amyloids Possessing Cell-to-Cell Transmission Properties. J. Biol. Chem. 2016, 291 (10), 4903. (77) Guo, Q.; Lehmer, C.; Martínez-Sánchez, A. et al. In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. Cell 2018, 172 (4), 696. (78) Zhang, Y.-J.; Jansen-West, K.; Xu, Y.-F. et al. Aggregation-prone c9FTD/ALS poly (GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 2014, 128 (4), 505. (79) May, S.; Hornburg, D.; Schludi, M. H. et al. C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol 2014, 128 (4), 485. (80) Zhang, Y.-J.; Gendron, T. F.; Grima, J. C. et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 2016, 19, 668. (81) Lee, S. J. C.; Nam, E.; Lee, H. J. et al. Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chemical Society Reviews 2017, 46 (2), 310. (82) Lee, S. M.; Asress, S.; Hales, C. M. et al. TDP-43 cytoplasmic inclusion formation is disrupted in C9orf72-associated amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Brain Communications 2019, 1 (1). (83) Khosravi, B.; Hartmann, H.; May, S. et al. Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD. Hum. Mol. Genet. 2016, 26 (4), 790. (84) Nonaka, T.; Masuda-Suzukake, M.; Hosokawa, M. et al. C9ORF72 dipeptide repeat poly-GA inclusions promote intracellular aggregation of phosphorylated TDP-43. Hum. Mol. Genet. 2018, 27 (15), 2658. (85) Bamford, C. H.; Norrish, R. G. W. 359. Primary photochemical reactions. Part VII. Photochemical decomposition of isovaleraldehyde and di-n-propyl ketone. Journal of the Chemical Society (Resumed) 1935, 1504. (86) Rich, D. H.; Gurwara, S. K. Removal of protected peptides from an ortho-nitrobenzyl resin by photolysis. J. Chem. Soc., Chem. Commun. 1973, 610. (87) Rich, D. H.; Gurwara, S. K. Preparation of a new o-nitrobenzyl resin for solid-phase synthesis of tert-butyloxycarbonyl-protected peptide acids. Journal of the American Chemical Society 1975, 97 (6), 1575. (88) Lu, H.; Wang, J.; Bai, Y. et al. Ionic polypeptides with unusual helical stability. Nat. Commun. 2011, 2, 206. (89) Chen, W.-S.; Chen, Y.-J.; Huang, Y.-A. et al. Ran-dependent TPX2 activation promotes acentrosomal microtubule nucleation in neurons. Sci. Rep. 2017, 7 (1), 42297. (90) Chen, W.; Young, L. J.; Lu, M. et al. Fluorescence Self-Quenching from Reporter Dyes Informs on the Structural Properties of Amyloid Clusters Formed in Vitro and in Cells. Nano Lett. 2017, 17 (1), 143. (91) Chou, C.-C.; Zhang, Y.; Umoh, M. E. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 2018, 21 (2), 228. (92) Kinoshita, Y.; Ito, H.; Hirano, A. et al. Nuclear Contour Irregularity and Abnormal Transporter Protein Distribution in Anterior Horn Cells in Amyotrophic Lateral Sclerosis. J. Neuropathol. Exp. Neurol. 2009, 68 (11), 1184. (93) Liu, K.-Y.; Shyu, Y.-C.; Barbaro, B. A. et al. Disruption of the nuclear membrane by perinuclear inclusions of mutant huntingtin causes cell-cycle re-entry and striatal cell death in mouse and cell models of Huntington's disease. Hum. Mol. Genet. 2015, 24 (6), 1602. (94) Paonessa, F.; Evans, L. D.; Solanki, R. et al. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Reports 2019, 26 (3), 582. (95) Diez, L.; Wegmann, S. Nuclear Transport Deficits in Tau-Related Neurodegenerative Diseases. Front. Neurol. 2020, 11 (1056). (96) Freibaum, B. D.; Lu, Y.; Lopez-Gonzalez, R. et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015, 525 (7567), 129. (97) Chew, J.; Gendron, T. F.; Prudencio, M. et al. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 2015, 348 (6239), 1151. (98) Fusco, G.; Chen, S. W.; Williamson, P. T. F. et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 2017, 358 (6369), 1440. (99) Westergard, T.; Jensen, Brigid K.; Wen, X. et al. Cell-to-Cell Transmission of Dipeptide Repeat Proteins Linked to C9orf72-ALS/FTD. Cell Reports 2016, 17 (3), 645. (100) Brown, R. H.; Al-Chalabi, A. Amyotrophic Lateral Sclerosis. New England Journal of Medicine 2017, 377 (2), 162. (101) Neumann, M.; Sampathu, D. M.; Kwong, L. K. et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 2006, 314 (5796), 130. (102) Prasad, A.; Bharathi, V.; Sivalingam, V. et al. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience 2019, 12 (25). (103) Arai, T.; Hasegawa, M.; Akiyama, H. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications 2006, 351 (3), 602. (104) Kametani, F.; Hasegawa, M.; Nonaka, T. et al. Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum. Mol. Genet. 2009, 18 (18), 3353. (105) Chen, A. K. H.; Lin, R. Y. Y.; Hsieh, E. Z. J. et al. Induction of Amyloid Fibrils by the C-Terminal Fragments of TDP-43 in Amyotrophic Lateral Sclerosis. Journal of the American Chemical Society 2010, 132 (4), 1186. (106) Liu, G. C.-H.; Chen, B. P.-W.; Ye, N. T.-J. et al. Delineating the membrane-disrupting and seeding properties of the TDP-43 amyloidogenic core. Chemical Communications 2013, 49 (95), 11212. (107) Stewart, M. P.; Langer, R.; Jensen, K. F. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chemical Reviews 2018, 118 (16), 7409. (108) Fu, A.; Tang, R.; Hardie, J. et al. Promises and Pitfalls of Intracellular Delivery of Proteins. Bioconjugate Chemistry 2014, 25 (9), 1602. (109) Zhang, Y.; Yu, L.-C. Microinjection as a tool of mechanical delivery. Current Opinion in Biotechnology 2008, 19 (5), 506. (110) He, R.-Y.; Huang, Y.-C.; Chiang, C.-W. et al. Characterization and real-time imaging of the FTLD-related protein aggregation induced by amyloidogenic peptides. Chemical Communications 2015, 51 (41), 8652. (111) Gehl, J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica Scandinavica 2003, 177 (4), 437. (112) Cao, Y.; Ma, E.; Cestellos-Blanco, S. et al. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proceedings of the National Academy of Sciences 2019, 116 (16), 7899. (113) Magzoub, M.; Gräslund, A. Cell-penetrating peptides: small from inception to application. Quarterly Reviews of Biophysics 2004, 37 (2), 147. (114) Guidotti, G.; Brambilla, L.; Rossi, D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends in Pharmacological Sciences 2017, 38 (4), 406. (115) Allolio, C.; Magarkar, A.; Jurkiewicz, P. et al. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proceedings of the National Academy of Sciences 2018, 115 (47), 11923. (116) Derakhshankhah, H.; Jafari, S. Cell penetrating peptides: A concise review with emphasis on biomedical applications. Biomedicine Pharmacotherapy 2018, 108, 1090. (117) Dougherty, P. G.; Sahni, A.; Pei, D. Understanding Cell Penetration of Cyclic Peptides. Chemical Reviews 2019, 119 (17), 10241. (118) Ruseska, I.; Zimmer, A. Internalization mechanisms of cell-penetrating peptides. Beilstein Journal of Nanotechnology 2020, 11, 101. (119) Yesylevskyy, S.; Marrink, S.-J.; Mark, A. E. Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers. Biophysical Journal 2009, 97 (1), 40. (120) Herce, H. D.; Schumacher, D.; Schneider, A. F. L. et al. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nature Chemistry 2017, 9 (8), 762. (121) Ellman, G. L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 1959, 82 (1), 70. (122) Mandal, B.; Basu, B. Recent advances in S–S bond formation. RSC Advances 2014, 4 (27), 13854. (123) Riddles, P. W.; Blakeley, R. L.; Zerner, B. Reassessment of Ellman's reagent. Methods in Enzymology 1983, 91, 49. (124) Nakase, I.; Noguchi, K.; Aoki, A. et al. Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Scientific Reports 2017, 7 (1), 1991. (125) He, R.-Y.; Chao, S.-H.; Tsai, Y.-J. et al. Photocontrollable Probe Spatiotemporally Induces Neurotoxic Fibrillar Aggregates and Impairs Nucleocytoplasmic Trafficking. ACS Nano 2017, 11 (7), 6795. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79819 | - |
| dc.description.abstract | 在腦中所發現之蛋白質包含體為漸凍人症候群中的主要病徵,其亦被懷疑與疾病的發展有關。而TDP-43蛋白質作為病患組織中蛋白質包含體的主要成分,其經常被發現具有過度磷酸化、過度泛素化之現象,同時此蛋白質亦可進一步遭受裁剪而成具類澱粉蛋白性質之片段。除了TDP-43蛋白質以外,近期的研究發現自第九號染色體之第七十二號開放閱讀框突變基因轉譯之甘胺酸-丙胺酸雙肽蛋白質(Glycine-alanine dipeptide repeats)亦沉積於病患之神經元中,且其亦具類澱粉蛋白質之特性。隨著越來越多的研究表明TDP-43蛋白質與甘胺酸-丙胺酸雙肽蛋白質於疾病中可能扮演著重要的角色,針對這些蛋白質的定性實驗亦顯得更加重要。然而,這些蛋白質的生物物理與生物化學性質之研究卻由於其溶解度與快速聚集等因素而備受阻礙。 為了克服這些困難以研究這些蛋白質之特性,我們設計並利用固相化學方法合成了一系列的胜肽探針,其由甘胺酸-丙胺酸雙肽蛋白質片段、八離胺酸肽片段(Octalysine)、與甲氧基硝基苯(Methoxynitrobenzene)衍生物作為橋接所組成。這些探針可有效的增進甘胺酸-丙胺酸雙肽蛋白質片段之溶解度、預防其片段自我聚集、並能夠於細胞中藉由紫外光照實行可控制之釋放。利用此探針並結合顯微鏡技術,我們發現甘胺酸-丙胺酸雙肽蛋白質片段會先行組裝成類澱粉蛋白質寡聚物(Amyloid oligomer)並進一步聚集成類澱粉蛋白質纖維;此胜肽探針亦可幫助釐清甘胺酸-丙胺酸雙肽蛋白質片段之詳細生物物理與生物化學特性。另外,藉由表達可於核質穿梭之螢光蛋白質於細胞系統內,我們發現到甘胺酸-丙胺酸雙肽蛋白質片段會導致細胞內之核質運輸功能異常。而利用電子顯微鏡觀察探針處理過後之細胞切片,我們亦注意到此片段會引起細胞核膜之內陷與不正常之折疊;另一方面,於進一步的免疫染色與生物化學實驗中,我們亦證實了甘胺酸-丙胺酸雙肽蛋白質片段類澱粉蛋白質寡聚物可引起脂質膜之穿透性增加。我們亦於後續的細胞實驗中發現甘胺酸-丙胺酸雙肽蛋白質片段可引起TDP-43蛋白質於細胞質內之不正常堆積,其現象與先前文獻所報導之病理特徵相似。 事實上,除了甘胺酸-丙胺酸雙肽蛋白質外,亦有研究證明了TDP-43蛋白質羧基端之裁剪片段亦可於細胞內引起TDP-43之蛋白質病理。因此,我們設計並合成了於還原環境中藉由雙硫鍵觸發之自釋放胜肽探針以研究TDP-43蛋白質羧基端之裁剪片段之堆疊。我們於此研究中仔細地觀測其胜肽探針裂解過程與釋放出之TDP-43片段之類澱粉蛋白質特性。 總結來說,我們成功利用甲氧基硝基苯或雙硫鍵之化學以設計並製備了一系列之胜肽探針。我們更進一步於其相對應之系統中,詳細觀測了TDP-43蛋白質裁剪片段與甘胺酸-丙胺酸雙肽蛋白質片段之生物物理與生物化學性質。我們期許在未來可藉由這些蛋白質片段之定性研究成果來幫助釐清漸凍人疾病發生之病因。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:12:34Z (GMT). No. of bitstreams: 1 U0001-0508202116155100.pdf: 25102259 bytes, checksum: 4d6a83301932353ce962fa6180812bd9 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Acknowledgement ii 摘要 iii Abstract v Table of Contents vii List of Figures ix List of Tables x List of Abbreviations xi Chapter 1 : Photoinduced GA DPRs Oligomers Disrupted the Nuclear Membrane and Caused TDP-43 Cytosolic Retention 1 I. Introduction 1 1-1 Amyotrophic lateral sclerosis 1 1-2 C9orf72 gene mutation in ALS 3 1-3 The roles of GA DPRs in ALS pathology 13 1-4 Correlations between GA DPRs and TDP-43 14 1-5 Research aims and experimental design 15 II. Material and Methods 21 2-1 Material and instruments list 21 2-2 Probe preparation and identification 23 2-3 General sample preparation for in vitro measurements 25 2-4 Circular dichroism spectroscopy 25 2-5 Dye-binding assay 26 2-6 Turbidity measurements 26 2-7 Dot-blot assay 26 2-8 Infrared Spectroscopy 27 2-9 Transmission electron microscopy 27 2-10 Dynamic light scattering 28 2-11 Fluorescence-lifetime imaging microscopy 28 2-12 Direct stochastic optical reconstruction microscopy 30 2-13 Cell maintenance, Transfection, and Probe treatment 31 2-14 Cell lysate staining 32 2-15 Immunohistochemistry and Confocal microscopy 33 2-16 Total internal reflection fluorescence microscopy 33 2-17 Ex vivo antibody accessibility assay 34 2-18 Calcein-leakage assay 34 2-19 Seeding assay 35 2-20 Primary cortical neurons culture, Probe treatment and Neurite Fragmentation Analysis 36 2-21 Imaging quantification and Statistical analysis 37 III. Results 41 3-1 Preparation of photoinducible GA DPRs probes 41 3-2 Biophysical biochemical characterization of GA DPRs 43 3-3 GA DPRs formed amyloid oligomers and turned into fibrils. 46 3-4 GA DPRs caused nucleocytoplasmic transport defects 50 3-5 GA DPRs compromised nuclear membrane 59 3-6 GA DPRs induced endogenous TDP-43 mislocalized to cytoplasm 67 3-7 Introduction of GA DPRs promote degeneration in mouse cortical neurons 70 IV. Discussion 73 4-1 ADP-1 as a feasible tools for C9orf72 pathology studies 73 4-2 GA DPRs amyloid oligomers and their toxicities. 74 4-3 Comparison between GA and PR DPRs in nuclear transport defect 75 4-4 Conclusion and prospect 76 V. Reference 78 Chapter 2 : Developing the Auto-releasing Peptide Probe for Protein Fragment Aggregation Studies 86 I. Introduction 86 1-1 Amyloidogenic sequence of TDP-43 in ALS 86 1-2 Delivery of peptides and proteins into cytoplasm 87 1-3 Research aim and experimental design 88 II. Material and Methods 90 2-1 Material and instruments list 90 2-2 Synthesis and characterization of auto-releasing probe 91 2-3 General sample preparation for in vitro measurements 93 2-4 UV-Vis spectroscopy 93 2-5 Transmission electron microscopy 93 III. Results 94 3-1 Preparation of probe JJS-4 JJS-5 94 3-2 In vitro characterization of auto-releasing probes 97 IV. Discussion 99 4-1 Comparison between photoinducible probe and auto-releasing probe 99 4.2 Conclusion and prospect 100 V. Reference 101 " | |
| dc.language.iso | en | |
| dc.subject | 漸凍人症 | zh_TW |
| dc.subject | 胜肽探針 | zh_TW |
| dc.subject | 類澱粉蛋白質 | zh_TW |
| dc.subject | C9orf72 | zh_TW |
| dc.subject | 甘胺酸-丙胺酸雙肽蛋白質 | zh_TW |
| dc.subject | TDP-43蛋白質 | zh_TW |
| dc.subject | Amyotrophic lateral sclerosis | en |
| dc.subject | TDP-43 | en |
| dc.subject | Glycine-alanine dipeptide repeats | en |
| dc.subject | Peptide probe | en |
| dc.subject | Amyloid | en |
| dc.subject | C9orf72 | en |
| dc.title | 以胜肽探針研究漸凍人症中聚甘胺酸-丙胺酸雙肽蛋白質以及TDP-43蛋白質之病理現象 | zh_TW |
| dc.title | Induction of Glycine-alanine Dipeptide Repeats and TDP-43 Proteinopathies by Peptide Probes for ALS Studies | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-0101-225X | |
| dc.contributor.advisor-orcid | 陳玉如(0000-0002-3178-6697) | |
| dc.contributor.coadvisor | 黃人則(Jen-Tse Huang) | |
| dc.contributor.coadvisor-orcid | 黃人則(0000-0003-4847-7126) | |
| dc.contributor.oralexamcommittee | 陳儀莊(Hsin-Tsai Liu),黃兆祺(Chih-Yang Tseng),吳昆峯 | |
| dc.subject.keyword | 漸凍人症,C9orf72,類澱粉蛋白質,胜肽探針,甘胺酸-丙胺酸雙肽蛋白質,TDP-43蛋白質, | zh_TW |
| dc.subject.keyword | Amyotrophic lateral sclerosis,C9orf72,Amyloid,Peptide probe,Glycine-alanine dipeptide repeats,TDP-43, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202102115 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202116155100.pdf | 24.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
