Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79799
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林國峰(Gwo-Fong Lin)
dc.contributor.authorCheng-Yi Liaoen
dc.contributor.author廖承億zh_TW
dc.date.accessioned2022-11-23T09:11:48Z-
dc.date.available2021-08-24
dc.date.available2022-11-23T09:11:48Z-
dc.date.copyright2021-08-24
dc.date.issued2021
dc.date.submitted2021-08-17
dc.identifier.citation1. Beecham, S., Rashid, M., Chowdhury, R. K. (2014). Statistical downscaling of multi-site daily rainfall in a South Australian catchment using a Generalized Linear Model. International Journal of Climatology, 34(14), 3654-3670. doi:10.1002/joc.3933 2. Beuchat, X., Schaefli, B., Soutter, M., Mermoud, A. (2011). Toward a robust method for subdaily rainfall downscaling from daily data. Water Resources Research, 47(9). doi:10.1029/2010wr010342 3. Bui, D. T., Hoang, N., Martínez-Álvarez, F., Ngo, P. T., Hoa, P. V., Pham, T. D., . . . Costache, R. (2020). A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Science of The Total Environment, 701, 134413. doi:10.1016/j.scitotenv.2019.134413 4. Buishand, T. A., Brandsma, T. (2001). Multisite simulation of daily precipitation and temperature in the Rhine Basin by nearest-neighbor resampling. Water Resources Research, 37(11), 2761-2776. doi:10.1029/2001wr000291 5. Bürger, G., Murdock, T. Q., Werner, A. T., Sobie, S. R., Cannon, A. J. (2012). Downscaling Extremes—An Intercomparison of Multiple Statistical Methods for Present Climate. Journal of Climate, 25(12), 4366-4388. doi:10.1175/jcli-d-11-00408.1 6. Chandler, R.E., 2002. GLIMCLIM: Generalised Linear Modelling for Daily Climate Time Series (software and user guide). Research Report No. 227. Department of Statistical Science, University College London. 7. Chen, P., Tung, C., Tsao, J., Chen, C. (2021). Assessing Future Rainfall Intensity–Duration–Frequency Characteristics across Taiwan Using the k-Nearest Neighbor Method. Water, 13(11), 1521. doi:10.3390/w13111521 8. Chen, S., Yu, P., Tang, Y. (2010). Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385(1-4), 13-22. doi:10.1016/j.jhydrol.2010.01.021 9. Cho, K., Merrienboer, B. V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). doi:10.3115/v1/d14-1179 10. Corte-Real, J., Quian, B., Xu, H. (1999). Circulation patterns, daily precipitation in Portugal and implications for climate change simulated by the second Hadley Centre GCM. Climate Dynamics, 15(12), 921-935. doi:10.1007/s003820050322 11. Cristianini, N., Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. doi:10.1017/cbo9780511801389 12. Deb, C., Zhang, F., Yang, J., Lee, S. E., Shah, K. W. (2017). A review on time series forecasting techniques for building energy consumption. Renewable and Sustainable Energy Reviews, 74, 902-924. doi:10.1016/j.rser.2017.02.085 13. Debele, B., Srinivasan, R., Parlange, J. Y. (2007). Accuracy evaluation of weather data generation and disaggregation methods at finer timescales. Advances in Water Resources, 30(5), 1286-1300. doi:10.1016/j.advwatres.2006.11.009 14. Devak, M., Dhanya, C., Gosain, A. (2015). Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall. Journal of Hydrology, 525, 286-301. doi:10.1016/j.jhydrol.2015.03.051 15. Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-211. doi:10.1207/s15516709cog1402_1 16. Engida, A. N., Esteves, M. (2011). Characterization and disaggregation of daily rainfall in the Upper Blue Nile Basin in Ethiopia. Journal of Hydrology, 399(3-4), 226-234. doi:10.1016/j.jhydrol.2011.01.001 17. Eum, H., Simonovic, S. P., Kim, Y. (2010). Climate Change Impact Assessment Using K-Nearest Neighbor Weather Generator: Case Study of the Nakdong River Basin in Korea. Journal of Hydrologic Engineering, 15(10), 772-785. doi:10.1061/(asce)he.1943-5584.0000251 18. Fukunaga, K., Narendra, P. (1975). A Branch and Bound Algorithm for Computing k-Nearest Neighbors. IEEE Transactions on Computers, C-24(7), 750-753. doi:10.1109/t-c.1975.224297 19. Gyasi-Agyei, Y. (2005). Stochastic disaggregation of daily rainfall into one-hour time scale. Journal of Hydrology, 309(1-4), 178-190. doi:10.1016/j.jhydrol.2004.11.018 20. Gyasi-Agyei, Y. (2011). Copula-based daily rainfall disaggregation model. Water Resources Research, 47(7). doi:10.1029/2011wr010519 21. Hessami, M., Gachon, P., Ouarda, T. B., St-Hilaire, A. (2008). Automated regression-based statistical downscaling tool. Environmental Modelling Software, 23(6), 813-834. doi:10.1016/j.envsoft.2007.10.004 22. Hinton, G. E., Osindero, S., Teh, Y. (2006). A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18(7), 1527-1554. doi:10.1162/neco.2006.18.7.1527 23. Hochreiter, S., Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735 24. Hu, C., Wu, Q., Li, H., Jian, S., Li, N., Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, 10(11), 1543. doi:10.3390/w10111543 25. Kalra, A., Ahmad, S. (2011). Evaluating changes and estimating seasonal precipitation for the Colorado River Basin using a stochastic nonparametric disaggregation technique. Water Resources Research, 47(5). doi:10.1029/2010wr009118 26. King, L. M., Irwin, S., Sarwar, R., Mcleod, A. I., Simonovic, S. P. (2012). The Effects of Climate Change on Extreme Precipitation Events in the Upper Thames River Basin: A Comparison of Downscaling Approaches. Canadian Water Resources Journal / Revue Canadienne Des Ressources Hydriques, 37(3), 253-274. doi:10.4296/cwrj2011-938 27. Lee, J., Lee, S., Hong, J., Lee, D., Bae, J. H., Yang, J. E., . . . Lim, K. J. (2021). Evaluation of Rainfall Erosivity Factor Estimation Using Machine and Deep Learning Models. Water, 13(3), 382. doi:10.3390/w13030382 28. Lee, T. S., Salas, J. D., Keedy, J., Frevert, D., Fulp, T. (2007). Stochastic Modeling and Simulation of the Colorado River Flows. World Environmental and Water Resources Congress 2007. doi:10.1061/40927(243)423 29. Lee, T., Salas, J. D., Prairie, J. (2010). An enhanced nonparametric streamflow disaggregation model with genetic algorithm. Water Resources Research, 46(8). doi:10.1029/2009wr007761 30. Lin, G., Chang, M., Wang, C. (2017). A Novel Spatiotemporal Statistical Downscaling Method for Hourly Rainfall. Water Resources Management, 31(11), 3465-3489. doi:10.1007/s11269-017-1679-5 31. Liu, Y., Zhang, T., Kang, A., Li, J., Lei, X. (2021). Research on Runoff Simulations Using Deep-Learning Methods. Sustainability, 13(3), 1336. doi:10.3390/su13031336 32. Lu, Y., Qin, X. (2014). Multisite rainfall downscaling and disaggregation in a tropical urban area. Journal of Hydrology, 509, 55-65. doi:10.1016/j.jhydrol.2013.11.027 33. Marani, M., Zanetti, S. (2007). Downscaling rainfall temporal variability. Water Resources Research, 43(9). doi:10.1029/2006wr005505 34. Min, Y., Kryjov, V. N., An, K., Hameed, S. N., Sohn, S., Lee, W., Oh, J. (2011). Evaluation of the weather generator CLIGEN with daily precipitation characteristics in Korea. Asia-Pacific Journal of Atmospheric Sciences, 47(3), 255-263. doi:10.1007/s13143-011-0014-y 35. Nowak, K., Prairie, J., Rajagopalan, B., Lall, U. (2010). A nonparametric stochastic approach for multisite disaggregation of annual to daily streamflow. Water Resources Research, 46(8). doi:10.1029/2009wr008530 36. Palutikof, J. P., Goodess, C. M., Watkins, S. J., Holt, T. (2002). Generating Rainfall and Temperature Scenarios at Multiple Sites: Examples from the Mediterranean. Journal of Climate, 15(24), 3529-3548. doi:10.1175/1520-0442(2002)015<3529:gratsa>2.0.co;2 37. Prairie, J. R., Rajagopalan, B., Fulp, T. J., Zagona, E. A. (2006). Modified K-NN Model for Stochastic Streamflow Simulation. Journal of Hydrologic Engineering, 11(4), 371-378. doi:10.1061/(asce)1084-0699(2006)11:4(371) 38. Prairie, J., Rajagopalan, B., Lall, U., Fulp, T. (2007). A stochastic nonparametric technique for space-time disaggregation of streamflows. Water Resources Research, 43(3). doi:10.1029/2005wr004721 39. Racsko, P., Szeidl, L., Semenov, M. (1991). A serial approach to local stochastic weather models. Ecological Modelling, 57(1-2), 27-41. doi:10.1016/0304-3800(91)90053-4 40. Rodriguez-Iturbe, I., Cox, D.R., Isham, V., 1988. A point process model for rainfall: Further developments. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 417(1853), 283-298. doi:10.1098/rspa.1988.0061. 41. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1985). Learning Internal Representations by Error Propagation. doi:10.21236/ada164453 42. Salas, J. D., Lee, T. (2010). Nonparametric Simulation of Single-Site Seasonal Streamflows. Journal of Hydrologic Engineering, 15(4), 284-296. doi:10.1061/(asce)he.1943-5584.0000189 43. Sharif, M., Burn, D. H. (2006). Simulating climate change scenarios using an improved K-nearest neighbor model. Journal of Hydrology, 325(1-4), 179-196. doi:10.1016/j.jhydrol.2005.10.015 44. Tripathi, S., Srinivas, V., Nanjundiah, R. S. (2006). Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, 330(3-4), 621-640. doi:10.1016/j.jhydrol.2006.04.030 45. Tseng, H., Yang, T., Kuo, C., Yu, P. (2012). Application of Multi-site Weather Generators for Investigating Wet and Dry Spell Lengths under Climate Change: A Case Study in Southern Taiwan. Water Resources Management, 26(15), 4311-4326. doi:10.1007/s11269-012-0146-6 46. Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. doi:10.1007/978-1-4757-2440-0 47. Wilby, R., Dawson, C., Barrow, E. (2002). Sdsm — a decision support tool for the assessment of regional climate change impacts. Environmental Modelling Software, 17(2), 145-157. doi:10.1016/s1364-8152(01)00060-3 48. Wilks, D., Wilby, R. (1999). The weather generation game: A review of stochastic weather models. Progress in Physical Geography, 23(3), 329-357. doi:10.1191/030913399666525256 49. Wilks, D. S. (1992). Adapting stochastic weather generation algorithms for climate change studies. Climatic Change, 22(1), 67-84. doi:10.1007/bf00143344 50. Yang, T., Yu, P., Wei, C., Chen, S. (2010). Projection of climate change for daily precipitation: A case study in Shih-Men reservoir catchment in Taiwan. Hydrological Processes, 25(8), 1342-1354. doi:10.1002/hyp.7883 51. Yu, P., Yang, T., Wu, C. (2002). Impact of climate change on water resources in southern Taiwan. Journal of Hydrology, 260(1-4), 161-175. doi:10.1016/s0022-1694(01)00614-x 52. Zorita, E., Storch, H. V. (1999). The Analog Method as a Simple Statistical Downscaling Technique: Comparison with More Complicated Methods. Journal of Climate, 12(8), 2474-2489. doi:10.1175/1520-0442(1999)012<2474:tamaas>2.0.co;2
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79799-
dc.description.abstract臺灣年平均降雨量豐沛,卻因地形條件使水資源保存不易,而降雨又常集中於夏秋的梅雨與颱風時節,使得臺灣在枯水期用水吃緊。根據臺灣近六十年的降雨量統計顯示,乾旱年的發生頻率與單次影響時間都有增加的趨勢,因此穩定的長期流量預報對水庫操作以及相關單位制定長期用水策略有助。 本研究介接中央氣象局第一代海氣耦合模式,利用K-最近鄰居法將全球的雨量及溫度預報降至集水區尺度作為人工智慧建置之降雨逕流模式的輸入。建置模式的人工智慧有機器學習法二種:支持向量機與多層感知器,以及深度學習法四種:深度神經網路、遞迴神經網路、長短期記憶以及門閘遞迴單元。模式用以預報臺灣中南部六個重要水庫及攔河堰未來180日的入流量,透過平均值、標準差、偏態係數、降雨機率、均方根誤差和平均絕對誤差等評鑑指標,選出該集水區表現最佳的長期流量預報模式。結果顯示,六個集水區在雨量及溫度皆以K = 1的降尺度模式表現最佳,表示其降雨及溫度長期變化較穩定且單一。六個集水區於枯水期與豐水期所建置的模式,深度學習法的預報趨勢和評鑑指標表現較機器學習法好,又大多數研究區域係採用深度神經網路建置長期流量預報模式。 本研究提出的長期流量預報模式,針對各個地區條件不同而有不同的建模方式,產出穩定且準確的預報結果,可供相關單位作為水庫操作及長期用水策略之參考依據。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:11:48Z (GMT). No. of bitstreams: 1
U0001-0908202114045000.pdf: 33075200 bytes, checksum: 37667d0c5a6356fe521c4f23b0285799 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 I 誌謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 降尺度模式 2 1.2.2 機器學習建立降雨逕流模式 4 1.3 論文架構 6 第二章 研究區域與資料 7 2.1 研究區域概述及觀測資料 7 2.1.1 曾文水庫 7 2.1.2 八掌溪攔河堰 9 2.1.3 南化水庫 11 2.1.4 甲仙攔河堰 13 2.1.5 月眉攔河堰 15 2.1.6 牡丹水庫 17 2.2 第一代海氣耦合模式 19 第三章 研究方法 21 3.1 K-最近鄰居法 21 3.2 機器學習法 22 3.3 深度學習法 24 3.4 網格搜尋法 27 第四章 模式建立與應用 29 4.1 研究流程 29 4.2 評鑑指標 31 第五章 結果與討論 33 5.1 雨量降尺度 33 5.1.1 曾文水庫 34 5.1.2 八掌溪攔河堰 41 5.1.3 南化水庫 47 5.1.4 甲仙、月眉攔河堰 52 5.1.5 牡丹水庫 61 5.1.6 小結 65 5.2 溫度降尺度 66 5.3 長期流量預報模式 75 5.3.1 曾文水庫 75 5.3.2 八掌溪攔河堰 81 5.3.3 南化水庫 85 5.3.4 甲仙攔河堰 89 5.3.5 月眉攔河堰 93 5.3.6 牡丹水庫 97 5.3.7 小結 101 第六章 結論與建議 102 6.1 結論 102 6.2 建議 104 參考文獻 105 附錄A 112 附錄B 125 附錄C 133
dc.language.isozh-TW
dc.subject遞迴神經網路zh_TW
dc.subjectK-最近鄰居法zh_TW
dc.subject長期流量預報zh_TW
dc.subject第一代海氣耦合模式zh_TW
dc.subject深度神經網路zh_TW
dc.subjectK-nearest neighbor methoden
dc.subjectrecurrent neural networken
dc.subjectdeep neural networken
dc.subjectCentral Weather Bureau One-Tier Forecast Systemen
dc.subjectlong-term streamflow forecasten
dc.title以人工智慧介接第一代海氣耦合模式輸出發展長期流量預報zh_TW
dc.titleLong-term streamflow forecasting using an AI-based rainfall-runoff model with TCWB1T1 outputen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李方中(Hsin-Tsai Liu),賴進松(Chih-Yang Tseng),林文欽
dc.subject.keywordK-最近鄰居法,長期流量預報,第一代海氣耦合模式,深度神經網路,遞迴神經網路,zh_TW
dc.subject.keywordK-nearest neighbor method,long-term streamflow forecast,Central Weather Bureau One-Tier Forecast System,deep neural network,recurrent neural network,en
dc.relation.page150
dc.identifier.doi10.6342/NTU202102208
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-0908202114045000.pdf32.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved