請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79784完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 錢義隆(I-Lung Chien) | |
| dc.contributor.author | Ting-Yi Lee | en |
| dc.contributor.author | 李亭毅 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:11:14Z | - |
| dc.date.available | 2021-08-13 | |
| dc.date.available | 2022-11-23T09:11:14Z | - |
| dc.date.copyright | 2021-08-24 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-13 | |
| dc.identifier.citation | [1] A.E. Andreatta, A. Arce, E. Rodil, A. Soto, Physical properties and phase equilibria of the system isopropyl acetate+ isopropanol+ 1-octyl-3-methyl-imidazolium bis (trifluoromethylsulfonyl) imide, Fluid phase equilibria, 287 (2010) 84-94. [2] H. Ding, Y. Gao, J. Li, J. Qi, H. Zhou, S. Liu, X. Han, Vapor–Liquid Equilibria for Ternary Mixtures of Isopropyl Alcohol, Isopropyl Acetate, and DMSO at 101.3 kPa, Journal of Chemical Engineering Data, 61 (2016) 3013-3019. [3] W. Wang, Y. Zhang, T. Zhang, J. Gao, D. Xu, L. Zhang, Y. Wang, Isobaric Vapor–Liquid Equilibrium of Binary Systems (Isopropyl Acetate/Isopropyl Alcohol + Dibutyl Ether/ Anisole) at 101.3 kPa, Journal of Chemical Engineering Data, 65 (2020) 4387-4394. [4] S. Arifin, I.-L. Chien, Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer, Industrial engineering chemistry research, 47 (2008) 790-803. [5] J.R. Knight, M.F. Doherty, Optimal design and synthesis of homogeneous azeotropic distillation sequences, Industrial engineering chemistry research, 28 (1989) 564-572. [6] A.A. Kiss, J. David, P. Suszwalak, Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns, Separation and Purification Technology, 86 (2012) 70-78. [7] R. Agrawal, Thermally coupled distillation with reduced number of intercolumn vapor transfers, AIChE Journal, 46 (2000) 2198-2210. [8] R. Agrawal, Z.T. Fidkowski, More operable arragements of fully thermally coupled distillation columns, American Institute of Chemical Engineers. AIChE Journal, 44 (1998) 2565. [9] C. Bravo-Bravo, J.G. Segovia-Hernández, C. Gutiérrez-Antonio, A.L. Durán, A. Bonilla-Petriciolet, A. Briones-Ramírez, Extractive dividing wall column: design and optimization, Industrial Engineering Chemistry Research, 49 (2010) 3672-3688. [10] R. Gutiérrez-Guerra, J.G. Segovia-Hernández, S. Hernández, Reducing energy consumption and CO2 emissions in extractive distillation, Chemical engineering research and design, 87 (2009) 145-152. [11] S.-J. Wang, C.-C. Yu, H.-P. Huang, Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation, Computers chemical engineering, 34 (2010) 361-373. [12] E.A. Wolff, S. Skogestad, Operation of integrated three-product (Petlyuk) distillation columns, Industrial Engineering Chemistry Research, 34 (1995) 2094-2103. [13] H. Ling, W.L. Luyben, New control structure for divided-wall columns, Industrial Engineering Chemistry Research, 48 (2009) 6034-6049. [14] S. Tututi-Avila, A. Jiménez-Gutiérrez, J. Hahn, Control analysis of an extractive dividing-wall column used for ethanol dehydration, Chemical Engineering and Processing: Process Intensification, 82 (2014) 88-100. [15] I.D. Gil, J.M. Gómez, G. Rodríguez, Control of an extractive distillation process to dehydrate ethanol using glycerol as entrainer, Computers chemical engineering, 39 (2012) 129-142. [16] W.L. Luyben, Plantwide control of an isopropyl alcohol dehydration process, AIChE journal, 52 (2006) 2290-2296. [17] M.W. Maciel, R. Brito, Evaluation of the dynamic behavior of an extractive distillation column for dehydration of aqueous ethanol mixtures, Computers chemical engineering, 19 (1995) 405-408. [18] D. Dwivedi, J.P. Strandberg, I.J. Halvorsen, H.A. Preisig, S. Skogestad, Active vapor split control for dividing-wall columns, Industrial engineering chemistry research, 51 (2012) 15176-15183. [19] W.L. Luyben, Principles and case studies of simultaneous design, John Wiley Sons, 2012. [20] S. Tututi-Avila, N. Medina-Herrera, J. Hahn, A. Jiménez-Gutiérrez, Design of an energy-efficient side-stream extractive distillation system, Computers Chemical Engineering, 102 (2017) 17-25. [21] Y.C. Wu, P.H.-C. Hsu, I.L. Chien, Critical Assessment of the Energy-Saving Potential of an Extractive Dividing-Wall Column, Industrial Engineering Chemistry Research, 52 (2013) 5384-5399. [22] B.D. Tyreus, W.L. Luyben, Tuning PI controllers for integrator/dead time processes, Industrial Engineering Chemistry Research, 31 (1992) 2625-2628. [23] W.L. Luyben, Comparison of extractive distillation and pressure-swing distillation for acetone− methanol separation, Industrial engineering chemistry research, 47 (2008) 2696-2707. [24] V.G. Grassi, Process design and control of extractive distillation, in: Practical distillation control, Springer, 1992, pp. 370-404. [25] M. Xia, Y. Xin, J. Luo, W. Li, L. Shi, Y. Min, C. Xu, Temperature control for extractive dividing-wall column with an adjustable vapor split: methylal/methanol azeotrope separation, Industrial Engineering Chemistry Research, 52 (2013) 17996-18013. [26] W.L. Luyben, Distillation design and control using Aspen simulation, John Wiley Sons, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79784 | - |
| dc.description.abstract | 萃取蒸餾(extractive distillation system)為一用來分離近沸物或共沸物常見的方法,大部分文獻都是探討含最低共沸溫度之混合物的分離。萃取蒸餾法的分離方式,為添加重萃取劑 (entrainer) 進入近沸或共沸物質系統以提升相對揮發度 (relative volatility),進而使混合物得以分離之方法。 本研究探討之系統為異丙醇與乙酸異丙酯分離,萃取蒸餾系統的設計流程包含兩座蒸餾塔,分別為萃取蒸餾塔與萃取劑回收塔。將欲分離之混合物物注入萃取蒸餾塔,隨著萃取劑的添加,異丙醇對乙酸異丙酯之相對揮發度將會提升,因此異丙醇可以由萃取蒸餾塔之塔頂提出,萃取劑與乙酸異丙酯則由塔底流出;塔底出流進入第二支塔 (萃取劑回收塔),萃取劑可以藉由萃取劑回收塔純化,成為塔底出流並回流至萃取蒸餾塔重複使用,乙酸異丙酯則可由萃取劑回收塔之塔頂提出。 本文探討四種分離異丙醇/乙酸異丙酯之節能設計流程,包括傳統雙塔萃取蒸餾、熱整合之萃取蒸餾系統、側流萃取蒸餾系統以及隔牆塔萃取蒸餾系統。在產物純度都相同的前提下比較年度總成本(TAC),選擇最低者進行動態模擬與控制,以確認在進料組成干擾或是流率干擾的情形下,本文提出之控制策略仍能維持高純度之產品規格。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:11:14Z (GMT). No. of bitstreams: 1 U0001-1008202122360300.pdf: 6480096 bytes, checksum: 31872f16a25b4cac313a2c0c8895692e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 i ABSTRACT ii 目錄 iv 圖目錄 vi 表目錄 ix 1. 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 萃取蒸餾系統 4 1.2.2 側流萃取蒸餾系統 5 1.2.3 隔牆塔萃取蒸餾系統 7 1.3 研究動機 10 2. 熱力學模型 11 2.1 前言 11 2.2 異丙醇與乙酸異丙酯模型 12 3. 穩態模擬與最適化分析 15 3.1 前言 15 3.2 傳統萃取蒸餾設計 16 3.3 熱整合萃取蒸餾設計 24 3.4 側流萃取蒸餾設計 31 3.5 隔牆塔萃取蒸餾設計 39 3.6 結果 48 4. 動態模擬與控制 51 4.1 前言 51 4.2 隔牆萃取蒸餾塔動態探討 52 4.2.1 完美控制分析 52 4.2.2 雙點板溫控制分析 55 4.2.3 控制架構1 57 4.2.4 控制架構2 65 5. 結論與未來工作 71 5.1 結論 71 5.2 未來工作 73 參考文獻 74 附錄 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 程序控制 | zh_TW |
| dc.subject | 萃取蒸餾 | zh_TW |
| dc.subject | 隔牆塔 | zh_TW |
| dc.subject | 程序設計 | zh_TW |
| dc.subject | process design | en |
| dc.subject | process control | en |
| dc.subject | Extractive distillation | en |
| dc.subject | minimum boiling azeotrope | en |
| dc.subject | heavy entrainer | en |
| dc.title | 分離異丙醇及乙酸異丙酯的萃取蒸餾程序之節能製程設計與控制 | zh_TW |
| dc.title | Energy-efficient Separation Design of Isopropyl Alcohol and Isopropyl Acetate Via Extractive Distillation | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳誠亮(Hsin-Tsai Liu),吳哲夫(Chih-Yang Tseng),李豪業,余柏毅 | |
| dc.subject.keyword | 萃取蒸餾,隔牆塔,程序設計,程序控制, | zh_TW |
| dc.subject.keyword | Extractive distillation,minimum boiling azeotrope,heavy entrainer,process design,process control, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202102257 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202122360300.pdf | 6.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
