Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79778
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李國譚(Kuo-Tang Li)
dc.contributor.authorSzu-Ju Chenen
dc.contributor.author陳思如zh_TW
dc.date.accessioned2022-11-23T09:11:00Z-
dc.date.available2021-11-06
dc.date.available2022-11-23T09:11:00Z-
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-09-01
dc.identifier.citation王雅巧. 2001. 堆肥、尿素與光照對發育中的蓮霧之花青素和果實品質的影響. 國立臺灣大學農業化學研究所碩士論文. 118 pp. 王曉燕、杭波、劉成連、原永兵、李培懷、王永章. 2010. 套袋蘋果果實中鈣素分布及抗氧化酶活性與苦痘病關係的研究. 安徽農業科學. 38:2197-2199. 王艷芳、葉淄、劉昊、張彬、郝燕燕. 2015. 蘋果果實不同發育期維管束結構及水分運輸變化. 植物生理學報. 51:1414-1418. 吳振碩. 2002. 套袋及網室栽培對蓮霧品質之影響. 國立屏東科技大學熱帶農業研究所碩士論文. 77pp. 林正忠、蔡淑芬. 2004. 生理障礙-元素缺乏症. 植物保護圖鑑系列14-蓮霧保護. 行政院農業委員會動植物防疫檢疫局. 台灣台北市. p103-109. 林正忠. 2005. 缺硼症. 植物保護圖鑑系列15-番石榴保護. 行政院農業委員會動植物防疫檢疫局. 台灣台北市. p119-123. 林永鴻. 2015. 蓮霧肥培管理. p. 13-17. 刊於:陳思如主編. 蓮霧健康管理技術專刊. 第三版. 行政院農業委員會高雄區農業改良場. 屏東. 邱國棟. 1999. 環境因素對蓮霧葉片光合作用之影響. 國立台灣大學園藝學研究所碩士論文. 91pp. 許仁宏、廖秀真、林慧玲、李國權. 1998. 蓮霧果實生育期間果實外部形態與內部有機成份的變化. 中國園藝. 44:491-501. 傅炳山. 2006. 蓮霧果皮耐寒機制. p 44-55. In: 顏昌瑞、柯立祥(ed). 蓮霧產業發展研討會專刊. 國立屏東科技大學農園系編印. 屏東. 臺灣. 黃基倬、陳思如、賴榮茂、蔣永正. 2010. 植物生長調節劑40%勃激素A3 (gibberellic acid)水溶性粒劑對蓮霧果實發育之研究. 中華民國雜草月刊. 31:69-78. 黃維儒. 2006. 屏東平原地下水鹽化情形探討. 國立臺灣大學環境工程學研究所碩士論文. 109pp. 蔡尚翰、蘇博信、林永鴻、顏昌瑞. 2015. 臺灣屏東沿海蓮霧園鹽害現況調查. 作物、環境與生物資訊. 12:105-112. 賴榮茂. 2005. 蓮霧裂果因子之探討與預防. 行政院農委會高雄區農業改良場研究彙報. 16(3):37-48. 羅惠萍、賴榮茂、陳京城、楊耀祥. 2008. 蓮霧果實之生長. 興大園藝 33:29-41. 羅惠萍. 2008. 蓮霧果實發育及裂果之研究. 國立中興大學園藝系博士論文. 148pp. 羅慧萍、賴榮茂、陳京城、楊耀祥. 2011. 土壤水分含量及果實套袋對蓮霧裂果之影響. 臺灣園藝 57:197-206. Adams, P. and L.C. Ho. 1993. Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil 154:127-132. Banks, N.H. 1985. Surface area estimation of potato tubers. Potato Res. 28:487-495. Ben, J. 1995. Mineral composition of ‘Jonagold’ apples differing in size and in the presence of bitter pit. Acta Hort. 383:457-462. Bernadac, A., I. Jean-Baptiste, G. Bertoni, and P. Morard. 1996. Changes in calcium contents during melon (Cucumis melo L.) fruit development. Scientia Hort. 66:181-189. Bondada, B. and M. Keller. 2012. Morphoanatomical symptomatology and osmotic behavior of grape berry shrivel. J. Amer. Soc. Hort. Sci. 137:20-30. Bondada, B.R., M.A. Matthews, and K.A. Shackel. 2005. Functional xylem in the post-veraison grape berry. J. Expt. Bot. 56:2949-2957. Bonomelli, C, R. Mogollón, S.T. de Freitas, J.P. Zoffoli, and C. Contreras. 2020. Nutritional relationships in bitter pit-affected fruit and the feasibility of vis-NIR models to determine calcium concentration in ‘Fuju’ apples. Agronomy 10:1476. Bovi, M.L.A. and S.H. Spiering. 2002. Estimating peach palm fruit surface area using allometric relationships. Scientia Agricola 59:717-721. Brown, P.H., N. Bellaloui, H. Hu, and A. Dandekar. 1999. Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plnat Physiol. 119:17-20. Brüggenwirth, M., A. Winkler, M. Knoche. 2016. Xylem, phloem, and transpiration flows in developing sweet cherry fruit. Trees 30:1821-1830. Bush, D.S. 1993. Regulation of cytosolic calcium in plants. Plant Physiol. 103:7-13. Cabanne, C. and B. Donèche. 2003. Calcium accumulation and redistribution during the development of grape berry. Vitis 42:19-21. Castellarin, S.D., G.A. Gambetta, H. Wada, K.A. Shackel, and M.A. Matthews. 2011. Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. J. Exp. Bot. 62:4345-4354. Chamel, A.R. and J.P. Bossy. 1981. Electron-microprobe analysis of apple fruit tissues affected with bitter pit. Scientia Hort. 15:155-163. Chatelet, D.S., T.L. Rost, K.A. Shackel, and M.A. Matthews. 2008. The peripheral xylem of grapevine (Vitis vinifera). 1. Structural integrity in post-veraison berries. J. Expt. Bot. 59:1987-1996. Chaumont, F. F. Barrieu, R. Jung, and M.J. Chrispeels. 2000. plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Phyiol. 122:1025-1034. Chen, S.J., D.M. Yeh, H.L. Lin, and K.T. Li. 2019. Discontinuity of xylem function during maturation associated with quality development and calcium allocation in wax apple (Syzygium samarangense Merr. Perry) fruit. Fruit 74:117-123. Chen, S.J., K.T. Li, and D.M. Yeh. 2014. Calcium spray reduces corky calyx end in ‘Big Fruit’ wax apple fruits. Abstract of the 29th International Horticultural Congress. http://ihc2014.digitalposter.com.au/sessions/90 (abstract no. 1781). Chiu, T.F. and C. Bould. 1976. Effect of shortage of calcium and other cations on 45Ca mobility, growth and nutritional disorders of tomato plants (Lycopersicon esculentum). J. Sci. Food Agr. 27:969-977. Choat, B., G.A. Gambetta, K.A. Shackel, and M.A. Matthews. 2009. Vascular function in grape berries across development and its relevance to apparent hydraulic isolation. Plant Physiol. 151:1677-1687. Chou, M.Y. and K.T. Li. 2014. Rootstock and seasonal variations affect anthocyanin accumulation and quality traits of ‘Kyoho’ grape berries in subtropical double cropping system. Vitis 53:193-199. Clarkson, D.T. and J.B. Hanson. 1980. The mineral nutrition of plants. Annu. Rev. Plant Physiol. 31:239-198. Clayton M., N.D. Amos, N.H. Banks, and R.H. Morton. 1995. Estimation of apple fruit surface area. N. Z. J. Crop Hort. Sci. 23:345-349. Clearwater, M.J., Z. Luo, S.E.C. Ong, P. Blattmann, and T.G. Thorp. 2012. Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries. J. Expt. Bot. 63:1835-1847. Cline, J.A. and E.J. Hanson. 1992. Relative humidity around apple fruit influences its accumulation of calcium. J. Amer. Soc. Hort. Sci. 117:542-546. Coombe, B.G., and M.G. McCarthy. 2000. Dynamics of grape berry growth and physiology of ripening. Austral. J. Grape Wine Res. 6(2):131-135. Creasy, G.L., S.F. Price, P. B. Lombard. 1993. Evidence for xylem discontinuity in Pinot nor and Merlot Grapes: dye uptake and mineral composition during berry maturation. Amer. J. Enol. Vitic. 44:187-192. de Freitas, S.T. and E.J. Mitcham. 2012. Factors involved in fruit calcium deficiency disorder. Hort. Rev. 40:107-146. de Freitas, S.T., C.V.T. do Amarante, A.M. Dandekar, and E.J. Mitcham. 2013. Shading affects flesh calcium uptake and concentration, bitter pit incidence and other fruit traits in ‘Greensleeves’ apple. Scientia Hort. 161:266-272. de Freitas, S.T., C.V.T. do Amarante, J.M. Labavitch, and E.J. Mitcham. 2010. Cellular approach to understand bitter pit development in apple fruit. Postharvest Biol. Technol. 57:6-13. de Freitas, S.T., M. Padda, Q. Wu, S. Park, and E.J. Mitcham. 2011a. Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expression sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant Physiol. 156:844-855. de Freitas, S.T., K.A. Shackel, and E.J. Mitcham. 2011b. Abscisic acid triggers whole-plant and ruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. J. Expt. Bot. 62:2645-2656. de Freitas,S.T., C.Z. Jiang, and E.J. Mitcham. 2012. Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins. J. Plant Growth Regulat. 31:221-234. Dichio, B., D. Remorini, and S. Lang. 2003. Developmental change in xylem functionality in kiwifruit fruit: implications for fruit calcium accumulation. Acta Hort. 610:191-195. Djangsou, H., F. Enrico, R. Domenico, and B. Matteo. 2019. Blossom end-rot in tomato (Solanum lycopersicum L.): A multi-disciplinary overview of inducing factors and control strategies. Scientia Hort. 249:49-58. Dražeta, L., A. Lang, A.J. Hall, R.K. Volz, and P.E. Jameson. 2004. Causes and effects of changes in xylem functionality in apple fruit. Ann. Bot. 93:275-282. Dražeta, L., A. Lang, L. Morgan, R. Volz, and P.E. Jameson. 2001. Bitter pit and vascular function in apples. Acta Hort. 564:387-392. Düring, H., A. Lang, and F. Oggionni. 1987. Patterns of water flow in Riesling berries in relation to developmental changes in their xylem morphology. Vitis 26:123-131. Eguchi, T., T. Araki, S. Yoshida and M. Kitano. 2003. Xylem sap backflow from tomato fruit under water deficit condition. Acta Hort. 618:347-351. Ehret, D.L. and L.C. Ho. 1986. Translocation of calcium in relation to tomato fruit growth. Ann. Bot. 58:679-688. Endō M. 1973. Studies on the daily change of fruit size of the Japanese pear I. Diurnal fluctuation of ruit diameter as affected by climatic factors. J. Japan Soc. Hort. Sci.42:91-103. (in Japanese with English abstract) Endō M. and S. Ogasawara. 1975. Studies on the daily change of fruit size of the Japanese pear V. Diurnal fluctuation of fruit size as affected by rainfall or water sprinkling. J. Japan Soc. Hort. Sci. 43:359-367. (in Japanese with English abstract) Ferguson, I., R. Volz, and A.Woolf. 1999. Preharvest factors affecting Physiological disorders of fruit. Postharvest Biol. Technol. 15:255–262. Ferguson, I.B. 1984. Calcium in plant senescence and fruit ripening. Plant Cell Environ. 7:477-489. Fernandes, R.D.M., M.V. Cuevas, A. Diaz-Espejo. 2018. Effect of water stress on fruit growth and water relations between fruits and leaves in a hedgerow olive orchard. Agr. Water Mgt. 210:32-40. Fetter, K., V. van Wilder, M. Moshelion, and F. Choumont. 2004. Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215-228. Fuller, M.M. 1980. Cell ultra-structure in apple fruits in relation to calcium concentration and fruit quality. Acta Hort. 92:51-55. Gaffney J., C.C. Baird, K.V. Chau. 1985. Methods for calculating heat and mass transfer in fruit and vegetable individually and in bulk. ASHRAE transactions. 91:333-352. Galbreath, R.A. 1976. Estimating fruit surface area. N. Z. J. Agr. Res. 19:543-544. Gerasopoulos, D. and P.D. Drogoudi. 2005. Summer-pruning and preharvest calcium chloride sprays affect storability and low temperature breakdown incidence in kiwifruit. Postharvest Biol. Technol. 36:303-308. Gilroy, S., P.C. Bethke and R.L. Jones. 1993. Calcium homeostasis in plants. J. Cell Sci. 106:453-462. Gomez, R. and L. Kalcsits. 2020. Physiological factors affecting nutrient uptake and distribution and fruit quality in ‘Honeycrisp’ and ‘WA38’ apple (Malux domestica Borkh.). HortScience 55:1327-1336. Greenspan, M.D., H.R. Schultz, and M.A. Matthews. 1996. Field evaluation of water transport in grape berries during water deficits. Physiol. Plant. 94:55-62. Greenspan, M.D., K.A. Shackel, and M.A. Matthews. 1994. Developmental changes in the diurnal water budget of the grape berry exposed to water deficits. Plant Cell Environ. 17:811-820. Grimm, E., D. Pflugfelder, D. van Dusschoten, A. Winkler, and M. Knoche. 2017. Physical rupture of the xylem in developing sweet cherry fruit causes progressive decline in xylem sap flow rate. Planta (DOI 10.1007/s00425-017-2719-3). Guichand, S., C. Gary, C. Leonardi, and N. Bertin. 2005. Analysis of growth and water relations of tomato fruits in relation to air vapor pressure deficit and plant fruit load. J. Plant Growth Regul. 24:201-213. Guichard, S., C. Gary, J.J, Longuenesse, and C. Leonardi. 1999. Water fluxes and growth of greenhouse tomato fruits under summer conditions. Acta Hort. 507:223-230. Hanger, B.C. 1979. The movement of calcium in plants. Commun. Soil. Sci. Plant Anal. 10:171-179. Herremans, E., P. Verboven, M.L.A.T. Hertog, D. Cantre, M. van Dael, T. De Schryver, L. Van Hoorebeke, and B.M. Nicolai. 2015. Spatial development of transport structures in apple (Malus x domestica Borkh.) fruit. Front. Plant Sci. 6:679. doi: 10.3389/fpls.2015.00679. Hewett, E.W. and C.B. Watkins. 1991. Bitter pit control by sprays and vacuum infiltration of calcium in ‘Cox’s Orange Pippin’ apples. HortScience 26:284-286. Higuchi, H. and T. Sakuratani. 2006. Water dynamics in mango (Mongifera indica L.) fruit during the young and mature fruit seasons as measured by the stem heat balance method. J. Jpn. Soc. Hort. Sci. 75:11-19. Ho, L.C. and P.J. White. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann. Bot. 95:571-581. Ho, L.C., R. Belda, M. Brown, J. Andrews, and P. Adams. 1993. Uptake and transport of calcium and the possible causes of blossom-end rot in tomato. J. Expt. Bot. 44:509-518. Hocking, B., S.D. Tyerman, R.A. Burton, and M. Gilliham. 2016. Fruit calcium: transport and physiology. Front. Plant Sci. 7, 569. doi: 10.3389/fpls.2016.00569. Hofman P.J., D.C. Joyce, and D.R. Beasley. 1999. Effect of preharvest bagging and of embryo abortion on calcium levels in ‘Kensinton Pride’ mango fruit. Austr. J. Exp. Agr. 39:345-349. Hofman, P.J., L.G. Smith, D.C. Joyce, G.J. Johnson, and G.F. Meigurg. 1997. Bagging of mango (Mangifera indica cv. ‘Keitt’) fruit influences fruit quality and mineral composition. Postharvest Biol. Technol. 12:83-91. Hopfinger, J.A., B.W. Poovalah, and M.E. Patterson. 1984. Calcium and magnesium interactions in browning of ‘Golden Delicious’ apples with bitter pit. Scientia Hort. 23:345-351. Huang, X.M., H.B. Huang, and F.F. Gao. 2000. The growth potential generated in citrus fruit under water stress and its relevant mechanisms. Scientia Hort. 83:227-240. Hunt, R. 1992. Basic growth analysis: plant growth analysis for beginners. Unwin Hyman, Ltd., London. Janssen, B.J., K. Thodey, R.J. Schaffer, R. Alba, L. Balakrishnan, R. Bishop, J.H. Bowen, R.N. Crowhurst, A.P. Gleave, S. Ledger, S. McArtney, F.B. Pichler, K.C. Snowden, and S. Ward. 2008. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol. 8:16. Johnson, R.W., M.A. Dixon, and D.R. Lee. 1992. Water relations of the tomato during fruit growth. Plant Cell Environ. Jones, H.G., K.H. Higgs, and T.J. Samuelson. 1983. Calcium uptake by developing apple fruits. I. Seasonal changes in calcium content of fruits. J. Hort. Sci. 58:173-182. Keller M., J.P. Smith, and B.R. Bondada. 2006. Ripening grape berries remain hydraulically connected to the shoot. J. Exp. Bot. 57:2577-2587. Khandaker, M.M. and A.N. Boyce. 2016. Growth, distribution and physiochemical properties of wax apple (Syzygium samarangense): A review. Austral. J. Crop Sci. 10:1640-1648. Kher, R.M., F.M. Sahu, S.N. Singh, and V.A. Patel. 2018. Estimation of surface area of papaya fruits. Intl. J. Curr. Microbiol. Appl. Sci. 7:3601-3607. Khojastehnazhand, M., M. Omid, and A. Tabatabaeefar. 2009. Determination of orange volume and surface area using image processing technique. Intl. Agrophysics 23:237-242. Kim, K.S., J.Y. Min, and M.B. Dickman. 2008. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol. Plant-Microbe Interact. 21:605-612. Lang, A. 1990. Xylem, phloem and transpiration flows in developing apple fruits. J. Expt. Bot. 41:645-651. Lang, A. and K.G. Ryan. 1994. Vascular development and sap flow in apple pedicels. Ann. Bot. 74:381-388. Lötze, E., J. Joubert, and K.I. Theron. 2008. Evaluating pre-harvest foliar calcium applications to increase fruit calcium and reduce bitter pit in ‘Golden Delicious’ apples. Scientia Hort. 116:299-304. Łysiak, G. 2013. The influence of harvest maturity and basic macroelement content in furit on the incidence of diseases and disorders after storage of the ‘Ligol’ apple cultivar. Folia Hort. 25:31-39. Magán, J.J., M. Gallardo, R.B. Thompson, P. Lorenzo. 2008. Effect of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agr. Water Magt. 95:1041-1055. Manishi, K., Y. Fukumoto, and T. Yoshida. 1996. Effects of application of compost on growth and quality of tomatoes (Lycopersicon esculentum) under water stress due to root-zone restriction. J. Jpn. Soc. Hort. Sci. 67:257-264. Martin-Prevel, P.J., P. Gagnard, and P. Gautier. 1987. Plant analysis: As a guide to the nutrient requirements of temperate and tropical crops. Lavoisier Publishing Inc. New York. USA. Matthews, M.A. and K.A. Shackel. 2005. Growth and water transport in fleshy fruit. P.181-197. In: Holbrook, N.M. and M. Zwieniecki (eds) Vascular Transport in plants. Elsevier Academic Press. Burlington, CA. Matthews, M.A., G. Cheng, and S.A. Weinbaum. 1987. Changes in water potential and dermal extensibility during grape berry development. J. Amer. Soc. Hort. Sci. 112:314-319. McCarthy, M.G. 1997. The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Austral. J. Grape Wine Res. 3:2-8. Mengel, K. and E.A. Kirkby. 2001. Principles of plant nutrition, Fifth ed. Kluwer Academic Publishers. Dordrecht, the Netherlands. Miqueloto, A., C.V.T. Amarante, C.A. Steffens, A. Santos, and E. Mitcham. 2014. Relationship between xylem functionality, calcium content and the incidence of bitter pit in apple fruit. Scientia Hort. 165:319-323. Montanaro, G., B. Dichio, and C. Xiloyannis. 2010. Significance of fruit transpiration on calcium nutrition in developing apricot fruit. J. Plant Nutr. Soil Sci. 173:618-622. Montanaro, G., B. Dichio, C. Xiloyannis, and G. Celano. 2006. Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Sci. 170:520-527. Morandi, B., L. Manfrini, P. Losciale, M. Zibordi, and L.C. Grappadelli. 2010. Changes in vascular and transpiration flows affect the seasonal and daily growth of kiwifruit (Actinidia deliciosa) berry. Ann. Bot. 105:913-923. Morandi, B., P. Losciale, L. Manfrini, M. Zibordi, E. Pierpaoli, and L.C. Grappadelli. 2012. How changes in weather conditions affect growth, vascular and transpiration flows in young apple fruit. Acta Hort. 951:139-146. Nakasone, H.Y. and P.E. Robert. 1998. Tropical fruits. Biddles Ltd., UK. Neilsen, G., D. Neilsen, S. Dong, and P. Toivonen. 2005. Application of CaCl2 sprays earlier in the season may reduce bitter pit incidence in ‘Braeburn’ apple. HortScience 40:1850-1853. Ngouémazong, D.E., F.F. Tengweh, I. Fraeye, T. Duvetter, R. Cardinaels, A. van Loey, P. Moldenaers, M. Hendrickx. 2012. Effect of de-methylesterification on network development and nature of Ca2+-pectin gels: Towards understanding structure-function relations of pectin. Food Hydrocolloids 26:89-98. Nordey, T., Léchaudel, M., and Génard, M. 2015. The decline in xylem flow to mango fruit at the end of its development is related to the appearance of embolism in the fruit pedicel. Functional Plant Biol. 42:668-675. Paiva, E.A.S., H.E.P. Martinez, V.W.D. Casali, and L. Padilha. 1998. Occurrence of blossom-end rot in tomato as a function of calcium dose in the nutrient solution and air relative humidity. J. Plant Nutr. 21:2663-2670. Paull, R.E., and O. Duarte. 2012. Tropical fruit, 2nd ed. Vol. II. CABI. Oxfordshire, UK. Perring, M.A. 1968. Mineral composition of apples. VII.-The relationship between fruit composition and some storage disorders. J. Sci. Food Agr. 19:186-192. Perring, M.A. and K. Pearson. 1986. Incidence of bitter pit in relation to the calcium content of apples: Calcium distribution in the fruit. J. Sci. Food Agr. 37:709-718. Peryea, F.J., G.H. Neilsen, and D. Faubion. 2007. Start-timing for calcium chloride spray programs influences fruit calcium and bitter pit in ‘Braeburn’ and ‘Honeycrisp’ apples. J. Plant Nutr. 30:1213-1227. Quinlan, J.D. 1969. Chemical composition of developing and shed fruits of Laxton’s Fortune apple. J. Hort. Sci. 44:97-106. Reid, M. and L. Kalcsits. 2020. Water deficit timing affects physiological drought response, fruit size, and bitter pit development for ‘Honeycrisp’ apple. Plants 9:874. Riboldi, L.B., Araúro, S.H.D.C., de Freitas, S.T., and Camargo e Castro, P.R. 2018. Blossem-end rot incidence in elongated tomato fruit. Botany 96, 663-673. Rogiers S.Y., J.A. Smith, R. White, M. Keller, B.P. Holzapfel, and J.M. Virgona. 2001. Vascular function in berries of Vitis vinifera (L) cv. Shiraz. Austral. J. Grape Wine Res. 7(1):46-51. Rogiers, S., J.M. Hatfield, V.G. Jaudzems, R.G. White, and M. Keller. 2004. Grape berry cv. Shiraz epicuticular wax and transpiration during ripening and preharvest weight loss. Amer. J. Enol. Viticulure 55:121-127. Rogiers, S., M. Keller, B.P. Holzapfel, and J.M. Virgona. 2000. Accumulation of potassium and calcium by ripening berries on field vines of Vitis vinifera (L) cv. Shiraz. Austral. J. Grape and Wine Res. 6:240-243. Rosenberger, D.A., J.R. Schupp, S.A. Hoying, L. Cheng, and C.B. Watkins. 2004. Controlling bitter pit in ‘Honeycrisp’ apples. HortTechnology 14:342-349. Saure, M.C. 2001. Blossom-end rot of tomato (Lycopersicon esculentum Mill.) – A calcium- or a stress-related disorder. Scientia Hort. 90:193-208. Saure, M.C. 2005. Calcium translocation to fleshy fruit: Its mechanism and endogenous control. Scientia Hort. 105:65-89. Schlegel, T.K. and J. Schönherr. 2002. Stage of development affects penetration of calcium chloride into apple fruits. J. Plant Nutr. Soil Sci. 165:738-745. Shü Z.H., T.Z. Lin, J.M. Lai, C.C. Huang, D.N. Wang, and H.H. Pan. 2007. The industry and progress review on the cultivation and physiology of wax apple – with special reference to ‘Pink’ variety. Asia Austral. J. Plant Biotechnol. 1:48-53. Shü, Z.H., C.C. Chu, L.J. Hwang, and C.S. Shieh. 2001. Light, temperature, and sucrose affect color, diameter, and soluble solids of disks of wax apple fruit skin. HortScience 36:279-281. Shu, Z.H., C.C. Shiesh, and H.L. Lin. 2011. Wax apple (Syzygium samarangense (Blume) Merr. And L.M. Perry) and related species, p. 458-473 In: Yahia E.M. (ed.) Postharvest biology and technology of tropical and subtropical fruits. Vol. 4: Mangosteen to white sapote. Woodhead publishing Limited. UK. Shü, Z.H., Z. Meon, R. Tirtawinata, C. Thanarut. 2008. Wax apple production in selected tropical asian countries. Acta Hort. 773:101-164. Song, W., J. Yi, O.F. Kurniadinata, H. Wang, and X. Huang. 2018. Linking fruit Ca uptake capacity to fruit growth and pedicel anatomy, a cross-species study. Front. Plant Sci. 9: 575. Steenkamp, J., J.H. Terblanche, and O.T. de Villiers. 1983. The role of organic acid and nutrient elements in relation to bitter pit in golden delicious apple. Acta Hort. 138:35-42. Tachibana, S. 1991. Import of calcium by tomato fruit in relation to the day-night periodicity. Scientia Hort. 45:235-243. Taylor, M.D. and S.J. Locascio. 2004. Blossom-end rot: A calcium deficiency. J. Plant Nutr. 27:123-139 Telias, A., E. Hoover, C. Rosen, and D. Bedford. 2006. The effect of calcium sprays and fruit thining on bitter pit incidence and calcium content in ‘Honeycrisp’ apple. J. Plant Nutr. 29:1941-1957. Terblanche, J.H., K.H. Gürgen, and I. Hesebeck. 1980. An integrated approach to orchard nutrition and bitter pit control. Acta Hort. 92:71-82. Tilbrook J. and S.D. Tyerman. 2009. Hydraulic connection of grape berries to the vine: varietal differences in water conductance into and out of berries and potential for backflow. Functional Plant Biol. 36:541-550. Timmer, L.W., S.E. Zitko, and L.G. Albrigo. 1998. Split application of copper fungicides improve control of melanoses on grapefruit in Florida. Plant Dis. 82:983-986. Tyerman, S.D., J. Tilbrook, C. Pardo, L. Kotula, W. Sullivan, and E. Steudle. 2004. Direct measurement of hydraulic properties in developing berries of Vitis vinifera L. cv Shiraz and Chardonnay. Austral. J. Grape Wine Res. 10:170-181. Val, J., A. Blanco, E. Monge, and M. Pérez. 2010. Polyphenoloxidase isozymes in bitter pit affected apple tissues either natural or locally induced by ammonium oxalate injections. Acta Hort. 868:341-345. Val, J., M.A. Gracia, E. Monge, and A. Blanco. 2008. Visual detection of calcium by GBHA staining in bitter pit-affected apples. Food Sci. Technol. Intl. 14:315-319. Volz, R.K., P.A. Alspach, D.J. Fletcher, and I.B. Ferguson. 2006. Genetic variation in bitter pit and fruit calcium concentrations within a diverse apple germplasm collection. Euphytica 149:1-10. Wada, H., K.A. Shackel, and M.A. Matthews. 2008. Fruit ripening in Vitis vinifera: apoplastic solute accumulation accounts for preveraison turgor loss in berries. Planta 227:1351-1361. Wallaart, R.A.M. 1980. Distribution of sorbitol in rosaceae. Phytochem. 19:2603-2610. White, P.J. 2001. The pathway of calcium movement to the xylem. J. Expt. Bot. 52:891-899. White, P.J. and M.R. Broadley. 2003. Calcium in plants. Ann. Bot. 92: 487-511. Witney, G.W. and M.M. Kushad. 1990. Correlation of pyruvate kinase activity with bitter pit development in apple fruit. Scientia Hort. 43:247-253. Witney, G.W., P.J. Hofman, and B.N. Wolstenholme. 1990. Effect of cultivar, tree vigor and fruit position on calcium accumulation in avocado fruits. Scientia Hort. 44:269-278. Yamauchi, T., T. Hara, and Y. Sonoda. 1986. Effects of boron deficiency and calcium supply on the calcium metabolism in tomato plant. Plant Soil 93:223-230. Zhang Y. and M. Keller. 2015. Grape berry transpiration is determined by vapor pressure deficit, cuticular conductance, and berry size. Amer. J. Enol. Vitic 66:454-462. Zhang, X.Y., X.L. Wang, X.F. Wang, G.H. Xia, Q.H. Pan, R.C. Fan, F.Q. Wu, X.C. Yu, and D.P. Zhang. 2006. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol. 142:220-232.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79778-
dc.description.abstract"蓮霧(Syzygium samarangenes)為臺灣重要經濟果樹,於屏東沿海地區栽培之蓮霧‘大果’種,常於果實成熟時發生果萼端木栓化(Corky Calyx End, CCE)生理障礙,造成經濟損失。根據田間觀察,CCE好發於較大的果實或大果型的品種,以新梢旺盛植株較嚴重,且果園土壤鈉濃度或電導度值偏高。CCE果實萼片較短而薄、果萼周圍果皮環狀白化,病徵部位果肉維管束褐化及空洞化,果肉薄壁細胞叢狀死亡而遺留空胞。CCE被認為是果實缺鈣相關生理障礙,CCE果實近果蒂端及近果萼端的鈣濃度皆較正常果實低。 於好發CCE之蓮霧‘大果’種果園進行噴施鈣肥試驗,探討其對CCE之影響。於CCE好發之2013年產季,於謝花後至小果套袋前之果串,每週噴施一次0.2%硝酸鈣或0.2%氯化鈣+0.1%硼砂,連續處理4週,成熟果之CCE比率分別為1.1%及1.2%,遠低於對照組之24.0%;噴施0.2%硝酸鈣處理並不影響果重及品質相關特性。2014年之試驗對照組CCE發生率僅0.8%,噴鈣處理果實皆無CCE徵狀,各項品質特性與對照組無顯著差異。 探討蓮霧果實發育期間果實內木質部功能衰退樣態與發育期間鈣的累積及成熟果實中鈣濃度分布間的關聯,以了解果萼端鈣的獲得的時機。蓮霧‘大果’種果實的生長為典型的單S形曲線,相對生長速率及果實含水量高峰出現於吊鐘期進入轉色期時(盛花後第28至34天),之後總可溶性固形物及果皮花青素含量快速增加,同時可滴定酸含量降低。近果萼端果肉木質部功能於相對生長速率高峰時驟降,轉色期後持續降低,至成熟時完全失去功能;鈣濃度於盛花後13天內增加,於相對生長速率高峰(盛花後第28至34天)時驟降,之後至成熟(盛花後第59天)前呈緩慢下降趨勢,然而果實總鈣含量至果實成熟前仍持續增加。成熟果實果皮和果肉鈣濃度皆由果蒂端往果萼端梯度下降,以果萼端果肉的鈣濃度為最低,此部位亦為CCE徵狀起始的區域,顯示果實內鈣濃度與木質部輸導功能變化有關。 為探討果實發育期間蒸散速率的變化是否造成木質部輸導阻礙,測試果實不同發育階段表皮蒸散速率之差異。發育中的蓮霧‘大果’種果實表面積可用果徑(D)推估,果實表面積估計值A=5.13 x D1.71。隨果實由胚仔期發育至成熟期,果實表面積由10.3增加至122.6 cm2,胚仔期至合臍期間,單位表面積蒸散速率由1.33 mg·cm2·h-1降至1.05 mg·cm2·h-1,之後緩慢增加,至果實成熟期為1.71 mg·cm2·h-1。果實轉色期後,果皮蒸散速率並未下降,顯示果皮蒸散作用非造成木質部輸導功能衰退的原因。 為了解果實鈣獲得的競爭力,探討果實和植株間的水分關係。蓮霧‘大果’種果實於吊鐘期(盛花後第29-35天)有明顯的日間果徑縮小現象,約於每日1400HR時達到當天果徑最小值,1600HR後果徑開始回升;果徑日間縮小現象於轉色期(盛花後第36-45天)後逐漸消失。樹冠噴霧處理對於果徑縮小幅度無顯著影響,而果實轉色期以前,若植株新葉旺盛,植株蒸散需求量大可能使果徑縮小更為明顯,應避免培育過多的新梢並應提早適量疏除嫩梢,以避免果實嚴重的暫時性缺水,影響鈣的獲得。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:11:00Z (GMT). No. of bitstreams: 1
U0001-1108202111223300.pdf: 4488236 bytes, checksum: 8c32fc06d01b936c2af1f9888de8db91 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘 要 i Abstract iii 目 錄 vi 表目錄 viii 圖目錄 ix 第一章 前人研究及論文假說 2 第一節 研究動機 2 第二節 常見果實缺鈣生理障礙及其生理特性 4 第三節 果實發育期間水分供應來源的變化與鈣的運送 12 第四節 影響蓮霧果實鈣累積的因子 15 第五節 論文假說 18 第二章 蓮霧果萼端木栓化徵狀及幼果期噴施鈣肥改善此生理障礙 23 前言 25 材料與方法 26 試驗一、蓮霧果萼端木栓化組織解剖及切片觀察 26 試驗二、木栓化與正常果實之鈣濃度分析 26 試驗三、幼果期噴施鈣肥對蓮霧果萼端木栓化及品質之影響 27 結果 28 討論 30 結論 32 第三章 蓮霧果實成熟過程中木質部功能衰退與果實品質特性變化及內部鈣濃度分布之關聯 41 前言 43 材料與方法 44 試驗一、果實發育期間品質相關特性、木質部功能及鈣濃度與含量的變化 44 試驗二、成熟果實中鈣濃度的分布 46 結果 47 試驗一、果實發育期間品質相關特性、木質部功能及鈣濃度與含量的變化 47 試驗二、成熟果實中鈣濃度的分布 48 討論 48 結論 50 第四章 蓮霧果實表面積及蒸散作用速率測量 58 前言 60 材料與方法 62 試驗一、建立三個不同品種蓮霧成熟果實之表面積估算方法 62 試驗二、建立蓮霧‘大果’種果實發育期間果實表面積之估算方法 62 試驗三、蓮霧‘大果’種不同發育階段之果實蒸散作用速率 63 結果與討論 63 結論 67 第五章 葉面噴霧對蓮霧果實發育期間日間果徑縮小的影響 77 前言 79 材料與方法 80 試驗一、蓮霧果實吊鐘期至成熟期果徑的日夜變化 80 試驗二、上午噴霧對於蓮霧果實於合臍期、吊鐘期及轉色期日間果徑縮小的影響 81 結果 81 討論 83 結論 88 第六章 綜合討論與結論 96 參考文獻 105 附錄一、試驗植株於果實合臍期(30 DAFB)及轉色期(51 DAFB)時葉片蒸散需求估算 121 附錄二、相關已發表文章 125
dc.language.isozh-TW
dc.subject蒸氣壓差zh_TW
dc.subject質體外染劑追蹤法zh_TW
dc.subject缺鈣生理障礙zh_TW
dc.subject日間果徑縮小zh_TW
dc.subject線性位移感測器zh_TW
dc.subject表面積估算zh_TW
dc.subjectfruit surface area estimationen
dc.subjectfruit diurnal contractionen
dc.subjectcalcium deficiency disorderen
dc.subjectvapor pressure deficit (VPD)en
dc.subjectApoplastic dye infusion methoden
dc.subjectlinear variable displacement transducers (LVDT)en
dc.title蓮霧果萼端木栓化生理障礙與果實水分生理之研究zh_TW
dc.titleResearch on Corky Calyx End Disorder and Water Relation of Wax Apple (Syzygium samarangenes) Fruiten
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.coadvisor葉德銘(Der-Ming Yeh)
dc.contributor.oralexamcommittee李金龍(Hsin-Tsai Liu),許仁宏(Chih-Yang Tseng),林慧玲,張哲嘉
dc.subject.keyword質體外染劑追蹤法,缺鈣生理障礙,日間果徑縮小,線性位移感測器,表面積估算,蒸氣壓差,zh_TW
dc.subject.keywordApoplastic dye infusion method,calcium deficiency disorder,fruit diurnal contraction,linear variable displacement transducers (LVDT),fruit surface area estimation,vapor pressure deficit (VPD),en
dc.relation.page132
dc.identifier.doi10.6342/NTU202102268
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1108202111223300.pdf4.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved