Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79764
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朴艾雪(Aishwarya Y. Puranam)
dc.contributor.authorYung-Han Yangen
dc.contributor.author楊永瀚zh_TW
dc.date.accessioned2022-11-23T09:10:20Z-
dc.date.available2021-08-23
dc.date.available2022-11-23T09:10:20Z-
dc.date.copyright2021-08-23
dc.date.issued2021
dc.date.submitted2021-08-17
dc.identifier.citation1. ACI Committee 318 (2019), “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19),” American Concrete Institute, Farmington Hills, MI, pp.571-573 2. Elwood, K. J.; Matamoros, A. B.; Wallace, J. W.; Lehman, D. E.; Heintz, J. A.; Mitchell, A. D.; Moore, M. A.; Valley, M. T.; Lowes, L. N.; Comartin, C.D.; and Moehle, J. P. (2007), “Update to ASCE/SEI 41 Concrete Provisions,” Earthquake Spectra, V. 23, No 3, pp.493-523, doi: 10.1193/1.2757714 3. Andrea Carolina Perez (2017), Strong ground motion dataset, <https://datacenterhub.org/deedsdv/static_main/view/518/experiments_dv/> 4. SAP2000 version 22 (2020), Comuputer software, <https://www.csiamerica.com/products/sap2000> 5. Cheng, M-Y., and Giduquio, M. B. (2014), “Cyclic Behavior of Reinforced Concrete Flexural Members Using High-Strength Flexural Reinforcement,” ACI Structural Journal, V. 111, No. 4, July-August, pp. 893-902 6. Masaru, O., Yukihiro, T., and Toshiyuki, K. (2003), “Deformation Performance of RC Columns using High-Strength Materials,” Quarterly Report of RTRI, Vol. 44, No. 4, pp.136–141 7. Laughery, A. L. (2016), “Response of High-Strength Steel Reinforced Concrete Structures to Simulated Earthquakes”, M.S. Thesis, Purdue University, 291 pp. 8. Yan, S-B. (2020), “Shaking Table Tests to Study Seismic Drift of Concrete Structures reinforced with High-Strength Steel Bars”, M.S. Thesis, National Taiwan University of Science and Technology, 123 pp. 9. Sozen, M. (2003), “The Velocity of Displacement,” Seismic Assessment and Rehabilitation of Existing Buildings, NATO Science Series Vol. 29, pp.11–28 10. Elwood, K. J., and Eberhard, Marc O. (2009), “Effective Stiffness of Reinforced Concrete Columns,” ACI Structural Journal, Vol. 106, No. 4, pp. 476-484 11. Rautenberg, J. (2011), “Drift Capacity of Concrete Columns Reinforced with High-Strength Steel.” Ph.D. Thesis, Purdue University, 289 pp. 12. To, D. V. (2018),” Performance Characterization of Beams with High-Strength Reinforcement” Ph.D. Thesis, UC Berkeley, 264 pp. 13. Otani, S., and Sozen, M. (1972), “Behavior of Multistory Reinforced Concrete Frames During Earthquakes.” Civil Engineering Studies, Structural Research Series, University of Illinois, Urbana, IL, Vol. 392. Urbana, Illinois. 551 pp. 14. Yu, P-H. (2020), NewRC_Mocur2020, National Yunlin University of Science and Technology, <https://pei-hancindy.weebly.com/newrc-mocur2020.html> 15. Lee, J. H. (2018), “Behavior and modeling of high-strength concrete tied columns under axial compression.” , Journal of the Chinese intitute of Engineering, Vol. 41, No. 12, pp. 353-365 16. Gulkan, P. and M.A. Sozen (1974), “Inelastic Response of Reinforced Concrete Structures to Earthquake Motions,” Journal of the American Concrete Institute, Vol. 71, No. 12, pp. 601-609 17. Takeda, T., M.A. Sozen, and N.N. Nielsen, (1970), “Reinforced Concrete Response to Simulated Earthquakes,” Journal of the Structural Division, ASCE, Vol. 96, No. ST12, Proc. Paper 7759, pp. 2557-2573 18. Moehle, J. P. and Sozen, M. A. (1980), “Experiments to Study Earthquake Response of R/C Structures with Stiffness Interruption”, Civil Engineering Studies, Structural Research Series, University of Illinois, Urbana, IL, Vol. 482. Urbana, Illinois, 421 pp. 19. Kuramoto, H., Teshigawara, M., Okuzono, T., Koshika, N,,Takayama, M., and Hori, T. (2000), “Predicting The Earthquake Response of Building Using Equivalent Single Degree of Freedom System”, 12WCEE, Vol. 1039, 8 pp. 20. Moehle, J. P. and Sozen, M. A. (1978), “Earthquake-simulation Tests of a Ten-story Reinforced Concrete Frame with a Discontinued First-level Beam”, Civil Engineering Studies, Structural Research Series, University of Illinois, Urbana, IL, Vol. 482. Urbana, Illinois, 162 pp. 21. Rautenburg, J. M. and Pujol, S. (2013), “Numerical Estimates of The Seismic Response of Building Structures Reinforced with High-strength steel”, Web Session, pp. 42-43 22. Suzuki, T., Elwood, K. J., Puranam, A. Y., Lee, H-J., Hsiao, F-P., and Hwang, S-J. (2020), “Seismic response of half-scale seven-storey RC systems with torsional irregularities: blind prediction”, New zealand society for earthquake engineering, 16 pp. 23. Hung, S-C. (2015), “Cyclic Behaviors of RC Low-Rise Shear Wall with High Strength Reinforcement”, M.S. Thesis, National Taiwan University of Science and Technology, pp. 85-90 24. Elwood, K. J., and Moehle J. P. (2003), “Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames”, Ph.D. Thesis, UC Berkeley, pp. 151-167 25. FEMA 356 (2000), “Prestandart and Commentary for the Seismic Rehabilitation of Buildings”, Federal Emergency Management Agency, Washington DC
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79764-
dc.description.abstract在近年間有許多國家核可位在地震區域的混凝土結構物採用高強度鋼筋。以較少量的高強度鋼筋取代原先的普通強度鋼筋能在設計強度不變的情況下,有效減少鋼筋壅塞及增進現地的施工性。然而,若維持斷面尺寸不變並改用較少量的高強度鋼筋,雖然擁有與原本相同的初始勁度,但開裂後勁度則會下降。本文即在探討若兩個構架擁有同樣的初始勁度但不同的開裂後勁度是否在地震下會有相似的位移反應。另外,由於結構物的最大變位對於災害評估相當重要,此研究也針對現有的預測位移方法是否適用於高強度鋼筋混凝土結構物進行討論。 本研究對兩座二層樓一跨的試體進行振動台測試。此兩座試體除了縱向鋼筋以外有完全一樣的設計參數。試體C1 採用SD420 普通強度鋼筋,其柱及樑的縱向鋼筋比分別為2.1%以及1.6%。而試體H1 則採用SD685 高強度鋼筋,其柱及樑的縱向鋼筋比分別為1.2%以及1.3%。兩座試體的預測基底剪力係數約為0.9。此研究中,兩座試體在台南國家地震中心分別進行了三組的振動台測試。所有的激振輸入皆採用修改後的El Centro (1940) 南北向地表加速度歷時。El Centro (1940) 地震歷時在本研究中其時間間格以2/3 的倍率壓縮,且其振幅也被等比例調整。在最大強度激振時(稱作100%),該加速度資料的最大加速度(PGA)為1 g,最大速度(PGV)為73 cm/s。在第一組試驗中,試體依序經歷了10%、25%、50%、75%、100% 的激振。在第二組試驗中,試體依序經歷了100%-2、10%-2、25%-2、50%-2 的激振。第二組實驗後,試體將會以環氧樹脂進行補強。而後則是第三組試驗,試體依序經歷了10%-3、25%-3、50%-3、100%-3 的激振。 實驗結果顯示第一組和第二組實驗中 H1 的最大位移比C1 的最大位移平均多了10%。而對於第一組和第二組實驗中大於50%的激振,H1 的最大位移比C1 的最大位移平均高出了15%。然而,考慮到H1 比C1 省下了將近40%的縱向鋼筋量,此位移需求的增量似乎是划算的。 在第六章中,探討了三種不同的位移評估方式,並且將其評估結果與實驗量測值比較。1) 單自由度模型搭配假設的週期與阻尼比。2) 由Sozen (2003) 學者提出的位移預測方法。3) 利用 Elwood (2009) 學者提出的有效勁度搭配彎矩塑性鉸在SAP2000 中進行的非線性分析。Sozen (2003) 的位移預測方法提供了合理的預測值。而SAP2000 的非線性分析與實驗量測值在100%、100%-2、100%-3 的平均誤差約為10%。由Elwood (2009) 學者提出的有效勁度能用以反應C1 和H1 不同的開裂後勁度且採用其勁度的SAP2000 分析結果大致上與實驗結果吻合。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:10:20Z (GMT). No. of bitstreams: 1
U0001-1708202111553600.pdf: 32471755 bytes, checksum: b9cb54fff6609855e7e1e7595e8c66bb (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員審定書 ..................................................................................................................... i Acknowledgements: ...............................................................................................................ii 摘要.......................................................................................................................................iii ABSTRACT ...........................................................................................................................v INTRODUCTION............................................................................................1 LITERATURE REVIEW.................................................................................3 2.1 Static Tests ...............................................................................................................3 2.2 Dynamic Tests .........................................................................................................4 2.2.1 Otani and Sozen (1972) ....................................................................................4 2.2.2 Laughery (2016) ...............................................................................................4 2.2.3 Yan (2020)........................................................................................................6 2.3 Numerical Investigations .........................................................................................6 2.3.1 Estimating Peak Drift, Sozen (2003)................................................................7 2.3.2 Effective Stiffness.............................................................................................7 EXPERIMENTAL DESIGN AND SETUP...................................................10 3.1 Overview of Experimental Program......................................................................10 3.2 Specimens ..............................................................................................................11 3.3 Test Setup ..............................................................................................................13 3.3.1 Mass................................................................................................................13 3.3.2 Out-of-plane Bracing......................................................................................13 3.3.3 Instrumentation...............................................................................................14 3.4 Ground Motion ......................................................................................................15 3.5 Test Procedure .......................................................................................................17 3.6 Numerical Model ...................................................................................................18 3.6.1 Moment-Curvature Relationships...................................................................18 3.6.2 Model Assumptions........................................................................................20 3.6.3 Expected Behavior of Frames.........................................................................21 TEST RESULTS ............................................................................................23 4.1 Data Processing......................................................................................................23 4.1.1 FDAC Data Acquisition System ....................................................................24 4.1.2 MOCAP system..............................................................................................24 4.2 Ground Motion ......................................................................................................25 4.3 Free Vibration and White Noise Test ....................................................................26 4.3.1 Free Vibration Test .........................................................................................26 4.3.2 White Noise Test ............................................................................................26 4.4 Specimen Response Histories ................................................................................27 4.4.1 Drift Comparison............................................................................................27 4.4.2 Story Responses..............................................................................................28 4.4.3 Curvature Distribution....................................................................................28 4.4.4 Force-displacement Relationship ...................................................................29 4.5 Damage ..................................................................................................................30 DISCUSSION OF OBSERVED RESPONSE ...............................................33 5.1 Maximum Base Shear ............................................................................................33 5.2 Stiffness .................................................................................................................34 5.2.1 Primary Curve ................................................................................................34 5.2.2 Effective Stiffness...........................................................................................35 5.3 Period and Damping Ratio.....................................................................................35 5.4 Drift Response .......................................................................................................37 5.4.1 C1 vs. H1 ........................................................................................................37 5.4.2 Series-1 vs. Series-2 .......................................................................................38 5.4.3 Excursions ......................................................................................................39 5.5 Summary of observed reponses .............................................................................40 NUMERICAL ANALYSIS RESULTS .........................................................42 6.1 SDOF model ..........................................................................................................42 6.1.1 SDOF model with apparent first mode...........................................................42 6.1.2 SDOF model with assumed first mode...........................................................45 6.2 Peak drift ratio, Sozen (2003) ................................................................................46 6.3 Nonlinear analysis, SAP2000 ................................................................................47 6.3.1 Using effective stiffness suggested by Elwood ..............................................47 6.3.2 Using effective stiffness suggested by ACI 318-19 .......................................49 6.3.3 Using effective stiffness determined from MC relationship ..........................49 6.4 Summary of the evaluations ..................................................................................49 SUMMARY AND CONCLUSIONS.............................................................52 7.1 Summary................................................................................................................52 7.2 Conclusions............................................................................................................54 7.3 Supplement and prospect .......................................................................................55 FIGURES .............................................................................................................................56 TABLES.............................................................................................................................211 REFERENCES...................................................................................................................239 APPENDIX ........................................................................................................................242 A1: Material ....................................................................................................................242 A1.1 Concrete .............................................................................................................242 A1.2 Reinforcement ....................................................................................................244 A2: Data conversion .......................................................................................................244 A2.1 First-story story drift from String Pots data .................................................244 A2.2 Story drifts from MOCAP data ....................................................................245 A3: Epoxy repair.............................................................................................................247 A4: Detailed beam crack maps .......................................................................................247 A5: Test Notes ................................................................................................................248"
dc.language.isoen
dc.subject振動台試驗zh_TW
dc.subject高強度鋼筋zh_TW
dc.subject最大變位角zh_TW
dc.subjectearthquake simulator testen
dc.subjectpeak drift ratioen
dc.subjecthigh-strength steel reinforcementen
dc.title高強度鋼筋混凝土構架在地震下的反應zh_TW
dc.titleEarthquake Response of RC Frames with High-strength Reinforcementen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃世建(Hsin-Tsai Liu),廖文正(Chih-Yang Tseng),鄭敏元
dc.subject.keyword高強度鋼筋,最大變位角,振動台試驗,zh_TW
dc.subject.keywordhigh-strength steel reinforcement,peak drift ratio,earthquake simulator test,en
dc.relation.page298
dc.identifier.doi10.6342/NTU202102425
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-1708202111553600.pdf31.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved