Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79757
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chih Wu)
dc.contributor.authorSen-Han Yangen
dc.contributor.author楊森涵zh_TW
dc.date.accessioned2022-11-23T09:10:04Z-
dc.date.available2021-09-02
dc.date.available2022-11-23T09:10:04Z-
dc.date.copyright2021-09-02
dc.date.issued2021
dc.date.submitted2021-08-20
dc.identifier.citation財團法人中央畜產會。2020。2019臺灣養豬統計手冊。第9-23頁。臺北市。 陳佳萱、賴永裕、劉桂柱、李世昌、廖仁寶、吳明哲、張秀鑾。2003。臺灣種豬動情素受體多產基因頻率。畜產研究 36:19-25。 張斌。2010。利用高通量鑑定單一核苷酸多型性研發藍瑞斯母豬窩仔數相關分子標記。國立臺灣大學動物科學技術學系研究所碩士論文,臺北市。 張秀鑾、黃鈺嘉、吳明哲、李世昌。1998。豬經濟性狀測定與品種改良:生長性狀。第51-70頁。臺灣省畜產試驗所,臺南縣。 Albrecht, U., J. S. Sutcliffe, B. M. Cattanach, C. V. Beechey, D. Armstrong, G. Eichele, and A. L. Beaudet. 1997. Imprinted expression of the murine Angelman syndrome gene, UBE3A, in hippocampal and Purkinje neurons. Nat. Genet. 17:75-78. doi: 10.1038/ng0997-75 Bakoev, S., L. Getmantseva, F. Bakoev, M. Kolosova, V. Gabova, A. Kolosov, and O. Kostyunina. 2020. Review: Survey of SNPs associated with total number born and total number born alive in pig. Genes 11:491. doi: 10.3390/genes11050491 Balogh, E. E., G. Gábor, S. Bodó, L. Rózsa, J. Rátky, A. Zsolnai, and I. Anton. 2019. Effect of single-nucleotide polymorphisms on specific reproduction parameters in Hungarian Large White sows. Acta Vet. Hung. 67:256-273. doi: 10.1556/004.2019.027 Belonsky, G. M., and B. W. Kennedy. 1988. Selection on individual phenotype and best linear unbiased predictor of breeding value in a closed swine herd. J. Anim. Sci. 66:1124-1131. doi: 10.2527/jas1988.6651124x Bergfelder-Drüing, S., C. Grosse-Brinkhaus, B. Lind, M. Erbe, K. Schellander, H. Simianer, and E. Tholen. 2015. A genome-wide association study in large white and landrace pig populations for number piglets born alive. PLoS ONE 10:e0117468. doi: 10.1371/journal.pone.0117468 Bianco, E., B. Nevado, S. E. Ramos-Onsins, and M. Pérez-Enciso. 2015. A deep catalog of autosomal single nucleotide variation in the pig. PLoS ONE 10:e0118867. doi: 10.1371/journal.pone.0118867 Chang, C. C., C. C. Chow, L. CAM Tellier, S. Vattikuti, S. M. Purcell, and J. J. Lee. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4:7. doi: 10.1186/s13742-015-0047-8 Chen, B., J. W. Cole, and C. Grond-Ginsbach. 2017a. Departure from Hardy Weinberg equilibrium and genotyping error. Front. Genet. 8:167. doi: 10.3389/fgene.2017.00167 Chen, S. Y., Z. Feng, and X. Yi. 2017b. A general introduction to adjustment for multiple comparisons. J. Thorac. Dis. 9:1725-1729. doi: 10.21037/jtd.2017.05.34 Clark, K. L., and A. F. Keating. 2020. Ataxia-telangiectasia mutated coordinates the ovarian DNA repair and atresia-initiating response to phosphoramide mustard. Biol. Reprod. 102:248-260. doi: 10.1093/biolre/ioz160 Coster, A., O. Madsen, H. C. M. Heuven, B. Dibbits, M. A. M. Groenen, J. A. M. van Arendonk, and H. Bovenhuis. 2012. The imprinted gene DIO3 is a candidate gene for litter size in pigs. PLoS ONE 7:e31825. doi: 10.1371/journal.pone.0031825 Dall’Olio, S., L. Fontanesi, L. Tognazzi, L. Buttazzoni, M. Gallo, and V. Russo. 2011. ESR1 and ESR2 gene markers are not associated with number of piglets born alive in Italian Large White sows. Ital. J. Anim. Sci. 10:e35. doi: 10.4081/ijas.2011.e35 Deyssenroth, M. A., C. J. Marsit, J. Chen, and L. Lambertini. 2020. In-depth characterization of the placental imprintome reveals novel differentially methylated regions across birth weight categories. Epigenetics 15:47-60. doi: 10.1080/15592294.2019.1647945 Diot, M., M. Reverchon, C. Ramé, Y. Baumard, and J. Dupont. 2015. Expression and effect of NAMPT (visfatin) on progesterone secretion in hen granulosa cells. Reproduction 150:53-63. doi: 10.1530/REP-15-0021 Distl, O. 2007. Mechanisms of regulation of litter size in pigs on the genome level. Reprod. Dom. Anim. 42(Suppl.):10-16. doi: 10.1111/j.1439-0531.2007.00887.x Do, K. T., S. W. Jung, K. D. Park, and C. S. Na. 2018. Effect of single nucleotide polymorphism on the total number of piglets born per parity of three different pig breeds. Asian-Australas J. Anim. Sci. 31:628-635. doi: 10.5713/ajas.17.0028 Ergon, Å., L. Skøt, V. E. Sæther, and O. A. Rognli. 2019. Allele frequency changes provide evidence for selection and identification of candidate loci for survival in red clover (Trifolium pratense L.). Front. Plant Sci. 10:718. doi: 10.3389/fpls.2019.00718 Feng, X., S.-Y. Xie, J.-S. Zhou, G.-R. Sun, P. Lu, and M. Li. 2013. Polymorphisms of the bone morphogenetic protein 7 gene (BMP7) and association analysis with sow productive traits. Anim. Reprod. Sci. 142:56-62. doi: 10.1016/j.anireprosci.2013.08.011 Ferretti, C., L. Bruni, V. Dangles-Marie, A. P. Pecking, and D. Bellet. 2007. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Update 13:121-141. doi: 10.1093/humupd/dml048 Gao, X., L. C. Becker, D. M. Becker, J. D. Starmer, and M. A. Province. 2010. Avoiding the high Bonferroni penalty in genome-wide association studies. Genet. Epidemiol. 34:100-105. doi: 10.1002/gepi.20430 Getmantseva, L., S. Bakoev, V. Shevtsova, N. Bakoev, and N. Bardukov. 2020. Program Chair Poster Pick: Effects of SMAD6 and SUGCT genes on Litter traits in pigs. J. Anim. Sci. 98:463-464. doi: 10.1093/jas/skaa278.80 Gorssen, W., R. Meyermans, N. Buys, and S. Janssens. 2019. SNP genotypes reveal breed substructure, selection signatures and highly inbred regions in Piétrain pigs. Anim. Genet. 51:32-42. doi: 10.1111/age.12888 Guo, X., G. Su, O. F. Christensen, L. Janss, and M. S. Lund. 2016. Genome-wide association analyses using a Bayesian approach for litter size and piglet mortality in Danish Landrace and Yorkshire pigs. BMC Genomics 17:468. doi: 10.1186/s12864-016-2806-z Hagan, J. K., and N. N. Etim. 2019. The effects of breed, season and parity on the reproductive performance of pigs reared under hot and humid environments. Trop. Anim. Health. Prod. 51:411-418. doi: 10.1007/s11250-018-1705-5 Hanafusa, H., S. Kedashiro, M. Tezuka, M. Funatsu, S. Usami, F. Toyoshima, and K. Matsumoto. 2015. PLK1-dependent activation of LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2. Nat. Cell Biol. 17:1024-1035. doi: 10.1038/ncb3204 Hur, M.-W., J.-H. Yoon, M.-Y. Kim, H. Ko, and B.-N. Jeon. 2017. Kr-POK (ZBTB7C) regulates cancer cell proliferation through glutamine metabolism. Biochim. Biophys. Acta Gene Regul. Mech. 1860:829-838. doi: 10.1016/j.bbagrm.2017.05.005 Hwang, J. H., S. M. An, S. Kwon, D. H. Park, T. W. Kim, D. G. Kang, G. E. Yu, I.-S. Kim, H. C. Park, J. Ha, and C. W. Kim. 2017. DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta. PLoS ONE 12:e0184539. doi: 10.1371/journal.pone.018453 Ibrahim, M. I., A. R. Ramy, A. S. Abdelhamid, M. I. Ellaithy, A. Omar, R. M. Harara, H. Fathy, and A. S. Abolouz. 2017. Maternal serum amyloid A level as a novel marker of primary unexplained recurrent early pregnancy loss. Int. J. Gynaecol. Obstet. 136:298-303. doi: 10.1002/ijgo.12076 Jiang, S.-T., Y.-Y. Chiou, E. Wang, H.-K. Lin, S.-P. Lee, H.-Y. Lu, C.-K. L. Wang, M.-J. Tang, and H. Li. 2008. Targeted disruption of NPHP1 causes male infertility due to defects in the later steps of sperm morphogenesis in mice. Hum. Mol. Genet. 17:3368-3379. doi: 10.1093/hmg/ddn231 Jung, S. M., J. H. Lee, J. Park, Y. S. Oh, S. K. Lee, J. S. Park, Y. S. Lee, J. H. Kim, J. Y. Lee, Y. S. Bae, S. H. Koo, S. J. Kim, and S. H. Park. 2013. SMAD6 inhibits non-canonical TGF-beta1 signalling by recruiting the deubiquitinase A20 to TRAF6. Nat. Commun. 4:2562. doi: 10.1038/ncomms3562 Keel, B. N., D. J. Nonneman, A. K. Lindholm-Perry, W. T. Oliver, and G. A. Rohrer. 2018. Porcine single nucleotide polymorphisms and their functional effect: an update. BMC Res. Notes 11:860. doi: 10.1186/s13104-018-3973-6 Keele, J. W., R. K. Johnson, L. D. Young, and T. E. Socha. 1988. Comparison of methods of predicting breeding values of swine. J. Anim. Sci. 66:3040-3048. doi: 10.2527/jas1988.66123040x Kmieć, M., J. Dvořák, and I. Vrtková. 2002. Study on a relation between estrogen receptor (ESR) gene polymorphism and some pig reproduction performance characters in Polish Landrace breed. Czech J. Anim. Sci. 47:189-193. Kmieć, M., and A. Terman. 2006. Associations between the prolactin receptor gene polymorphism and reproductive traits of boars. J. Appl. Genet. 47:139-141. doi: 10.1007/bf03194613 Koketsu, Y., S. Tani, and R. Iida. 2017. Review: Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds. Porc. Health Manag. 3:1. doi: 10.1186/s40813-016-0049-7 Kraeling, R. R., and S. K. Webe. 2015. Current strategies for reproductive management of gilts and sows in North America. J. Anim. Sci. Biotechnol. 6:3. doi: 10.1186/2049-1891-6-3 Kumchoo, T., and S. Mekchay. 2015. Association of non-synonymous SNPs of OPN gene with litter size traits in pigs. Arch. Anim. Breed. 58:317-323. doi: 10.5194/aab-58-317-2015 Le Cozler, Y., C. Guyomarc'h, X. Pichodo, P.-Y. Quinio, and H. Pellois. 2002. Factors associated with stillborn and mummified pigletsin high-prolific sows. Anim. Res. 51:261-268. doi: 10.1051/animres:2002017 Lee, G. J., M. Ritchie, M. Thomson, A. A. Macdonald, A. Blasco, M. A. Santacreu, M. J. Argente, and C. S. Haley. 1995. Uterine capacity and prenatal survival in Meishan and Large White pigs. Anim. Sci. 60:471-479. doi: 10.1017/S1357729800013345 Lee, S., and D. K. Lee. 2018. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol. 71:353-360. doi: 10.4097/kja.d.18.00242 Li, X., J. Ye, X. Han, R. Qiao, X. Li, G. Lv, and K. Wang. 2020. Whole-genome sequencing identifies potential candidate genes for reproductive traits in pigs. Genomics 112:199-206. doi: 10.1016/j.ygeno.2019.01.014 Liu, R., D. Deng, X. Liu, Y. Xiao, J. Huang, F. Wang, X. Li, and M. Yu. 2019. A miR-18a binding-site polymorphism in CDC42 3'UTR affects CDC42 mRNA expression in placentas and is associated with litter size in pigs. Mamm. Genome 30:34-41. doi: 10.1007/s00335-018-9788-x Lopes, M. S., H. Bovenhuis, M. van Son, Ø. Nordbø, E. H. Grindflek, E. F. Knol, and J. W. M. Bastiaansen. 2017. Using markers with large effect in genetic and genomic predictions. J. Anim. Sci. 95:59-71. doi: 10.2527/jas2016.0754 Marcato, P., C. A. Dean, D. Pan, R. Araslanova, M. Gillis, M. Joshi, L. Helyer, L. Pan, A. Leidal, S. Gujar, C. A. Giacomantonio, and P. W. K. Lee. 2011. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 29:32-45. doi: 10.1002/stem.563 Marees, A. T., H. de Kluiver, S. Stringer, F. Vorspan, E. Curis, C. Marie-Claire, and E. M. Derks. 2018. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 27:e1608. doi: 10.1002/mpr.1608 Miyagawa, T., N. Nishida, J. Ohashi, R. Kimura, A. Fujimoto, M. Kawashima, A. Koike, T. Sasaki, H. Tanii, T. Otowa, Y. Momose, Y. Nakahara, J. Gotoh, Y. Okazaki, S. Tsuji, and K. Tokunaga. 2008. Appropriate data cleaning methods for genome-wide association study. J. Hum. Genet. 53:886-893. doi: 10.1007/s10038-008-0322-y Muñoz, G., C. Ovilo, J. Estellé, L. Silió, A. Fernández, and C. Rodriguez. 2007. Association with litter size of new polymorphisms on ESR1 and ESR2 genes in a Chinese-European pig line. Genet. Sel. Evol. 39:195-206. doi: 10.1186/1297-9686-39-2-195 Notter, D. R. 1999. The importance of genetic diversity in livestock populations of the future. J. Anim. Sci. 77:61-69. doi: 10.2527/1999.77161x Onteru, S. K., B. Fan, Z.-Q. Du, D. J. Garrick, K. J. Stalder, and M. F. Rothschild. 2012. A whole-genome association study for pig reproductive traits. Anim. Genet. 43:18-26. doi: 10.1111/j.1365-2052.2011.02213.x Peltoniemi, O., S. Bjorkman, M. Oropeza-Moe, and C. Oliviero. 2019. Developments of reproductive management and biotechnology in the pig. Anim. Reprod. 16:524-538. doi: 10.21451/1984-3143-AR2019-0055 Pilmane, M., and V. Fodina. 2011. Changes of metabolism and growth factors in growth retarded and re-growing preimplantation human embryo. Biol. Reprod. 85:232. doi: 10.1093/biolreprod/85.s1.232 Pomorska-Mól, M., K. Kwit, Z. Pejsak, and I. Markowska-Daniel. 2014. Analysis of the acute-phase protein response in pigs to clinical and subclinical infection with H3N2 swine influenza virus. Influenza Other Respir. Viruses 8:228-234. doi: 10.1111/irv.12186 Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38:904-909. doi: 10.1038/ng1847 Ramos, A. M., R. P. M. A. Crooijmans, N. A. Affara, A. J. Amaral, A. L. Archibald, J. E. Beever, C. Bendixen, C. Churcher, R. Clark, P. Dehais, M. S. Hansen, J. Hedegaard, Z. -L. Hu, H. H. Kerstens, A. S. Law, H. -J. Megens, D. Milan, D. J. Nonneman, G. A. Rohrer, M. F. Rothschild, T. P. L. Smith, R. D. Schnabel, C. P. Van Tassell, J. F. Taylor, R. T. Wiedmann, L. B. Schook, and M. A. M. Groenen. 2009. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE 4:e6524. doi: 10.1371/journal.pone.0006524 Rothschild, M., C. Jacobson, D. Vaske, C. Tuggle, L. Wang, T. Short, G. Eckardt, S. Sasaki, A. Vincent, D. McLaren, O. Southwood, H. van der Steen, A. Mileham, and G. Plastow. 1996. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc. Natl. Acad. Sci. U.S.A. 93:201-205. doi: 10.1073/pnas.93.1.201 Sandri, S., A. U. Borbely, I. Fernandes, E. M. de Oliveira, F. H. Knebel, R. Ruano, M. Zugaib, F. Filippin-Monteiro, E. Bevilacqua, and A. Campa. 2014. Serum amyloid A in the placenta and its role in trophoblast invasion. PLoS ONE 9:e90881. doi: 10.1371/journal.pone.0090881 SAS. 2019. SAS User's Guide: Statistics Ver. 9.4, SAS Institute, Inc., Cary, N.C. Sato, S., Y. Uemoto, T. Kikuchi, S. Egawa, K. Kohira, T. Saito, H. Sakuma, S. Miyashita, S. Arata, T. Kojima, and K. Suzuki. 2016. SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population. BMC Genet. 17:60. doi: 10.1186/s12863-016-0368-3 Sell-Kubiak, E., N. Duijvesteijn, M. S. Lopes, L. L. G. Janss, E. F. Knol, P. Bijma, and H. A. Mulder. 2015. Genome-wide association study reveals novel loci for litter size and its variability in a Large White pig population. BMC Genomics 16:1049. doi: 10.1186/s12864-015-2273-y Sevillano, C. A., J. ten Napel, S. E. F. Guimaraes, F. F. Silva, and M. P. L. Calus. 2018. Effects of alleles in crossbred pigs estimated for genomic prediction depend on their breed-of-origin. BMC Genomics 19:740. doi: 10.1186/s12864-018-5126-7 Shan, N., X. Zhang, X. Xiao, H. Zhang, C. Tong, X. Luo, Y. Chen, X. Liu, N. Yin, Q. Deng, and H. Qi. 2015. Laminin alpha4 (LAMA4) expression promotes trophoblast cell invasion, migration, and angiogenesis, and is lowered in preeclamptic placentas. Placenta 36:809-820. doi: 10.1016/j.placenta.2015.04.00 Short, T. H., M. F. Rothschild, O. I. Southwood, D. G. McLaren, A. de Vries, H. van der Steen, G. R. Eckardt, C. K. Tuggle, J. Helm, D. A. Vaske, A. J. Mileham, and G. S. Plastow. 1997. Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines. J. Anim. Sci. 75:3138-3142. doi: 10.2527/1997.75123138x Soler, L., A. Gutierrérrez, and J. J. Cerón. 2012. Serum amyloid A measurements in saliva and serum in growing pigs affected by porcine respiratory and reproductive syndrome in field conditions. Res. Vet. Sci. 93:1266-1270. doi: 10.1016/j.rvsc.2012.06.008 Suwannasing, R., M. Duangjinda, W. Boonkum, R. Taharnklaew, and K. Tuangsithtanon. 2018. The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study. Asian-Australas J. Anim. Sci. 31:1852-1862. doi: 10.5713/ajas.18.0072 Uimari, P., A. Sironen, and M.-L. Sevón-Aimonen. 2011. Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed. Genet. Sel. Evol. 43:42. doi: 10.1186/1297-9686-43-42 van Rens, B. T. T. M., G. J. Evans, and T. van der Lende. 2003. Components of litter size in gilts with different prolactin receptor genotypes. Theriogenology 59:915-926. doi: 10.1016/S0093-691X(02)01155-X Verardo, L. L., F. F. Silva, M. S. Lopes, O. Madsen, J. W. M. Bastiaansen, E. F. Knol, M. Kelly, L. Varona, P. S. Lopes, and S. E. F. Guimaraes. 2016. Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways. Genet. Sel. Evol. 48:9. doi: 10.1186/s12711-016-0189-x Wang, C.-M., S.-G. Hu, Y.-F. Ru, G.-X. Yao, W.-B. Ma, Y.-H. Gu, C. Chu, S.-L. Wang, Z.-M. Zhou, Q. Liu, Y.-C. Zhou, and Y.-L. Zhang. 2013. Different effects of androgen on the expression of FUT1, FUT2, FUT4 and FUT9 in male mouse reproductive tract. Int. J. Mol. Sci. 14:23188-23202. doi: 10.3390/ijms141123188 Wang, H., S. Wu, J. Wu, S. Sun, S. Wu, and W. Bao. 2018a. Association analysis of the SNP (rs345476947) in the FUT2 gene with the production and reproductive traits in pigs. Genes Genom. 40:199-206. doi: 10.1007/s13258-017-0623-7 Wang, Y., X. Ding, Z. Tan, K. Xing, T. Yang, Y. Pagn, Y. Wang, S. Mi, D. Sun, and C. Wang. 2018b. Genome-wide association study for reproductive traits in a Large White pig population. Anim. Genet. 49:127-131. doi: 10.1111/age.12638 Wu, P., Q. Yang, K. Wang, J. Zhou, J. Ma, Q. Tang, L. Jin, W. Xiao, A. Jiang, Y. Jiang, L. Zhu, X. Li, and G. Tang. 2018. Single step genome-wide association studies based on genotyping by sequence data reveals novel loci for the litter traits of domestic pigs. Genomics 110:171-179. doi: 10.1016/j.ygeno.2017.09.009 Yang, S., X. Zhou, Y. Pei, H. Wang, K. He, and A. Zhao. 2018. Identification of differentially expressed genes in porcine ovaries at proestrus and estrus stages using RNA-seq technique. Biomed Res. Int. 2018:9150723. doi: 10.1155/2018/9150723 Yue, R., H. Li, H. Liu, Y. Li, B. Wei, G. Gao, Y. Jin, T. Liu, L. Wei, J. Du, and G. Pei. 2012. Thrombin receptor regulates hematopoiesis and endothelial-to-hematopoietic transition. Dev. Cell 22:1092-1100. doi: 10.1016/j.devcel.2012.01.025 Zak, L. J., A. H. Gaustad, A. Bolarin, M. L. W. J. Broekhuijse, G. A. Walling, and E. F. Knol. 2017. Review: Genetic control of complex traits, with a focus on reproduction in pigs. Mol. Reprod. Dev. 84:1004-1011. doi: 10.1002/mrd.22875 Zhang, S., J. Yang, L. Wang, Z. Li, P. Pang, and F. Li. 2019. SLA-11 mutations are associated with litter size traits in Large White and Chinese DIV pigs. Anim. Biotechnol. 30:212-218. doi: 10.1080/10495398.2018.1471401 Zou, F., S. Lee, M. R. Knowles, and F. A. Wright. 2010. Quantification of population structure using correlated SNPs by shrinkage principal components. Hum. Hered. 70:9-22. doi: 10.1159/000288706
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79757-
dc.description.abstract"改善豬隻繁殖性狀的表現對於豬場的營收有正面的幫助。根據中央畜產會的統計資料,臺灣每頭母豬的平均年產上市肉豬頭數和國外有著一段差距,顯示國內豬隻的繁殖性能仍有提升的空間,而透過育種能幫助我們改善這個狀況。育種可分為單純以性狀記錄配合系譜資料,計算出估計育種價的最佳線性無偏預測法(best linear unbiased prediction, BLUP),以及配合分子標識(molecular marker)進行的標識輔助選拔(marker assisted selection, MAS)。在母豬繁殖性狀方面,陸續有研究發現適合的分子標識。但是在不同族群中,卻有著使用同樣位點卻沒有相似效果,或是該位點在部分族群中沒有多態性(polymorphism)的情形。因此,本試驗之目的為建立一套確認分子標識可用性的流程,並提供該族群中與繁殖性狀顯著相關的分子標識,供育種者參考。 本試驗以彰化一家商業豬隻養殖場之169頭藍瑞斯和104頭約克夏純種母豬作為試驗對象,並將試驗分成兩部分。第一部分透過文獻探討,找出已知對於和此試驗相同品種母豬之特定繁殖性狀,有顯著關聯的單核苷酸多態性(single nucleotide polymorphism, SNP)做為分析的位點,在後續對試驗豬群進行該位點的基因型分型。在此階段經過初步篩選後留下130個SNP位點,並依據其在染色體上分布的情形,選擇在不同文獻而在染色體上相近位置處有密集分布之位點,推估該位置有影響繁殖性狀表現的候選基因。經過篩選後,以40個SNP位點進行後續試驗分析,其中包含7個實驗室先前分析與臺灣純種藍瑞斯之繁殖性狀有顯著相關之SNP位點。在試驗的第二部分,針對欲做關聯性分析的位點先進行處理,將替代交替基因頻率(alternative allele frequency)小於1%或大於99%,SNP call rate小於95%,連鎖不平衡(linkage disequilibrium)等於1,以及顯著不符合哈溫平衡(Hardy-Weinberg equilibrium)之SNP剔除。在藍瑞斯和約克夏族群中,皆剩下31個SNP做後續分析。本試驗分析的性狀,包括總產仔數、出生活仔數、死胎數、木乃伊胎及離乳仔豬頭數。經過分析後,共有23個SNPs與此次分析項目的表現有關聯。其中,rs81369577、rs333141049及 rs321152579同時與藍瑞斯與約克夏族群的總產仔以及出生活仔表現有顯著關聯,而rs80970692、rs80845110及rs334867206在藍瑞斯中同時與總產仔及出生活仔相關,而在約克夏的總產仔及出生活仔方面,rs80878088、rs81348779、rs322202112、rs80912860、rs81360334、rs319494663及rs81471331同時與兩性狀的表現有關聯。其餘包括了rs320011632、rs332595701、rs343992879、rs345476947、rs80804265、rs80830052、rs80862569、rs80930659、rs80999701及rs81307523皆與此次分析的性狀表現有關連。依照有顯著關聯的SNPs的位置找到了LAMA4、ZBTB7C、ALDH1A3、FUT2、LRRK1、GABRG3、SMAD6、UBE3A、ENSSSCG00000039717、PRKG2、ATM、NAMPT、NPHP1、BARX1、HPS5、F2R、ENSSSCG00000046666、INHBA及SUGCT等,可能為參與調控母豬繁殖性狀表現的候選基因。 綜上所述,透過文獻探討的方式,在減少使用SNP位點的數量,降低基因型分型的費用之餘,確實能找到針對目標族群可用的分子標識。期望能透過此試驗建立的模式以及篩選出的位點,加速臺灣種豬群對於繁殖性狀的育種改進速度。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:10:04Z (GMT). No. of bitstreams: 1
U0001-1708202119331000.pdf: 6737155 bytes, checksum: bd02fa5a935a45d833e9c0d2fa3d1441 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"目錄 i 圖目錄 iv 表目錄 v 中文摘要 vi 英文摘要 viii 壹、文獻探討 1 一、臺灣養豬產業現況 1 (一)豬隻生長及繁殖性能 1 (二)改善母豬繁殖性狀表現的重要性以及策略 2 1. 傳統育種 2 2. 基因檢測 3 二、單核苷酸多態性在豬隻育種方面的應用 4 (一)單核苷酸多態性(Single nucleotide polymorphism, SNP) 4 (二)全基因組關聯性分析(Genome-wide association study, GWAS) 4 (三)全基因組關聯性分析中SNP的篩選以及顯著門檻的調整 6 1. 針對SNP進行篩選 6 2. 針對分析個體進行篩選 7 3. 顯著門檻的調整 7 (三)單核苷酸多態性在豬隻育種的應用 8 (四)影響分子育種效果之因素 8 三、研究動機與目標 9 貳、材料與方法 10 一、試驗動物與分析項目紀錄 10 二、SNP位點篩選 10 (一)文獻探討 10 (二)已知和臺灣藍瑞斯母豬繁殖性狀表現有關聯之位點 11 三、豬基因組DNA萃取 12 四、SNP基因型分型(genotyping) 13 (一)引子設計及測定片段擴增 13 (二)SNP位點之單鹼基延伸 14 五、SNP基因型判讀 14 (一)TYPER 4.0 Calling 14 (二)判讀標準 15 (三)採用 AutoCluster 進行判讀 16 六、分析位點篩選條件 18 七、統計分析 18 參、試驗結果 20 一、最終選用SNP位點 20 二、MassARRAY®基因型分型與分析位點篩選 21 三、繁殖性狀資料處理 25 四、母豬繁殖性狀與SNP基因型之遺傳相關 27 肆、討論 35 一、SNP篩選以及MassARRAY®之基因型分型效果 35 二、繁殖性狀資料處理 36 三、SNPs與母豬繁殖性狀之關聯性分析 36 四、調控母豬繁殖性狀之候選基因 38 五、後續應用及未來方向 40 伍、結論 42 參考文獻 43 附錄 54 附錄一、參考文獻具有顯著關聯之SNPs 55 附錄二、MassARRAY®引子設計 59 附錄三、SNP基因型分析結果 64 附錄四、MassARRAY®基因型分群圖 89 "
dc.language.isozh-TW
dc.subject母豬zh_TW
dc.subject候選基因zh_TW
dc.subject高通量基因型分型zh_TW
dc.subject豬隻繁殖性狀zh_TW
dc.subject單核苷酸多態性zh_TW
dc.subjectPig reproductive traitsen
dc.subjectSowen
dc.subjectSingle nucleotide polymorphismen
dc.subjectCandidate geneen
dc.subjectHigh throughput genotypingen
dc.title建立用於改進臺灣純種母豬繁殖性能之單核苷酸多態性之選拔標識zh_TW
dc.titleThe establishment of single nucleotide polymorphism selected markers for improving reproductive traits of purebred sows in Taiwanen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor王佩華(Pei-Hwa Wang)
dc.contributor.oralexamcommittee丁詩同(Hsin-Tsai Liu),張啟聖(Chih-Yang Tseng)
dc.subject.keyword候選基因,高通量基因型分型,豬隻繁殖性狀,單核苷酸多態性,母豬,zh_TW
dc.subject.keywordCandidate gene,High throughput genotyping,Pig reproductive traits,Single nucleotide polymorphism,Sow,en
dc.relation.page98
dc.identifier.doi10.6342/NTU202102444
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-1708202119331000.pdf6.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved