Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79704
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹魁元(Kuei-Yuan Chan)
dc.contributor.authorYa-Yuan Yangen
dc.contributor.author楊雅媛zh_TW
dc.date.accessioned2022-11-23T09:08:11Z-
dc.date.available2021-09-17
dc.date.available2022-11-23T09:08:11Z-
dc.date.copyright2021-09-17
dc.date.issued2021
dc.date.submitted2021-08-30
dc.identifier.citation[1] SAE international, “SAE J3016 automated-driving graphic.” https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic, 2019. [Online; accessed 28July2020]. [2] R. Hussain and S. Zeadally, “Autonomous cars: Research results, issues, and future challenges,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1275–1313, 2018. [3] M. Bertoncello and D. Wee, “Ten ways autonomous driving could redefine the automotive world,” McKinsey Company, vol. 6, 2015. [4] T. Litman, “Autonomous vehicle implementation predictions: Implications for transport planning,” Victoria Transport Policy Institute Victoria, Canada, 2021. [5] C.Y. Chan, “Advancements, prospects, and impacts of automated driving systems,” International journal of transportation science and technology, vol. 6, no. 3, pp. 208–216, 2017. [6] T. GreyB, “Top 30 Autonomous Vehicle Technology and Car Companies.” https://www.greyb.com/autonomous-vehicle-companies/#Technology- Companies-Working-on-Autonomous-Vehicles, May 2021. [Online; accessed 19June2021]. [7] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations,” Transportation Research Part A: Policy and Practice, vol. 77, pp. 167–181, 2015. [8] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi, L. Jesus, R. Berriel, T. M. Paixao, F. Mutz, et al., “Self-driving cars: A survey,” [9] R. Lattarulo, J. Pérez, and M. Dendaluce, “A complete framework for developing and testing automated driving controllers,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 258– 263, 2017. [10] G. Bagschik, T. Menzel, and M. Maurer, “Ontology based scene creation for the development of automated vehicles,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1813–1820, IEEE, 2018. [11] H.H. Yang and H. Peng, “Development and evaluation of collision warning/collision avoidance algorithms using an errable driver model,” Vehicle system dynamics, vol. 48, no. S1, pp. 525–535, 2010. [12] A. Fellner, W. Krenn, R. Schlick, T. Tarrach, and G. Weissenbacher, “Model-based, mutation-driven test-case generation via heuristic-guided branching search,” ACM Transactions on Embedded Computing Systems (TECS), vol. 18, no. 1, pp. 1–28, 2019. [13] S. Hallerbach, Y. Xia, U. Eberle, and F. Koester, “Simulation-based identification of critical scenarios for cooperative and automated vehicles,” SAE International Journal of Connected and Automated Vehicles, vol. 1, no. 2018011066, pp. 93–106, 2018. [14] D. Zhao, X. Huang, H. Peng, H. Lam, and D. J. LeBlanc, “Accelerated evaluation of automated vehicles in car-following maneuvers,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 3, pp. 733–744, 2017. [15] W. G. Najm, J. D. Smith, M. Yanagisawa, et al., “Pre-crash scenario typology for crash avoidance research,” tech. rep., United States. National Highway Traffic Safety Administration, 2007. [16] 臺灣智駕測試實驗室, “運行規劃臺灣智駕測試實驗室.” http://taiwancarlab.narlabs.org.tw/index.html, 2020. [Online; accessed 19July2020]. [17] “Waymo self-driving taxi confused by traffic cones flees help.” https://www.bbc.com/news/technology-57144755, May 2021. [Online; accessed 19June2021]. [18] S. P. Hoogendoorn and P. H. Bovy, “State-of-the-art of vehicular traffic flow modelling,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 215, no. 4, pp. 283–303, 2001. [19] L. A. Pipes, “An operational analysis of traffic dynamics,” Journal of applied physics, vol. 24, no. 3, pp. 274–281, 1953.Expert Systems with Applications, p. 113816, 2020. [20] P. G. Gipps, “A behavioural car-following model for computer simulation,” Transportation Research Part B: Methodological, vol. 15, no. 2, pp. 105–111, 1981. [21] R. E. Chandler, R. Herman, and E. W. Montroll, “Traffic dynamics: studies in car following,” Operations research, vol. 6, no. 2, pp. 165–184, 1958. [22] D. C. Gazis, R. Herman, and R. W. Rothery, “Nonlinear follow-the-leader models of traffic flow,” Operations research, vol. 9, no. 4, pp. 545–567, 1961. [23] M. Brackstone and M. McDonald, “Car-following: a historical review,” Transportation Research Part F: Traffic Psychology and Behaviour, vol. 2, no. 4, pp. 181–196, 1999. [24] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, “Dynamical model of traffic congestion and numerical simulation,” Physical review E, vol. 51, no. 2, p. 1035, 1995. [25] D. Helbing and B. Tilch, “Generalized force model of traffic dynamics,” Physical review E, vol. 58, no. 1, p. 133, 1998. [26] R. Jiang, Q. Wu, and Z. Zhu, “Full velocity difference model for a car-following theory,” Physical Review E, vol. 64, no. 1, p. 017101, 2001. [27] E. P. Todosiev, The action point model of the driver-vehicle system. PhD thesis, The Ohio State University, 1963. [28] R. Wiedemann, “Simulation des strassenverkehrsflusses.,” Traffic Engineering, University of Karlsruhe, 1974. [29] M. Saifuzzaman and Z. Zheng, “Incorporating human-factors in car-following models: a review of recent developments and research needs,” Transportation research part C: emerging technologies, vol. 48, pp. 379–403, 2014. [30] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805, 2000. [31] J. Von Neumann et al., “The general and logical theory of automata,” 1951, pp. 1–41, 1951. [32] K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal de physique I, vol. 2, no. 12, pp. 2221–2229, 1992. [33] J.-p. Meng, S.-q. Dai, L.-y. Dong, and J.-f. Zhang, “Cellular automaton model for mixed traffic flow with motorcycles,” Physica A: Statistical Mechanics and its Applications, vol. 380, pp. 470–480, 2007. [34] I. Spyropoulou, “Modelling a signal controlled traffic stream using cellular automata,” Transportation Research Part C: Emerging Technologies, vol. 15, no. 3, pp. 175–190, 2007. [35] K. Nagel, D. E. Wolf, P. Wagner, and P. Simon, “Twolane traffic rules for cellular automata: A systematic approach,” Physical Review E, vol. 58, no. 2, p. 1425, 1998. [36] B. Greenshields, J. Bibbins, W. Channing, and H. Miller, “A study of traffic capacity,” in Highway research board proceedings, vol. 1935, National Research Council (USA), Highway Research Board, 1935. [37] M. J. Lighthill and G. B. Whitham, “On kinematic waves II. A theory of traffic flow on long crowded roads,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 229, no. 1178, pp. 317–345, 1955. [38] P. I. Richards, “Shock waves on the highway,” Operations research, vol. 4, no. 1, pp. 42–51, 1956. [39] H. J. Payne, “Model of freeway traffic and control,” Mathematical Model of Public System, pp. 51–61, 1971. [40] G. B. Whitham, Linear and nonlinear waves, vol. 42. John Wiley Sons, 2011. [41] B. S. Kerner and P. Konhäuser, “Cluster effect in initially homogeneous traffic flow,” Physical review E, vol. 48, no. 4, p. R2335, 1993. [42] I. Okutani and Y. J. Stephanedes, “Dynamic prediction of traffic volume through kalman filtering theory,” Transportation Research Part B: Methodological, vol. 18, no. 1, pp. 1–11, 1984. [43] B. M. Williams and L. A. Hoel, “Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results,” Journal of transportation engineering, vol. 129, no. 6, pp. 664–672, 2003. [44] B. Park, C. J. Messer, and T. Urbanik, “Short-term freeway traffic volume forecasting using radial basis function neural network,” Transportation Research Record, vol. 1651, no. 1, pp. 39–47, 1998. [45] G. Zhu, K. Song, P. Zhang, and L. Wang, “A traffic flow state transition model for urban road network based on hidden markov model,” Neurocomputing, vol. 214, pp. 567–574, 2016. [46] D. Helbing, A. Hennecke, V. Shvetsov, and M. Treiber, “Micro-and Macro-simulation of freeway traffic,” Mathematical and computer modelling, vol. 35, no. 56, pp. 517–547, 2002. [47] J. Ma, J. Sun, K. Li, and L. Zhang, “A study on multiresolution scheme of macroscopic-microscopic traffic simulation model,” in 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1421–1426, IEEE, 2011. [48] E. Bourrel and J.B. Lesort, “Mixing microscopic and macroscopic representations of traffic flow: Hybrid model based on lighthill–whitham–richards theory,” Transportation Research Record, vol. 1852, no. 1, pp. 193–200, 2003. [49] L. Leclercq, “Hybrid approaches to the solutions of the “lighthill–whitham–richards” model,” Transportation Research Part B: Methodological, vol. 41, no. 7, pp. 701– 709, 2007. [50] L. Leclercq and S. Moutari, “Hybridization of a class of “second order'models of traffic flow,” Simulation modelling practice and theory, vol. 15, no. 8, pp. 918–934, 2007. [51] F. Duarte and C. Ratti, “The impact of autonomous vehicles on cities: A review,” Journal of Urban Technology, vol. 25, no. 4, pp. 3–18, 2018. [52] W. Zhang, S. Guhathakurta, J. Fang, and G. Zhang, “Exploring the impact of shared autonomous vehicles on urban parking demand: An agent-based simulation approach,” Sustainable Cities and Society, vol. 19, pp. 34–45, 2015. [53] D. J. Fagnant and K. M. Kockelman, “The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios,” Transportation Research Part C: Emerging Technologies, vol. 40, pp. 1–13, 2014. [54] Y. Liu, J. Guo, J. Taplin, and Y. Wang, “Characteristic analysis of mixed traffic flow of regular and autonomous vehicles using cellular automata,” Journal of Advanced Transportation, vol. 2017, 2017. [55] W.X. Zhu and H. Zhang, “Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model,” Physica A: Statistical Mechanics and its Applications, vol. 496, pp. 274–285, 2018. [56] Z. Yao, R. Hu, Y. Wang, Y. Jiang, B. Ran, and Y. Chen, “Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles,” Physica A: Statistical Mechanics and its Applications, vol. 533, p. 121931, 2019. [57] J. Sun, Z. Zheng, and J. Sun, “Stability analysis methods and their applicability to car-following models in conventional and connected environments,” Transportation research part B: methodological, vol. 109, pp. 212–237, 2018. [58] X. Chang, H. Li, J. Rong, X. Zhao, et al., “Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles,” Physica A: Statistical Mechanics and its Applications, p. 124829, 2020. [59] D.-F. Xie, X.-M. Zhao, and Z. He, “Heterogeneous traffic mixing regular and connected vehicles: Modeling and stabilization,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 6, pp. 2060–2071, 2018. [60] S. Perkins, J. Harris, and G. M. C. R. Laboratories, Criteria for Traffic Conflict Characteristics Signalized Intersections. Research publication, Research Laboratories, General Motors Corporation, 1967. [61] A. Laureshyn and A. Várhelyi, “The swedish traffic conflict technique,” Observer’s manual, Lund University, 2018. [62] C. Hydén, “The development of a method for traffic safety evaluation: The swedish traffic conflicts technique,” Bulletin Lund Institute of Technology, Department, no. 70, 1987. [63] A. Laureshyn, Å. Svensson, and C. Hydén, “Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation,” Accident Analysis Prevention, vol. 42, no. 6, pp. 1637–1646, 2010. [64] D. Gettman and L. Head, “Surrogate safety measures from traffic simulation models,” Transportation Research Record, vol. 1840, no. 1, pp. 104–115, 2003. [65] Y. Kuang, X. Qu, and S. Wang, “A tree-structured crash surrogate measure for freeways,” Accident Analysis Prevention, vol. 77, pp. 137–148, 2015. [66] O. Bagdadi, “Estimation of the severity of safety critical events,” Accident Analysis Prevention, vol. 50, pp. 167–174, 2013. [67] A. Tageldin, T. Sayed, and X. Wang, “Can time proximity measures be used as safety indicators in all driving cultures? case study of motorcycle safety in china,” Transportation Research Record, vol. 2520, no. 1, pp. 165–174, 2015. [68] C. Johnsson, A. Laureshyn, and T. De Ceunynck, “In search of surrogate safety indicators for vulnerable road users: a review of surrogate safety indicators,” Transport Reviews, vol. 38, no. 6, pp. 765–785, 2018. [69] 臺北市政府交通局, “臺北市108 年交通事故分析報告,” tech. rep., 臺北市政府交通局, 2020. [70] L. A. Rodegerdts, B. L. Nevers, B. Robinson, J. Ringert, P. Koonce, J. Bansen, T. Nguyen, J. McGill, D. Stewart, J. Suggett, et al., “Signalized intersections: informational guide,” tech. rep., United States. Federal Highway Administration, 2004. [71] R. J. LeVeque et al., Finite volume methods for hyperbolic problems, vol. 31. Cambridge university press, 2002. [72] J. A. Ward, Heterogeneity, lane-changing and instability in traffic: A mathematical approach. PhD thesis, University of Bristol, 2009. [73] 臺北市政府都市發展局, “臺北市歷史圖資展示系統.” https://www.historygis.udd.taipei.gov.tw/urban/. [Online; accessed 02June2021].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79704-
dc.description.abstract自動駕駛車輛是未來交通的趨勢,在道路上的佔有比例將會逐漸增加。然而現今沒有針對車輛「須達到什麼樣的門檻才能上路」或是「制定等級以區分上路行駛範圍」的共識與規範,尤其市區的道路設計與車輛互動行為較為複雜,因此我們透過了解車流變化,給予該制度之參考依據。本研究結合微觀車流模型與巨觀車流模型的優點,建立適用於城市的車流混成模型。在此模型中,交叉路口為道路系統之連結點,車流於該處轉向,引發各種交通衝突,故路口以微觀顯示,其餘交通現象則以巨觀模擬。本模型亦同時考量人為駕駛與自動駕駛,以全速差模型表示一般人為操作車輛,用智慧駕駛模型表示自動駕駛車輛。我們經由隊列穩定性、衝擊波、衝突量,分別探討不同決策行為之自動駕駛車輛對車流的影響。模擬結果顯示若自動駕駛車輛的策略過於保守會使車流隊列拉長且難以消散,過於積極則事故風險提高。若車輛間的決策邏輯相差甚遠,則在車流交會點發生事故的可能性也會提升。本論文以一個真實路口的案例模擬,可以得到保守策略自駕車不適合行駛於所有高流量路段,而積極自駕車不適合行駛於高流量又多路口的路段之結論,為自駕車策略的允許駕駛區域提供一個指引。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:08:11Z (GMT). No. of bitstreams: 1
U0001-2308202120290700.pdf: 10615671 bytes, checksum: b63b9de60ec1be93a576a033d52baee7 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 i 誌謝 iii 中文摘要 v Abstract vii 目錄 ix 圖目錄 xiii 表目錄 xvii 符號列表 xix 第一章 緒論 1 1.1 前言 1 1.2 自動駕駛車輛能力驗證 3 1.3 研究動機與目的 5 1.4 論文架構 6 第二章 文獻回顧 9 2.1 車流模擬方法概述 9 2.2 微觀車流模型 10 2.2.1 安全距離模型(Safe Distance Model) 11 2.2.2 刺激反應模型(Stimulus Response Model) 11 2.2.3 心理物理間距模型(Psycho Physical Spacing Model) 13 2.2.4 智慧駕駛模型(Intelligent Driver Model) 14 2.2.5 細胞自動機模型(Cellular Automaton Model) 15 2.3 巨觀車流模型 16 2.3.1 簡單連續流(LWR Model) 16 2.3.2 高階連續流(PW Model) 17 2.3.3 路網車流狀態估計 17 2.4 模型轉換研究 18 2.5 自動駕駛車輛混流研究 19 2.6 道路衝突與安全評量研究 20 2.6.1 交通衝突理論 20 2.6.2 交通衝突指標 21 2.7 小結 24 第三章 整合微巨觀與其介面之車流模型 25 3.1 交通衝突型態 26 3.2 微觀模型 28 3.2.1 跟車行為 29 3.2.2 交會點決策行為 32 3.3 巨觀模型 32 3.3.1 車輛數守恆律 33 3.3.2 有限體積法(Finite Volume Method, FVM) 34 3.4 微巨觀之轉換介面建立 37 3.4.1 巨觀轉微觀介面(M2m) 38 3.4.2 微觀轉巨觀介面(m2M) 39 3.5 圖形使用者介面 41 3.6 小結 42 第四章 車流資料分析分法 43 4.1 車流穩定性 44 4.2 衝擊波 45 4.3 衝突量 49 4.4 小結 50 第五章 結果與討論 51 5.1 隊列穩定性分析 51 5.1.1 均質車流穩定性 52 5.1.2 混合車流穩定性 54 5.2 車流模擬時空圖 57 5.2.1 跟車策略對車流的影響 57 5.2.2 交會點禮讓策略對車流的影響 60 5.3 衝突熱點 63 5.3.1 接續衝突情境 63 5.3.2 併入衝突情境 64 5.3.3 分出衝突情境 65 5.3.4 穿越衝突情境 66 5.4 小結 68 第六章 案例探討 69 6.1 模擬之路口與其模型設定 69 6.2 案例之結果與討論 72 6.2.1 低流量路況模擬 73 6.2.2 高流量路況模擬 75 6.2.3 小結 78 第七章 結論 79 7.1 研究總結 79 7.2 未來工作 80 附錄A 程式碼說明 81 參考文獻 85"
dc.language.isozh-TW
dc.title建立微巨觀混成模型以了解自駕車決策對車流的影響zh_TW
dc.titleA hybrid micro-macro model for understanding the impact of autonomous vehicle strategies on traffic flowen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊馥菱(Hsin-Tsai Liu),蘇偉儁(Chih-Yang Tseng)
dc.subject.keyword自動駕駛車輛,決策行為,車流混成模型,交通衝突,隊列穩定性,衝擊波,zh_TW
dc.subject.keywordAutonomous vehicle,Decision-making behavior,Hybrid micro-macro model,Traffic conflict,String stability,Shock wave,en
dc.relation.page91
dc.identifier.doi10.6342/NTU202102645
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-2308202120290700.pdf10.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved