Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79695
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維(Shi-Wei Chu)
dc.contributor.authorHung-Yu Chenen
dc.contributor.author陳鴻羽zh_TW
dc.date.accessioned2022-11-23T09:07:51Z-
dc.date.available2022-02-21
dc.date.available2022-11-23T09:07:51Z-
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-02-07
dc.identifier.citation1. Freemon, F.R., Galen's ideas on neurological function. Journal of the History of the Neurosciences, 1994. 3(4): p. 263-271. 2. Horn, A., et al., The structural–functional connectome and the default mode network of the human brain. Neuroimage, 2014. 102: p. 142-151. 3. Sporns, O., G. Tononi, and R. Kötter, The human connectome: a structural description of the human brain. PLoS Comput Biol, 2005. 1(4): p. e42. 4. Sonoda, T., et al., A noncanonical inhibitory circuit dampens behavioral sensitivity to light. Science, 2020. 368(6490): p. 527-531. 5. Zuo, X.-N., et al., Network centrality in the human functional connectome. Cerebral cortex, 2012. 22(8): p. 1862-1875. 6. Churchill, N.W., K. Madsen, and M. Mørup, The functional segregation and integration model: Mixture model representations of consistent and variable group-level connectivity in fMRI. Neural computation, 2016. 28(10): p. 2250-2290. 7. Vingerhoets, G., Phenotypes in hemispheric functional segregation? Perspectives and challenges. Physics of life reviews, 2019. 30: p. 1-18. 8. Friston, K.J., Functional and effective connectivity: a review. Brain connectivity, 2011. 1(1): p. 13-36. 9. Faingold, C.L., Emergent properties of neuronal networks, in Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics. 2014, Elsevier. p. 419-428. 10. Alivisatos, A.P., et al., The brain activity map. Science, 2013. 339(6125): p. 1284-1285. 11. Park, S.H., et al., History of bioelectrical study and the electrophysiology of the primo vascular system. Evidence-based Complementary and Alternative Medicine, 2013. 2013. 12. Matt, C. and J. Shieh, Guide to research techniques in neuroscience, in Elsevier Inc. 2010. 13. Cogan, S.F., Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng., 2008. 10: p. 275-309. 14. Crosson, B., et al., Functional imaging and related techniques: an introduction for rehabilitation researchers. Journal of rehabilitation research and development, 2010. 47(2): p. vii. 15. Wilt, B.A., et al., Advances in light microscopy for neuroscience. Annual review of neuroscience, 2009. 32: p. 435-506. 16. Hillman, E.M., Optical brain imaging in vivo: techniques and applications from animal to man. Journal of biomedical optics, 2007. 12(5): p. 051402. 17. Tsai, Y.-H., et al., Two-photon microscopy at > 500 volumes/second. bioRxiv, 2020: p. 2020.10.21.349712. 18. White, B.H., What genetic model organisms offer the study of behavior and neural circuits. Journal of neurogenetics, 2016. 30(2): p. 54-61. 19. Stewart, A., et al., The developing utility of zebrafish in modeling neurobehavioral disorders. International Journal of Comparative Psychology, 2010. 23(1). 20. Weisenburger, S. and A. Vaziri, A guide to emerging technologies for large-scale and whole-brain optical imaging of neuronal activity. Annual review of neuroscience, 2018. 41: p. 431-452. 21. Chiang, A.-S., et al., Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current biology, 2011. 21(1): p. 1-11. 22. Huang, S.-H., et al., Optical Volumetric Brain Imaging: Speed, Depth, and Resolution Enhancement. Journal of Physics D: Applied Physics, 2021. 23. Huang, C., et al., All-optical volumetric physiology for connectomics in dense neuronal structures. Iscience, 2019. 22: p. 133-146. 24. Patella, P. and R.I. Wilson, Functional maps of mechanosensory features in the Drosophila brain. Current Biology, 2018. 28(8): p. 1189-1203. e5. 25. Hancock, C.E., F. Bilz, and A. Fiala, In vivo optical calcium imaging of learning-induced synaptic plasticity in Drosophila melanogaster. JoVE (Journal of Visualized Experiments), 2019(152): p. e60288. 26. Theer, P., M.T. Hasan, and W. Denk, Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti: Al 2 O 3 regenerative amplifier. Optics letters, 2003. 28(12): p. 1022-1024. 27. Hsu, K.-J., et al., Optical properties of adult Drosophila brains in one-, two-, and three-photon microscopy. Biomedical optics express, 2019. 10(4): p. 1627-1637. 28. Resh, V.H. and R.T. Cardé, Encyclopedia of insects. 2009: Academic press. p. 1011-1015. 29. Ji, N., T.R. Sato, and E. Betzig, Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proceedings of the National Academy of Sciences, 2012. 109(1): p. 22-27. 30. Wigglesworth, V., A new method for injecting the tracheae and tracheoles of insects. Journal of Cell Science, 1950. 3(14): p. 217-224. 31. Pedrazzani, M., et al., Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain. Journal of biomedical optics, 2016. 21(3): p. 036006. 32. Johnsen, S. and E.A. Widder, The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering. Journal of theoretical biology, 1999. 199(2): p. 181-198. 33. Streich, L., et al., High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy. Nature methods, 2021. 18(10): p. 1253-1258. 34. Schnabel, C., et al., Total liquid ventilation: a new approach to improve 3D OCT image quality of alveolar structures in lung tissue. Optics express, 2013. 21(26): p. 31782-31788. 35. Ahn, C., et al., Overcoming the penetration depth limit in optical microscopy: Adaptive optics and wavefront shaping. Journal of Innovative Optical Health Sciences, 2019. 12(04): p. 1930002. 36. Helmchen, F. and W. Denk, Deep tissue two-photon microscopy. Nature methods, 2005. 2(12): p. 932-940. 37. Smithpeter, C.L., et al., Penetration depth limits of in vivo confocal reflectance imaging. Applied optics, 1998. 37(13): p. 2749-2754. 38. Wigglesworth, V.B., The extent of air in the tracheoles of some terrestrial insects. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 1931. 109(763): p. 354-359. 39. Wigglesworth, V., Surface forces in the tracheal system of insects. Journal of Cell Science, 1953. 3(28): p. 507-522. 40. Davies, W.M., Memoirs: on the tracheal system of Collembola, with special reference to that of Sminthurus viridis, Lubb. Journal of Cell Science, 1927. 2(281): p. 15-30. 41. Orgeig, S., et al., The anatomy, physics, and physiology of gas exchange surfaces: is there a universal function for pulmonary surfactant in animal respiratory structures? Integrative and comparative biology, 2007. 47(4): p. 610-627. 42. Albers, M.A. and T.J. Bradley, Osmotic regulation in adult Drosophila melanogaster during dehydration and rehydration. Journal of experimental biology, 2004. 207(13): p. 2313-2321. 43. Boyd, R.W., Nonlinear optics. 2020: Academic press. 44. Oron, D., et al., Depth-resolved structural imaging by third-harmonic generation microscopy. Journal of structural biology, 2004. 147(1): p. 3-11. 45. Jenett, A., J.E. Schindelin, and M. Heisenberg, The Virtual Insect Brain protocol: creating and comparing standardized neuroanatomy. BMC bioinformatics, 2006. 7(1): p. 1-12. 46. Clark, L.C. and F. Gollan, Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science, 1966. 152(3730): p. 1755-1756. 47. Leach, C.L., et al., Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome. New England Journal of Medicine, 1996. 335(11): p. 761-767. 48. Hood, C.I. and J.H. Modell, A morphologic study of long-term retention of fluorocarbon after liquid ventilation. Chest, 2000. 118(5): p. 1436-1440. 49. Al-Rahmani, A., et al., Effects of partial liquid ventilation with perfluorodecalin in the juvenile rabbit lung after saline injury. Critical care medicine, 2000. 28(5): p. 1459-1464. 50. Murgia, X., et al., Aerosolized perfluorocarbon improves gas exchange and pulmonary mechanics in preterm lambs with severe respiratory distress syndrome. Pediatric research, 2012. 72(4): p. 393-399. 51. de Abreu, M.G., et al., Comparative Effects of Vaporized Perfluorohexane and Partial Liquid Ventilation in Oleic Acid–induced Lung Injury. The Journal of the American Society of Anesthesiologists, 2006. 104(2): p. 278-289. 52. Rambaud, J., et al., Hypothermic total liquid ventilation after experimental aspiration-associated acute respiratory distress syndrome. Annals of intensive care, 2018. 8(1): p. 1-9. 53. Kohlhauer, M., et al., A new paradigm for lung-conservative total liquid ventilation. EBioMedicine, 2020. 52: p. 102365. 54. Riess, J.G., Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artificial cells, blood substitutes, and biotechnology, 2005. 33(1): p. 47-63. 55. Moradi, S., A. Jahanian-Najafabadi, and M.H. Roudkenar, Artificial blood substitutes: first steps on the long route to clinical utility. Clinical Medicine Insights: Blood Disorders, 2016. 9: p. CMBD. S38461. 56. Littlejohn, G.R. and J. Love, A simple method for imaging Arabidopsis leaves using perfluorodecalin as an infiltrative imaging medium. Journal of visualized experiments: JoVE, 2012(59). 57. Heymann, N. and F.-O. Lehmann, The significance of spiracle conductance and spatial arrangement for flight muscle function and aerodynamic performance in flying Drosophila. Journal of Experimental Biology, 2006. 209(9): p. 1662-1677. 58. Seelig, J.D. and V. Jayaraman, Feature detection and orientation tuning in the Drosophila central complex. Nature, 2013. 503(7475): p. 262-266. 59. Jägers, J., A. Wrobeln, and K.B. Ferenz, Perfluorocarbon-based oxygen carriers: From physics to physiology. Pflügers Archiv-European Journal of Physiology, 2021. 473(2): p. 139-150. 60. Hayashi, S. and T. Kondo, Development and function of the Drosophila tracheal system. Genetics, 2018. 209(2): p. 367-380. 61. Chien, C.-H., et al., Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy. Journal of biomedical optics, 2011. 16(1): p. 016012. 62. Socha, J.J., et al., Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function. Bmc Biology, 2007. 5(1): p. 1-15. 63. Heidenthal, G., The occurrence of x-ray induced dominant lethal mutations in Habrobracon. Genetics, 1945. 30(2): p. 197. 64. Grosch, D.S., Induced lethargy and the radiation control of insects. Journal of Economic Entomology, 1956. 49(5): p. 629-631. 65. Beyenbach, K.W. and P.M. Piermarini, Osmotic and ionic regulation in insects, in Osmotic and Ionic Regulation. 2008, CRC Press. p. 231-278. 66. Golovynskyi, S., et al., Optical windows for head tissues in near‐infrared and short‐wave infrared regions: Approaching transcranial light applications. Journal of biophotonics, 2018. 11(12): p. e201800141.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79695-
dc.description.abstract為了了解大腦是如何運作的,全腦功能性成像技術是不可或缺的。在各種技術中,光學顯微術由於能捕抓個別神經元訊號的微米級空間解析度與毫秒級時間解析度而十分受歡迎,但是它典型的穿透深度僅有一毫米。因此,對於全腦研究,果蠅成為最具潛力的模式生物,它的腦小到理論上可以被光學顯微鏡所穿透。此外,它將近一半的腦神經結構性圖譜已經在Flycircuit被繪製,這個高比例完成度的結構圖譜成為果蠅功能成像珍貴的參考。然而,實際上,我們發現光學顯微鏡在果蠅腦中遇到意外的光損害,這造成我們無法對其做全腦成像,而其原因就源自於果蠅腦中的氣管。氣管裡的空氣與周圍組織的折射率的巨大差異,使得光遭遇強烈的像差/散射,因此無法抵達大腦的深層。 在本篇研究中,我們從醫學研究中的液體通氣(liquid ventilation)取得靈感,提出三種液體填充的方法試圖能降低氣管所造成的像差/散射。在所有方法中,滲透方法(osmosis method)成效最好,藉由間接改變果蠅腦內的滲透壓,使組織液因滲透壓差而流進微氣管裡取代原本的空氣。我們經由共厄焦顯微鏡及電刺激來分別檢視滲透方法對於影像穿透深度的提升及應用在功能性成像上的可行性。不過,我們的結果顯示,並非所有果蠅腦成像的穿透深度都有增強,我們歸因於那些會影響微氣管中液體的複雜生理現象。這這些現象需要活體氣管成像的技術,可能可以進一步檢測滲透方法。總而言之,這個研究為我們提供了能增加果蠅腦內光學穿透深度的方法,並且為全腦功能連接體研究鋪路。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:07:51Z (GMT). No. of bitstreams: 1
U0001-0602202218544900.pdf: 12072777 bytes, checksum: 1c80532b5a6a34717d167fed007007c4 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents"口試委員會審定書 i 謝辭 ii 摘要 iii Abstract iv Contents vi Figure list ix Table list xiii Chapter 1. Introduction 1 1.1. From brain to connectome 1 1.2. Contemporary methods for whole brain functional connectome study 4 1.2.1. Technique for functional connectome: Why optical microscopy? 4 1.2.2. Animal models for whole brain connectome study: Why choosing Drosophila? 7 1.3. Bottleneck and approaches for Drosophila whole brain functional connectomics 9 1.3.1. Bottleneck: Shallow penetration depth due to aberration/scattering from trachea 11 1.3.2. Published approaches for better penetration in Drosophila brain 15 1.3.3. New approach for reducing reduce aberration/scattering from trachea: liquid filling method 17 1.4. Aim: Enhance optical penetration depth in Drosophila brain - minimizing aberration/scattering from trachea by liquid filling method 19 Chapter 2. Principle 20 2.1. Limited penetration depth in Drosophila brain: Effect from aberration and scattering 20 2.1.1. Effect from aberration and scattering in Drosophila brain 20 2.1.2. Quantify the penetration depth 23 2.2. Enhance penetration via aberration/scattering elimination: Osmosis method 26 2.3. Optical imaging technique for checking the penetration depth: Confocal laser scanning microscope 33 2.4. Optical imaging technique for imaging tracheas: Third harmonic generation microscopy 36 Chapter 3. Method 39 3.1. Sample preparation 39 3.1.1. Drosophila 39 3.1.2. Mounting the fly 40 3.2. Optics setup 43 3.2.1. Confocal laser scanning microscope 43 3.2.2. Third-harmonic generation microscope 43 3.3. Improve the penetration depth: liquid filling method 45 3.3.1. Liquid selection: PFCs, PFC emulsion, PBS 45 3.3.2. Filling method: Capillary method, Injection method, Osmosis method 48 3.4. Extend to functional imaging: survival test 53 3.4.1. Stimulation setup for survival test 53 3.4.2. Stimulation protocol 57 3.5. Experiment protocol for osmosis method and survival test 58 3.6. Analysis method for penetration depth 59 Chapter 4. Experiments and Results 65 4.1. THG imaging for trachea 65 4.2. Liquid filling method: PFCs and capillary method 67 4.3. Liquid filling method: PFC emulsion and injection method 69 4.4. Liquid filling method: PBS and osmosis method 71 4.4.1. Drosophila brain imaging with 100% PBS 71 4.4.2. Brain imaging in different concentration PBS from 90% to 70% 73 Chapter 5. Discussion 78 5.1. The feasibility and the advantage of THG microscopy for imaging trachea 78 5.2. The reliability and the shortcomings of our liquid-filling model 81 5.2.1. Compare our model with the published result 81 5.2.2. Compare our model with our results 84 5.3. Penetration enhancement via osmosis method 86 Chapter 6. Conclusion and Perspective 90 Chapter 7. Supplementary 91 7.1. Detailed results of brain images with hypotonic mounting medium 91 7.2. Optimal wavelength for Drosophila brain imaging 107 Reference 111 "
dc.language.isoen
dc.title藉由液體填充法減少氣管像差/散射以增加果蠅腦光學穿透深度zh_TW
dc.titleEnhance optical penetration depth in Drosophila brain – minimizing aberration/scattering from trachea by liquid filling methoden
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江安世(Jeng-Wei Tjiu),朱麗安(I-Ping Tu),賈世璿(Snow H. Tseng)
dc.subject.keyword功能成像,光學顯微術,果蠅,氣管,像差/散射,滲透壓,zh_TW
dc.subject.keywordFunctional imaging,optical microscope,Drosophila,trachea,aberration/scattering,osmolarity,en
dc.relation.page117
dc.identifier.doi10.6342/NTU202200302
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-02-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-0602202218544900.pdf11.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved