請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79677完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信希(Hsin-Hsi Chen) | |
| dc.contributor.author | Ting-Wei Hsu | en |
| dc.contributor.author | 許庭瑋 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:07:14Z | - |
| dc.date.available | 2021-09-11 | |
| dc.date.available | 2022-11-23T09:07:14Z | - |
| dc.date.copyright | 2021-09-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-03 | |
| dc.identifier.citation | [1] Ramit Sawhney, Shivam Agarwal, Arnav Wadhwa, and Rajiv Ratn Shah. Deep attentive learning for stock movement prediction from social media text and company correlations. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). [2] Yumo Xu and Shay B. Cohen. Stock movement prediction from tweets and historical prices. In ACL, July 2018. [3] Qikai Liu, Xiang Cheng, Sen Su, and Shuguang Zhu. Hierarchical complementary attention network for predicting stock price movements with news. New York, NY, USA, 2018. Association for Computing Machinery. [4] Ziniu Hu, Weiqing Liu, Jiang Bian, Xuanzhe Liu, and TieYan Liu. Listening to Chaotic Whispers: A Deep Learning Framework for Newsoriented Stock Trend Prediction. In WSDM, 2018. [5] Yu Qin and Yi Yang. What you say and how you say it matters: Predicting stock volatility using verbal and vocal cues. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 390–401, Florence, Italy, July 2019. Association for Computational Linguistics. [6] Linyi Yang, Tin Lok James Ng, Barry Smyth, and Riuhai Dong. Html: Hierarchical transformerbased multitask learning for volatility prediction. In Proceedings of The Web Conference 2020, WWW ’20, page 441–451, New York, NY, USA, 2020. Association for Computing Machinery. [7] Yangtuo Peng and Hui Jiang. Leverage financial news to predict stock price movements using word embeddings and deep neural networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, California, June 2016. Association for Computational Linguistics. [8] Shumin Deng, Ningyu Zhang, Wen Zhang, Jiaoyan Chen, Jeff Z Pan, and Huajun Chen. Knowledgedriven stock trend prediction and explanation via temporal convolutional network. In Companion Proceedings of The 2019 World Wide Web Conference, pages 678–685, 2019. [9] Evan Gatev, William N Goetzmann, and K Geert Rouwenhorst. Pairs trading: Performance of a relativevalue arbitrage rule. The Review of Financial Studies, 19(3), 2006. [10] Ganapathy Vidyamurthy. Pairs Trading: quantitative methods and analysis, volume 217. John Wiley Sons, 2004. [11] Robert J Elliott, John Van Der Hoek*, and William P Malcolm. Pairs trading. Quantitative Finance, 5(3):271–276, 2005. [12] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical attention networks for document classification. In NAACL, pages 1480–1489, 2016. [13] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio. A structured selfattentive sentence embedding. ICLR, 2017. [14] Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. Abcnn: Attentionbased convolutional neural network for modeling sentence pairs. Transactions of the Association for Computational Linguistics, 2016. [15] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952. [16] Mark HA Davis and Andrew R Norman. Portfolio selection with transaction costs. Mathematics of operations research, 15(4):676–713, 1990. [17] Olivier Ledoit and Michael Wolf. Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets goldilocks. The Review of Financial Studies, 30(12):4349–4388, 2017. [18] Fischer Black and Robert Litterman. Asset allocation: combining investor views with market equilibrium. Goldman Sachs Fixed Income Research, 115, 1990. [19] Sébastien Maillard, Thierry Roncalli, and Jérôme Teïletche. The properties of equally weighted risk contribution portfolios. The Journal of Portfolio Management, 36(4):60–70, 2010. [20] Puja Das, Nicholas Johnson, and Arindam Banerjee. Online portfolio selection with group sparsity. In AAAI, pages 1185–1191, 2014. [21] Yi Ding, Weiqing Liu, Jiang Bian, Daoqiang Zhang, and TieYan Liu. Investorimitator: A framework for trading knowledge extraction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, pages 1310–1319, 2018. [22] Yifan Zhang, Peilin Zhao, Bin Li, Qingyao Wu, Junzhou Huang, and Mingkui Tan. Costsensitive portfolio selection via deep reinforcement learning. IEEE Transactions on Knowledge and Data Engineering, 2020. [23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017. [24] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified texttotext transformer. arXiv preprint arXiv:1910.10683, 2019. [25] He Bai, Peng Shi, Jimmy Lin, Luchen Tan, Kun Xiong, Wen Gao, and Ming Li. Segabert: Pretraining of segmentaware bert for language understanding. arXiv preprint arXiv:2004.14996, 2020. [26] Jacob Devlin, MingWei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pretraining of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. [27] Andrea C Hupman and Ali E Abbas. Optimizing fixed targets in organizations through simulation. In Proceedings of the Winter Simulation Conference 2014, pages 986–995. IEEE, 2014. [28] Clayton J Hutto and Eric Gilbert. Vader: A parsimonious rulebased model for sentiment analysis of social media text. In Eighth international AAAI conference on weblogs and social media, 2014. [29] Benoit B Mandelbrot. The variation of certain speculative prices. In Fractals and scaling in finance, pages 371–418. Springer, 1997. [30] Wayne Y Lee, Christine X Jiang, and Daniel C Indro. Stock market volatility, excess returns, and the role of investor sentiment. Journal of banking Finance, 26(12): 2277–2299, 2002. [31] ChuanJu Wang, MingFeng Tsai, Tse Liu, and ChinTing Chang. Financial sentiment analysis for risk prediction. In Proceedings of the Sixth International Joint Conference on Natural Language Processing, pages 802–808, 2013. [32] Bin Li and Steven CH Hoi. Online portfolio selection: A survey. ACM Computing Surveys (CSUR), 46(3):1–36, 2014. [33] William F Sharpe. The sharpe ratio. Journal of portfolio management, 21(1):49–58, 1994. [34] Victor DeMiguel, Lorenzo Garlappi, and Raman Uppal. Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? The review of Financial studies, 22(5):1915–1953, 2009. [35] Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance on text classification tasks. In EMNLPIJCNLP, 2019. [36] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. Tinybert: Distilling bert for natural language understanding. In EMNLP, 2020. [37] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation for consistency training. In NeurIPS, 2020. [38] Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han, and Songlin Hu. Conditional bert contextual augmentation. In ICCS, 2019. [39] Sosuke Kobayashi. Contextual augmentation: Data augmentation by words with paradigmatic relations. In NAACL, June 2018. [40] Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. Attentionbased lstm for aspectlevel sentiment classification. In EMNLP, 2016. [41] Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. Interactive attention networks for aspectlevel sentiment classification. In IJCAI, 2017. [42] Jacob Devlin, MingWei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pretraining of deep bidirectional transformers for language understanding. In NAACL, 2019. [43] Mickel Hoang, Oskar Alija Bihorac, and Jacobo Rouces. Aspectbased sentiment analysis using bert. In NoDaLiDa, 2019. [44] Hu Xu, Bing Liu, Lei Shu, and S Yu Philip. Bert posttraining for review reading comprehension and aspectbased sentiment analysis. In NAACL, 2019. [45] Chi Sun, Luyao Huang, and Xipeng Qiu. Utilizing BERT for aspectbased sentiment analysis via constructing auxiliary sentence. In NAACL, 2019. [46] Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also fewshot learners. NAACL, 2021. [47] Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameterfree probing for analyzing and interpreting bert. In ACL, 2020. [48] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequencetosequence pretraining for natural language generation, translation, and comprehension. In ACL, 2020. [49] Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion Androutsopoulos, and Suresh Manandhar. SemEval2014 task 4: Aspect based sentiment analysis. In SemEval, 2014. [50] Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Suresh Manandhar, and Ion Androutsopoulos. SemEval2015 task 12: Aspect based sentiment analysis. In SemEval 2015, 2015. [51] Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar, Mohammad ALSmadi, Mahmoud AlAyyoub, Yanyan Zhao, Bing Qin, Orphée De Clercq, Véronique Hoste, Marianna Apidianaki, Xavier Tannier, Natalia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel, Salud María JiménezZafra, and Gülşen Eryiğit. SemEval2016 task 5: Aspect based sentiment analysis. In SemEval2016, 2016. [52] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, 2013. [53] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, 2005. [54] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding backtranslation at scale. In EMNLP, 2018. [55] Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling, and Yan Song. Conditional augmentation for aspect term extraction via masked sequencetosequence generation. In ACL, 2020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79677 | - |
| dc.description.abstract | 在進行投資決策時,投資者都會面臨著風險與收益的權衡。然而,以往在自然語言處理領域的工作大多集中在預測股票價格或波動率的走勢上,而沒有考慮其他投資議題。這篇論文介紹三個基於社群媒體意見的投資任務—配對交易、投資組合選擇以及股票價格/風險動向預測。首先,為了對沖市場風險,我們提出了一種基於社群媒體的配對交易策略。與先前的任務設置相比較,我們的實驗結果表明,採用配對任務設置的神經網絡模型在準確性和盈利性指標上均都有較好的表現。第二,很少有研究在處理投資組合選擇時考慮金融界的非結構化數據。我們引入了一種新穎的基於財務文本的投資組合選擇任務,並提出了新的目標函數去處理投資者不同的風險偏好。同時討論了夏普比率和波動率兩個指標對選擇投資組合的實證研究。第三,我們提出了語義保留的增廣方法,並在六個公開資料集上均達到更好的表現,且據此來更精準地預測金融市場未來股票的價格與風險動向。此外,我們將以上研究成果發展成展示網站,提供投資者財務決策上的建議。綜上所述,本研究為未來基於財金社群媒體的群眾智慧投資決策引入了新的研究方向。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:07:14Z (GMT). No. of bitstreams: 1 U0001-3008202115362000.pdf: 6096229 bytes, checksum: 159504d7a0df1d65a706db9d7e81554a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of Related Literature . . . . . . . . . . . . . . . . . . . . 1 1.3 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2 Opinion-based Pair Trading 5 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 3 Opinion-based Portfolio Selection 9 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3.1 Task Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.4 Risk-aware Regularization . . . . . . . . . . . . . . . . . . . . . . 13 3.3.5 Trend-based Loss Functions . . . . . . . . . . . . . . . . . . . . . 14 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.3 Backtesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Chapter 4 Stock Price/Risk Movement Prediction 19 4.1 Semantics-Preserved Data Augmentation . . . . . . . . . . . . . . . 19 4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.1 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.2 Aspect-Based Sentiment Analysis . . . . . . . . . . . . . . . . . . 21 4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3.1 An Auxiliary Sentence Approach . . . . . . . . . . . . . . . . . . . 22 4.3.2 Selective Perturbed Masking (SPM) . . . . . . . . . . . . . . . . . 23 4.3.3 Token Replacement Strategy . . . . . . . . . . . . . . . . . . . . . 24 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5.1 Multilingual Experiment . . . . . . . . . . . . . . . . . . . . . . . 28 4.5.2 Influence of Augmentation Size . . . . . . . . . . . . . . . . . . . 28 4.5.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.6 Stock Price/Risk Movement Prediction . . . . . . . . . . . . . . . . 30 4.6.1 Influence of Auxiliary Sentence . . . . . . . . . . . . . . . . . . . 31 Chapter 5 Demonstration 33 Chapter 6 Conclusion 35 References 37 | |
| dc.language.iso | en | |
| dc.title | 群眾智慧投資決策 – 配對交易、投資組合選擇以及股票價格/風險動向預測 | zh_TW |
| dc.title | "Opinion-based Investment Decisions – Pair Trading, Portfolio Selection, and Stock Price/Risk Movement Prediction" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳孟彰(Meng Chang Chen) | |
| dc.contributor.oralexamcommittee | 陳建錦(Hsin-Tsai Liu),陳冠宇(Chih-Yang Tseng),王釧茹 | |
| dc.subject.keyword | 意見探勘,自然語言處理,財金社群媒體, | zh_TW |
| dc.subject.keyword | Opinion Mining,Natural Language Processing,Financial Social Media, | en |
| dc.relation.page | 44 | |
| dc.identifier.doi | 10.6342/NTU202102899 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資料科學學位學程 | zh_TW |
| 顯示於系所單位: | 資料科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3008202115362000.pdf | 5.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
