Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瀞仁(Ching-Jin Chang)
dc.contributor.authorDong-Han Leeen
dc.contributor.author李東翰zh_TW
dc.date.accessioned2022-11-23T09:06:33Z-
dc.date.available2021-09-13
dc.date.available2022-11-23T09:06:33Z-
dc.date.copyright2021-09-13
dc.date.issued2021
dc.date.submitted2021-09-09
dc.identifier.citation1 Sun, Y. et al. A dissection of oligomerization by the TRIM28 tripartite motif and the interaction with members of the Krab-ZFP family. Journal of molecular biology 431, 2511-2527 (2019). 2 Stoll, G. A. et al. Structure of KAP1 tripartite motif identifies molecular interfaces required for retroelement silencing. Proceedings of the National Academy of Sciences 116, 15042-15051 (2019). 3 Ryan, R. F. et al. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box–zinc finger proteins in heterochromatin-mediated gene silencing. Molecular and cellular biology 19, 4366-4378 (1999). 4 Ivanov, A. V. et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Molecular cell 28, 823-837 (2007). 5 Zeng, L. et al. Structural insights into human KAP1 PHD finger–bromodomain and its role in gene silencing. Nature structural molecular biology 15, 626-633 (2008). 6 Czerwińska, P., Mazurek, S. Wiznerowicz, M. The complexity of TRIM28 contribution to cancer. Journal of Biomedical Science 24, doi:10.1186/s12929-017-0374-4 (2017). 7 Schultz, D. C. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Development 15, 428-443, doi:10.1101/gad.869501 (2001). 8 Li, X. et al. Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. J. Biol. Chem. 282, 36177-36189 (2007). 9 Chang, C.-W. et al. Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. BMC molecular biology 9, 1-16 (2008). 10 Santos, J. Gil, J. TRIM28/KAP1 regulates senescence. Immunology letters 162, 281-289 (2014). 11 White, D. E. et al. KAP1, a novel substrate for PIKK family members, colocalizes with numerous damage response factors at DNA lesions. Cancer Research 66, 11594-11599, doi:10.1158/0008-5472.Can-06-4138 (2006). 12 Hosoya, T., Clifford, M., Losson, R., Tanabe, O. Engel, J. D. TRIM28 is essential for erythroblast differentiation in the mouse. Blood, The Journal of the American Society of Hematology 122, 3798-3807 (2013). 13 Cammas, F. et al. Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development. Development 127, 2955-2963, doi:10.1242/dev.127.13.2955 (2000). 14 Sampath Kumar, A. et al. Loss of maternal Trim28 causes male-predominant early embryonic lethality. Genes Development 31, 12-17, doi:10.1101/gad.291195.116 (2017). 15 Bond, S. T. et al. Deletion of Trim28 in committed adipocytes promotes obesity but preserves glucose tolerance. Nature Communications 12, doi:10.1038/s41467-020-20434-3 (2021). 16 Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Molecular cell 44, 361-372 (2011). 17 Quenneville, S. et al. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell reports 2, 766-773 (2012). 18 Wiznerowicz, M. et al. The Krüppel-associated box repressor domain can trigger de novo promoter methylation during mouse early embryogenesis. J. Biol. Chem. 282, 34535-34541 (2007). 19 Oleksiewicz, U. et al. TRIM28 and interacting KRAB-ZNFs control self-renewal of human pluripotent stem cells through epigenetic repression of pro-differentiation genes. Stem Cell Reports 9, 2065-2080 (2017). 20 Sarjeant, K. Stephens, J. M. Adipogenesis. Cold Spring Harbor Perspectives in Biology 4, a008417-a008417, doi:10.1101/cshperspect.a008417 (2012). 21 Green, H. Kehinde, O. An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell 5, 19-27 (1975). 22 Siersbæk, R. et al. Extensive chromatin remodelling and establishment of transcription factor ‘hotspots’ during early adipogenesis. The EMBO journal 30, 1459-1472 (2011). 23 Kassem, M. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning and stem cells 6, 369-374 (2004). 24 Ntambi, J. M. Young-Cheul, K. Adipocyte differentiation and gene expression. The Journal of nutrition 130, 3122S-3126S (2000). 25 Tang, Q.-Q., Otto, T. C. Lane, M. D. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proceedings of the National Academy of Sciences 100, 44-49 (2003). 26 Farmer, S. R. Transcriptional control of adipocyte formation. Cell metabolism 4, 263-273 (2006). 27 Li, F. et al. Protein kinase A suppresses the differentiation of 3T3-L1 preadipocytes. Cell Research 18, 311-323, doi:10.1038/cr.2008.12 (2008). 28 Macchia, P. E., Nettore, I. C., Franchini, F., Santana-Viera, L. Ungaro, P. Epigenetic regulation of adipogenesis by histone-modifying enzymes. Epigenomics 13, 235-251 (2021). 29 Nettore, I. C. et al. Quercetin and its derivative Q2 modulate chromatin dynamics in adipogenesis and Q2 prevents obesity and metabolic disorders in rats. The Journal of nutritional biochemistry 69, 151-162 (2019). 30 Siersbæk, R. et al. Dynamic rewiring of promoter-anchored chromatin loops during adipocyte differentiation. Molecular cell 66, 420-435. e425 (2017). 31 Wang, L. et al. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. The EMBO journal 32, 45-59 (2013). 32 Ohno, H., Shinoda, K., Ohyama, K., Sharp, L. Z. Kajimura, S. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163-167 (2013). 33 Simon, J. A. Kingston, R. E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nature reviews Molecular cell biology 10, 697-708 (2009). 34 Wang, L., Jin, Q., Lee, J.-E., Su, I.-h. Ge, K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proceedings of the National Academy of Sciences 107, 7317-7322 (2010). 35 Matsumura, Y. et al. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Molecular cell 60, 584-596 (2015). 36 Ghaben, A. L. Scherer, P. E. Adipogenesis and metabolic health. Nature reviews Molecular cell biology 20, 242-258 (2019). 37 Christodoulides, C., Lagathu, C., Sethi, J. K. Vidal-Puig, A. Adipogenesis and WNT signalling. Trends in Endocrinology Metabolism 20, 16-24 (2009). 38 Kim, W., Kim, M. Jho, E.-h. Wnt/β-catenin signalling: from plasma membrane to nucleus. Biochemical Journal 450, 9-21 (2013). 39 Bennett, C. N. et al. Regulation of Wnt signaling during adipogenesis. J. Biol. Chem. 277, 30998-31004 (2002). 40 Wan, D. et al. MacroH2A1. 1 cooperates with EZH2 to promote adipogenesis by regulating Wnt signaling. Journal of molecular cell biology 9, 325-337 (2017). 41 Koni, M., Pinnarò, V. Brizzi, M. F. The Wnt signalling pathway: a tailored target in cancer. International Journal of Molecular Sciences 21, 7697 (2020). 42 Nie, X., Wei, X., Ma, H., Fan, L. Chen, W. D. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. Journal of Cellular and Molecular Medicine (2021). 43 Reggio, A. et al. Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death Differentiation 27, 2921-2941, doi:10.1038/s41418-020-0551-y (2020). 44 Tang, Q. et al. Wnt5a regulates the cell proliferation and adipogenesis via MAPK-independent pathway in early stage of obesity. Cell Biology International 42, 63-74, doi:10.1002/cbin.10862 (2018). 45 Takada, I. et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation. Nature cell biology 9, 1273-1285 (2007). 46 Ehrlund, A. et al. Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPs) in human adipose tissue. The Journal of Clinical Endocrinology Metabolism 98, E503-E508 (2013). 47 Kennell, J. A., O'Leary, E. E., Gummow, B. M., Hammer, G. D. MacDougald, O. A. T-cell factor 4N (TCF-4N), a novel isoform of mouse TCF-4, synergizes with β-catenin to coactivate C/EBPα and steroidogenic factor 1 transcription factors. Molecular and cellular biology 23, 5366-5375 (2003). 48 Cristancho, A. G. Lazar, M. A. Forming functional fat: a growing understanding of adipocyte differentiation. Nature reviews Molecular cell biology 12, 722-734 (2011). 49 Lu, H.-P. The functional regulation of TRIM28 in adipogenesis Master thesis, National Taiwan University, (2017). 50 Lin, C.-J. TRIM28 epigenetically regulates Dlk1 expression in adipogenesis Master thesis, National Taiwan University, (2018). 51 Van Tienen, F., Laeremans, H., Van Der Kallen, C. Smeets, H. Wnt5b stimulates adipogenesis by activating PPARγ, and inhibiting the β-catenin dependent Wnt signaling pathway together with Wnt5a. Biochemical and biophysical research communications 387, 207-211 (2009). 52 Cawthorn, W. P. et al. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 50, 477-489 (2012). 53 Park, B. et al. Wnt3a disrupts GR-TEAD4-PPARγ2 positive circuits and cytoskeletal rearrangement in a β-catenin-dependent manner during early adipogenesis. Cell Death Disease 10, doi:10.1038/s41419-018-1249-7 (2019). 54 Cantwell, M. T. et al. STAT3 suppresses Wnt/β-catenin signaling during the induction phase of primary Myf5+ brown adipogenesis. Cytokine 111, 434-444, doi:10.1016/j.cyto.2018.05.023 (2018). 55 Longo, K. A. et al. Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. J. Biol. Chem. 277, 38239-38244 (2002). 56 Wakabayashi, K.-I. et al. The Peroxisome Proliferator-Activated Receptor γ/Retinoid X Receptor α Heterodimer Targets the Histone Modification Enzyme PR-Set7/Setd8 Gene and Regulates Adipogenesis through a Positive Feedback Loop. Molecular and Cellular Biology 29, 3544-3555, doi:10.1128/mcb.01856-08 (2009)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79655-
dc.description.abstractTRIM28又稱為 KAP1或TIF1β,是一個重要的轉錄調控因子。它在細胞發育、分化與轉錄調控有重要的作用,作為一個支架蛋白,TRIM28會利用多個蛋白結合域與自身的轉譯後修飾與不同組蛋白修飾酵素作用,並達成在DNA上的表觀遺傳調控。先前我們研究表明,透過shRNA 壓低 TRIM28的表現量,可以抑制 3T3-L1的脂肪分化。透過之前RNA-seq的分析觀察,在壓低Trim28的 3T3-L1脂肪前驅細胞中,鑑定出許多受到TRIM28所調節的基因、細胞週期調節因子以及與PPARγ信號通路相關的蛋白表現量都受到了Trim28 壓低的顯著影響。Wnt signaling是脂肪細胞分化的關鍵調控通路之一。在 Trim28 壓低的 3T3-L1中,在第 0天 Wnt5a mRNA表現量增加,Sfrp表現量降低,Wnt10b則在分化的第 2 天增加。在這項研究中,我們想證明在Trim28透過Wnt signaling在脂肪細胞分化中所扮演的腳色。我們在 293T 細胞中製備了含有對應 Wnt5a、Wnt10b 和 Sfrp2 的條件培養基加入3T3-L1並刺激細胞分化,結果表明 Wnt5a 和 Wnt10b 可以抑制脂肪細胞分化。定量 PCR 也證實了在Trim28 壓低的 3T3-L1 細胞中Wnt5a 和 Wnt10b 的表現量上升和 Sfrp2的下降。我們同時也利用重組蛋白 Wnt5a、Wnt10b 和 Wnt訊號傳遞抑制劑 XAV-939加入3T3-L1細胞,證實了活化Wnt signaling通路會損害的脂肪細胞分化。我們進一步利用染色質免疫沉澱試驗表明 TRIM28會特定地結合Wnt5a和 Wnt10b啟動子。而TRIM28在Wnt5a和Wnt10b上分別上調H3K4me與H3K27me,顯明TRIM28可能透過不同的表觀遺傳修飾來調節Wnt signaling,進而去調控脂肪細胞分化。而Trim28如何在脂肪細胞分化信號中調節Wnt5a、Wnt10b 和 Sfrp2 mRNA 表達有待澄清。我們研究表明TRIM28通過抑制Wnt signaling通路促進脂肪細胞生成。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:06:33Z (GMT). No. of bitstreams: 1
U0001-0209202115342600.pdf: 4488953 bytes, checksum: 048208ef526ec34eafa194304af7284e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv Abbreviations viii 1.Introduction 1 1.1 Tripartite Motif Containing protein28 1 1.2 Molecular regulation of adipogenesis 3 1.3 Wnt/beta-catenin signaling 5 2.1 Specific aim 7 2.Materials and Methods 8 2.1 Cell culture 8 2.2 Oil red o staining 8 2.3 Plasmids 9 2.4 Transfection 9 2.5 Western blot and antibodies 10 2.6 Lentivirus production and infection of 3T3-L1 cells 11 2.7 Imunoprecipitation assay 12 2.8 RNA extraction and reverse transcription 13 2.9 Real-time Quantitative PCR 13 2.10 Chromatin immunoprecipitation assay 14 2.11 Statistical analysis 16 3.Results 17 3.1 The gene expression of Wnt signaling pathways during 3T3-L1 differentiation. 17 3.2 The Wnt signaling pathways expression during differentiation of TRIM28 knockdown 3T3-L1 preadipocytes. 18 3.3 Trim28 targets to Wnt5a and Wnt10b promoter. 18 3.4 Functional effects of Wnt signaling condition medium 19 3.5 Wnt signaling pathways inhibit adipogenesis. 20 3.6 The effect of Wnt signaling inhibitor XAV-939 in Trim28 knockdown 3T3-L1 cells 20 4.Discussion 21 5.Figures 25 Figure 1. The gene expression of Wnt signaling pathways during 3T3-L1 differentiation. 26 Figure 2. The expression of Wnt signaling pathways during differentiation of TRIM28 knockdown 3T3-L1 preadipocytes. 28 Figure 3. Trim28 targets to Wnt5a and Wnt10b promoter. 30 Figure 4. Preparation and functional effects of Wnt signaling condition medium. 31 Figure 5. Wnt signaling pathways inhibit adipogenesis. 32 Figure 6. The Wnt inhibitor restore adipogenesis. 34 6.Table 35 Table1.Primers for real-time PCR 35 Table2.Primers for ChIP 36 7.References 37
dc.language.isoen
dc.titleTRIM28在脂肪細胞分化過程對Wnt signaling pathway之調控zh_TW
dc.titleTRIM28-mediated regulation of Wnt signaling pathway in adipogenesisen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱善德(Hsin-Tsai Liu),管永恕(Chih-Yang Tseng)
dc.subject.keywordTRIM28,脂肪細胞分化,表觀遺傳學,Wnt signaling,zh_TW
dc.subject.keywordTRIM28,3T3-L1,adipogenesis,Wnt signaling,histone methylation,en
dc.relation.page40
dc.identifier.doi10.6342/NTU202102957
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-0209202115342600.pdf4.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved