請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7962完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 俞聖法(Steve Sheng-Fa Yu) | |
| dc.contributor.author | Mu-Cheng Hung | en |
| dc.contributor.author | 洪木成 | zh_TW |
| dc.date.accessioned | 2021-05-19T18:00:30Z | - |
| dc.date.available | 2024-08-20 | |
| dc.date.available | 2021-05-19T18:00:30Z | - |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-17 | |
| dc.identifier.citation | 1. Oda, A., et al., Room-Temperature Activation of the C-H Bond in Methane over Terminal Zn(II)-Oxyl Species in an MFI Zeolite: A Combined Spectroscopic and Computational Study of the Reactive Frontier Molecular Orbitals and Their Origins. Inorganic Chemistry, 2019. 58(1): p. 327-338.
2. Baek, J., et al., Bioinspired Metal-Organic Framework Catalysts for Selective Methane Oxidation to Methanol. Journal of the American Chemical Society, 2018. 140(51): p. 18208-18216. 3. Tang, P., et al., Methane activation: the past and future. Energy & Environmental Science, 2014. 7(8): p. 2580-2591. 4. Bard, A.J., et al., Holy Grails of Chemistry. Accounts of Chemical Research, 1995. 28(3): p. 91-91. 5. Lipscomb, J.D., Biochemistry of the soluble methane monooxygenase. Annual Review of Microbiology, 1994. 48(1): p. 371-399. 6. Chan, S.I. and S.S.F. Yu, Controlled Oxidation of Hydrocarbons by the Membrane-Bound Methane Monooxygenase: The Case for a Tricopper Cluster. Accounts of Chemical Research, 2008. 41(8): p. 969-979. 7. Friedle, S., E. Reisner, and S.J. Lippard, Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chemical Society Reviews, 2010. 39(8): p. 2768-2779. 8. Lieberman, R.L. and A.C. Rosenzweig, Biological Methane Oxidation: Regulation, Biochemistry, and Active Site Structure of Particulate Methane Monooxygenase. Critical Reviews in Biochemistry and Molecular Biology, 2004. 39(3): p. 147-164. 9. Jiang, H.-L., N. Tsumori, and Q. Xu, A Series of (6,6)-Connected Porous Lanthanide−Organic Framework Enantiomers with High Thermostability and Exposed Metal Sites: Scalable Syntheses, Structures, and Sorption Properties. Inorganic Chemistry, 2010. 49(21): p. 10001-10006. 10. Culpepper, M.A. and A.C. Rosenzweig, Architecture and active site of particulate methane monooxygenase. Critical Reviews in Biochemistry and Molecular Biology, 2012. 47(6): p. 483-492. 11. Chen, C.-L., et al., The Copper Clusters in the Particulate Methane Monooxygenase (pMMO) from Methylococcus Capsulatus (Bath). Journal of the Chinese Chemical Society, 2004. 51. p. 1081-1098. 12. Smith, T.J. and H. Dalton, Chapter 6 Biocatalysis by methane monooxygenase and its implications for the petroleum industry, in Studies in Surface Science and Catalysis, R. Vazquez-Duhalt and R. Quintero-Ramirez, Editors. 2004, Elsevier. p. 177-192. 13. Lee, S.J., et al., Control of substrate access to the active site in methane monooxygenase. Nature, 2013. 494: p. 380. 14. Martinho, M., et al., Mössbauer Studies of the Membrane-Associated Methane Monooxygenase from Methylococcus capsulatus Bath: Evidence for a Diiron Center. Journal of the American Chemical Society, 2007. 129(51): p. 15783-15785. 15. Balasubramanian, R., et al., Oxidation of methane by a biological dicopper centre. Nature, 2010. 465: p. 115. 16. Hanson, R.S. and T.E. Hanson, Methanotrophic bacteria. Annual Review of Biochemistry, 1996. 60(2): p. 439-471. 17. Murrell, J.C., I.R. McDonald, and B. Gilbert, Regulation of expression of methane monooxygenases by copper ions. Trends in Microbiology, 2000. 8(5): p. 221-225. 18. Prior, S.D. and H. Dalton, The Effect of Copper Ions on Membrane Content and Methane Monooxygenase Activity in Methanol-Grown Cells of Methylococcus-Capsulatus (Bath). Journal of General Microbiology, 1985. 131(Jan): p. 155-163. 19. Semrau, J.D., et al., Particulate methane monooxygenase genes in methanotrophs. Journal of Bacteriology, 1995. 177(11): p. 3071-3079. 20. Ward, N., et al., Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS biology, 2004. 2(10): p. e303-e303. 21. Gilbert, B., et al., Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Applied and Environmental Microbiology, 2000. 66(3): p. 966-975. 22. Stolyar, S., et al., Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology, 1999. 145 ( Pt 5)(5): p. 1235-44. 23. Holmes, A.J., et al., Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiology Letters, 1995. 132(3): p. 203-208. 24. Lieberman, R.L. and A.C. Rosenzweig, Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature, 2005. 434(7030): p. 177-182. 25. Hakemian, A.S., et al., The Metal Centers of Particulate Methane Monooxygenase from Methylosinus trichosporium OB3b. Biochemistry, 2008. 47(26): p. 6793-6801. 26. Smith, S.M., et al., Crystal Structure and Characterization of Particulate Methane Monooxygenase from Methylocystis species Strain M. Biochemistry, 2011. 50(47): p. 10231-10240. 27. Hakemian, A.S. and A.C. Rosenzweig, The biochemistry of methane oxidation. Annual Review of Biochemistry, 2007. 76(1): p. 223-241. 28. Nguyen, H.H., et al., The particulate methane monooxygenase from methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization. Journal of Biological Chemistry, 1998. 273(14): p. 7957-7966. 29. Yu, S.S.-F., et al., Production of High-Quality Particulate Methane Monooxygenase in High Yields from Methylococcus capsulatus (Bath) with a Hollow-Fiber Membrane Bioreactor. J Bacteriol, 2003. 185(20): p. 5915-5924. 30. Zahn, J.A. and A.A. DiSpirito, Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). Journal of Bacteriology, 1996. 178(4): p. 1018-1029. 31. Choi, D.-W., et al., The Membrane-Associated Methane Monooxygenase (pMMO) and pMMO-NADH:Quinone Oxidoreductase Complex from Methylococcus capsulatus Bath. Journal of Bacteriology, 2003. 185(19): p. 5755-5764. 32. Nagababu, P., et al., Efficient Room-Temperature Oxidation of Hydrocarbons Mediated by Tricopper Cluster Complexes with Different Ligands. Advanced Synthesis & Catalysis, 2012. 354(17): p. 3275-3282. 33. Chan, S.I., et al., Efficient oxidation of methane to methanol by dioxygen mediated by tricopper clusters. Angewandte Chemie International Edition, 2013. 52(13): p. 3731-3735. 34. Chan, S.I., et al., Efficient catalytic oxidation of hydrocarbons mediated by tricopper clusters under mild conditions. Journal of Catalysis, 2012. 293: p. 186-194. 35. Chen, P.P.Y., et al., Development of the Tricopper Cluster as a Catalyst for the Efficient Conversion of Methane into MeOH. ChemCatChem, 2014. 6(2): p. 429-437. 36. Nguyen, H.-H.T., et al., X-ray Absorption and EPR Studies on the Copper Ions Associated with the Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath). Cu(I) Ions and Their Implications. Journal of the American Chemical Society, 1996. 118(50): p. 12766-12776. 37. Chan, S.I., et al., Redox potentiometry studies of particulate methane monooxygenase: support for a trinuclear copper cluster active site. Angewandte Chemie International Edition, 2007. 46(12): p. 1992-1994. 38. Chen, P.P.Y., et al., Facile O-atom insertion into C-C and C-H bonds by a trinuclear copper complex designed to harness a singlet oxene. Proceedings of the National Academy of Sciences, 2007. 104(37): p. 14570. 39. Yu, S.S.F., et al., The C-Terminal Aqueous-Exposed Domain of the 45 kDa Subunit of the Particulate Methane Monooxygenase in Methylococcus capsulatus (Bath) Is a Cu(I) Sponge. Biochemistry, 2007. 46(48): p. 13762-13774. 40. Nguyen, H., et al., The nature of copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Journal of Biological Chemistry, 1994. 269: p. 14995-5005. 41. Ng, K.Y., et al., Probing the hydrophobic pocket of the active site in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) by variable stereoselective alkane hydroxylation and olefin epoxidation. ChemBioChem, 2008. 9(7): p. 1116-1123. 42. Baik, M.-H., et al., Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase. Chemical Reviews, 2003. 103(6): p. 2385-2420. 43. Yu, S.S., et al., The stereospecific hydroxylation of [2,2-2H2]butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Journal of Biological Chemistry, 2003. 278(42): p. 40658-40669. 44. Wilkinson, B., et al., A Concerted Mechanism for Ethane Hydroxylation by the Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath). Journal of the American Chemical Society, 1996. 118(4): p. 921-922. 45. Elliott, S.J., et al., Regio- and Stereoselectivity of Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath). Journal of the American Chemical Society, 1997. 119(42): p. 9949-9955. 46. Koshland, D.E., Jr., The molecule of the year. Science, 1992. 258(5090): p. 1861. 47. Lepoivre, M., et al., Inactivation of ribonucleotide reductase by nitric oxide. Biochemical and Biophysical Research Communications, 1991. 179(1): p. 442-448. 48. Marshall, H.E. and J.S. Stamler, Inhibition of NF-κB by S-Nitrosylation. Biochemistry, 2001. 40(6): p. 1688-1693. 49. Gross, S.S. and M.S. Wolin, Nitric oxide: pathophysiological mechanisms. Annual Review of Physiology, 1995. 57(1): p. 737-769. 50. Bogdan, C., Nitric oxide and the immune response. Nature Immunology, 2001. 2(10): p. 907-916. 51. Radi, R., Reactions of Nitric Oxide with Metalloproteins. Chemical Research in Toxicology, 1996. 9(5): p. 828-835. 52. Tsai, M.-L., C.-C. Tsou, and W.-F. Liaw, Dinitrosyl Iron Complexes (DNICs): From Biomimetic Synthesis and Spectroscopic Characterization toward Unveiling the Biological and Catalytic Roles of DNICs. Accounts of Chemical Research, 2015. 48(4): p. 1184-1193. 53. McCleverty, J.A., Chemistry of Nitric Oxide Relevant to Biology. Chemical Reviews, 2004. 104(2): p. 403-418. 54. Alderton, W.K., C.E. Cooper, and R.G. Knowles, Nitric oxide synthases: structure, function and inhibition. Biochemical Journal, 2001. 357(Pt 3): p. 593-615. 55. Dejam, A., et al., Emerging role of nitrite in human biology. Blood Cells, Molecules, and Diseases, 2004. 32(3): p. 423-429. 56. Millar, T.M., C.R. Stevens, and D.R. Blake, Xanthine oxidase can generate nitric oxide from nitrate in ischaemia. Biochemical Society Transactions, 1997. 25(3): p. 528S. 57. Bryan, N.S., et al., Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nature Chemical Biology, 2005. 1(5): p. 290-297. 58. Bronte, V. and P. Zanovello, Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 2005. 5(8): p. 641-654. 59. Wink, D.A. and J.B. Mitchell, Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biology and Medicine, 1998. 25(4): p. 434-456. 60. Mikkelsen, R.B. and P. Wardman, Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene, 2003. 22(37): p. 5734-5754. 61. Bouton, C. and J.-C. Drapier, Iron Regulatory Proteins as NO Signal Transducers. Science's STKE : signal transduction knowledge environment, 2003. 2003: p. pe17. 62. Hess, D.T., et al., Protein S-nitrosylation: purview and parameters. Nature Reviews Molecular Cell Biology, 2005. 6(2): p. 150-166. 63. Nilius, B., T. Voets, and J. Peters, TRP channels in disease. Science's STKE, : signal transduction knowledge environment, 2005. 2005(295): p. re8. 64. Ding, K., et al., Copper-dependent autocleavage of glypican-1 heparan sulfate by nitric oxide derived from intrinsic nitrosothiols. Journal of Biological Chemistry, 2002. 277(36): p. 33353-33360. 65. Benoff, B., et al., Structural basis of transcription activation: The CAP-αCTD-DNA complex. Science (New York, N.Y.), 2002. 297: p. 1562-1566. 66. Busby, S. and R.H. Ebright, Transcription activation by catabolite activator protein (CAP). Journal of Molecular Biology, 1999. 293(2): p. 199-213. 67. Lee, D.J., S.D. Minchin, and S.J. Busby, Activating transcription in bacteria. Annual Review of Microbiology, 2012. 66(1): p. 125-152. 68. Lee, D.J., et al., Analysis of interactions between Activating Region 1 of Escherichia coli FNR protein and the C-terminal domain of the RNA polymerase alpha subunit: use of alanine scanning and suppression genetics. Molecular Microbiology, 2000. 37(5): p. 1032-1040. 69. Weber, K.D., O. Vincent, and P. Kiley, Additional determinants within Escherichia coli FNR activating region 1 and RNA polymerase alpha subunit required for transcription activation. Journal of Bacteriology, 2005. 187: p. 1724-1731. 70. Williams, S.M., et al., Transcription activation at Class I FNR-dependent promoters: identification of the activating surface of FNR and the corresponding contact site in the C-terminal domain of the RNA polymerase α subunit. Nucleic Acids Research, 1997. 25(20): p. 4028-4034. 71. Wing, H.J., S.M. Williams, and S.J. Busby, Spacing requirements for transcription activation by Escherichia coli FNR protein. Journal of Bacteriology, 1995. 177(23): p. 6704-6710. 72. E Lamberg, K., et al., Characterization of activating region 3 from Escherichia coli FNR. Journal of Molecular Biology, 2002. 315: p. 275-283. 73. Wing, H.J., et al., Role of activating region 1 of Escherichia coli FNR protein in transcription activation at class II promoters. Journal of Biological Chemistry, 2000. 275(37): p. 29061-29065. 74. Kiley, P.J. and H. Beinert, The role of Fe–S proteins in sensing and regulation in bacteria. Current Opinion in Microbiology, 2003. 6(2): p. 181-185. 75. Kiley, P.J. and H. Beinert, Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol Rev, 1998. 22(5): p. 341-352. 76. Korner, H., H.J. Sofia, and W.G. Zumft, Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiology Reviews, 2003. 27(5): p. 559-592. 77. Lazazzera, B.A., et al., DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. Journal of Biological Chemistry, 1996. 271(5): p. 2762-2768. 78. Green, J., et al., Reconstitution of the [4Fe-4S] cluster in FNR and demonstration of the aerobic-anaerobic transcription switch in vitro. The Biochemical Journal, 1996. 316 ( Pt 3): p. 887-892. 79. Crack, J., et al., Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104: p. 2092-2097. 80. Scott, C. and J. Green, Miscoordination of the iron-sulfur clusters of the anaerobic transcription factor, FNR, allows simple repression but not activation. Journal of Biological Chemistry, 2002. 277(3): p. 1749-1754. 81. Sutton, V.R., et al., Superoxide Destroys the [2Fe-2S]2+ Cluster of FNR from Escherichia coli. Biochemistry, 2004. 43(3): p. 791-798. 82. Lazazzera, B., M. Bates, and P. Kiley, The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes & Development, 1993. 7: p. 1993-2005. 83. Green, J., M. Rolfe, and L. Smith, Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence, 2014. 5:p. 794-809. 84. Crack, J., et al., Iron-Sulfur Clusters as Biological Sensors: The Chemistry of Reactions with Molecular Oxygen and Nitric Oxide. Accounts of Chemical Research, 2014. 47: p. 3196-3205. 85. McKay, D. and T. A. Steitz, Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature, 1981. 290: p. 744-749. 86. N Septer, A., et al., FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri. FEMS Microbiology Letters, 2010. 306: p. 72-81. 87. Volbeda, A., et al., The crystal structure of the global anaerobic transcriptional regulator FNR explains its extremely fine-tuned monomer-dimer equilibrium. Science advances, 2015. 1(11): p. e1501086-e1501086. 88. Rodionov, D., et al., Dissimilatory Metabolism of Nitrogen Oxides in Bacteria: Comparative Reconstruction of Transcriptional Networks. PLoS Computational Biology, 2005. 1: p. 0415-0431. 89. Koningsberger, D.C., X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. 1988, United States: John Wiley and Sons. 90. N. M. Ravel, B. and M. Newville, Data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 2005. 12: p. 537-541. 91. Newville, M., IFEFFIT: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation, 2001. 8: p. 322-324. 92. Espírito Santo, C., et al., Contribution of Copper Ion Resistance to Survival of Escherichia coli on Metallic Copper Surfaces. Applied and Environmental Microbiology, 2008. 74: p. 977-986. 93. Robinson, N.J. and D.R. Winge, Copper metallochaperones. Annual Review of Biochemistry, 2010. 79: p. 537-562. 94. Osman, D. and J.S. Cavet, Chapter 8 - Copper Homeostasis in Bacteria, in Advances in Applied Microbiology, A.I. Laskin, S. Sariaslani, and G.M. Gadd, Editors. 2008, Academic Press. p. 217-247. 95. Pham, M.D., et al., Inactivation of the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath) by acetylene. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2015. 1854(12): p. 1842-1852. 96. Ridge, P.G., Y. Zhang, and V.N. Gladyshev, Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PloS one, 2008. 3(1): p. e1378-e1378. 97. Li, G.-W., et al., Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell, 2014. 157(3): p. 624-635. 98. Shiota, Y., G. Juhász, and K. Yoshizawa, Role of Tyrosine Residue in Methane Activation at the Dicopper Site of Particulate Methane Monooxygenase: A Density Functional Theory Study. Inorganic Chemistry, 2013. 52(14): p. 7907-7917. 99. Smith, P.K., et al., Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 1985. 150(1): p. 76-85. 100. Lieberman, R.L., et al., Characterization of the Particulate Methane Monooxygenase Metal Centers in Multiple Redox States by X-ray Absorption Spectroscopy. Inorganic Chemistry, 2006. 45(20): p. 8372-8381. 101. Culpepper, M.A., et al., Identification of the Valence and Coordination Environment of the Particulate Methane Monooxygenase Copper Centers by Advanced EPR Characterization. Journal of the American Chemical Society, 2014. 136(33): p. 11767-11775. 102. Ottenwaelder, X., et al., Reversible O−O Bond Cleavage in Copper−Dioxygen Isomers: Impact of Anion Basicity. Journal of the American Chemical Society, 2006. 128(29): p. 9268-9269. 103. Lewis, E.A. and W.B. Tolman, Reactivity of Dioxygen−Copper Systems. Chemical Reviews, 2004. 104(2): p. 1047-1076. 104. Itoh, S. and S. Fukuzumi, Monooxygenase Activity of Type 3 Copper Proteins. Accounts of Chemical Research, 2007. 40(7): p. 592-600. 105. Lai, N.-C., et al., Efficient selective oxidation of propylene by dioxygen on mesoporous-silica-nanoparticle-supported nanosized copper. Journal of Catalysis, 2018. 365: p. 411-419. 106. Cao, L., et al., Quantum Refinement Does Not Support Dinuclear Copper Sites in Crystal Structures of Particulate Methane Monooxygenase. Angewandte Chemie International Edition, 2017. 130: p. 162-166. 107. Waldron, K.J. and N.J. Robinson, How do bacterial cells ensure that metalloproteins get the correct metal? Nature Reviews Microbiology, 2009. 7: p. 25-35. 108. Decker, H. and F. Tuczek, Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends in Biochemical Sciences, 2000. 25(8): p. 392-397. 109. Monzani, E., et al., Tyrosinase Models. Synthesis, Structure, Catechol Oxidase Activity, and Phenol Monooxygenase Activity of a Dinuclear Copper Complex Derived from a Triamino Pentabenzimidazole Ligand. Inorganic Chemistry, 1998. 37(3): p. 553-562. 110. Nagababu, P., et al., Developing an efficient catalyst for controlled oxidation of small alkanes under ambient conditions. Catalysis Science & Technology, 2014. 4(4): p. 930-935. 111. Liu, C.-C., et al., Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure. Energy & Environmental Science, 2016. 9(4): p. 1361-1374. 112. Wang, V.C.C., et al., Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chemical Reviews, 2017. 117(13): p. 8574-8621. 113. Mettert, E. and P. Kiley, Contributions of [4Fe-4S]-FNR and Integration Host Factor to fnr Transcriptional Regulation. Journal of Bacteriology, 2007. 189: p. 3036-3043. 114. Johnson, D.C., et al., Structure, function, and formation of biological iron-sulfur clusters. Annual Review of Biochemistry, 2005. 74(1): p. 247-281. 115. Gardner, P.R., et al., Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(18): p. 10378-10383. 116. Hausladen, A., A.J. Gow, and J.S. Stamler, Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(24): p. 14100-14105. 117. Kim, S.O., et al., Anoxic function for the Escherichia coli flavohaemoglobin (Hmp): reversible binding of nitric oxide and reduction to nitrous oxide. FEBS Letters, 1999. 445(2): p. 389-394. 118. Lo, F.-C., et al., The Metal Core Structures in the Recombinant Escherichia coli Transcriptional Factor SoxR. Chemistry (Weinheim an der Bergstrasse, Germany), 2012. 18: p. 2565-2577. 119. Ding, H. and B. Demple, Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97: p. 5146-5150. 120. Crack, J.C., et al., Mechanism of [4Fe-4S](Cys)4 cluster nitrosylation is conserved among NO-responsive regulators. Journal of Biological Chemistry, 2013. 288(16): p. 11492-11502. 121. Crack, J., et al., Iron-sulfur cluster sensor-regulators. Current Opinion in Chemical Biology, 2012. 16: p. 35-44. 122. Zhang, B., et al., Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109: p. 15734-15739. 123. Corker, H. and R.K. Poole, Nitric oxide formation by Escherichia coli. Dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. Journal of Biological Chemistry, 2003. 278(34): p. 31584-31592. 124. Tsou, C.-C., T.-T. Lu, and W.-F. Liaw, EPR, UV−Vis, IR, and X-ray Demonstration of the Anionic Dimeric Dinitrosyl Iron Complex [(NO)2Fe(μ-StBu)2Fe(NO)2]-: Relevance to the Products of Nitrosylation of Cytosolic and Mitochondrial Aconitases, and High-Potential Iron Proteins. Journal of the American Chemical Society, 2007. 129(42): p. 12626-12627. 125. Lu, T.-T., et al., Anionic Roussin’s Red Esters (RREs) syn-/anti-[Fe(µ-SEt)(NO)2]2−: the Critical Role of Thiolate Ligands in Regulating the Transformation of RREs into Dinitrosyl Iron Complexes and the Anionic RREs. Inorganic Chemistry, 2008. 47(13): p. 6040-6050. 126. Boese, M., et al., S-nitrosation of serum albumin by dinitrosyl-iron complex. Journal of Biological Chemistry, 1995. 270(49): p. 29244-29249. 127. Helland, R., et al., An Oxidized Tryptophan Facilitates Copper Binding in Methylococcus capsulatus-secreted Protein MopE. Journal of Biological Chemistry, 2008. 283(20): p. 13897-13904. 128. Miyaji, A., M. Nitta, and T. Baba, Influence of copper ions removal from membrane-bound form of particulate methane monooxygenase from Methylosinus trichosporium OB3b on its activity for methane hydroxylation. Journal of Biotechnology: X, 2019. 1: p. 100001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7962 | - |
| dc.description.abstract | 金屬蛋白的小分子活化和感應在自然界中可以有效地控制烷烴氧化或是感應一氧化氮。在這裡,我將展示了兩種模型,一種是甲烷單氧化酵素(pMMO),另一種是延胡索酸鹽和硝酸鹽還原調節蛋白(FNR)。
在第1部分中,我將研究噬甲烷菌Methylococcus capsulatus(Bath) (M. capsulatus) 甲烷單氧化酵素的B次單元(PmoB)的銅輔因子的數量跟特性。該蛋白體次單元對一價銅有相當高的親和力。為了闡述其銅親和力,我們設計全長的PmoB次單元、以及N端截斷的設計,包括PmoB33-414和PmoB55-414,以及麥芽糖結合蛋白(MBP)標籤轉殖並在大腸桿菌中大量表現。除了以N端截斷的方式觀察一價銅親和力,此外Y374F、Y374S和M300L突變蛋白也被建構。在培養過程,當大腸桿菌在1.0mM CuII溶液大量表達PmoB,甲烷單氧化酵素的B次單元表現得跟在甲烷菌中一樣。 在本實驗中,我們進一步收集這些B次單元的蛋白質,測量銅的數量、以Cu Kα邊緣X射線吸收近邊光譜(XANES)證實所有PmoB重組體都是一價銅蛋白。並根據Cu延伸的X射線吸收邊緣精細結構(EXAFS)的分析,發現PmoB蛋白顯示出「雙銅中心」的證據。當我們測量這些重組膜結合的PmoB蛋白發現並沒有甲烷和丙烯氧化的特定活性。然而其中的PmoB33-414蛋白卻可觀察到過氧化氫的顯著產生。此雙銅中心與氧氣反應產生過氧化氫的現象,會更近一步導致位於PmoB亞基的C末端亞結構域的一價銅的氧化。 在第2部分中,由於FNR蛋白是含有四鐵四硫金屬簇的轉錄因子,它的金屬簇化學結構對於氧氣與一氧化氮非常敏感。在我的研究中,試圖觀察大腸桿菌生理狀態從有氧呼吸轉換為厭氧硝酸鹽呼吸,即大腸桿菌的發酵生長,FNR蛋白在生理條件下四鐵四硫金屬簇的變化。當大腸桿菌BL21DE(PLyS)與含有fnr基因的轉化質體pET22b在厭氧條件以含有硝酸鹽的LB培養液中生長時,我們發現從SDS-Page分析中積累了大量的重組FNR。同時發現重組FNR的表現量可以通過Ni-NTA柱層析容易地純化。將這些純化的FNR進行EPR測量。我們觀察到在gav = 2.03處出現強烈的順磁信號,這表示在蛋白質內形成雙亞硝基鐵複合物。同時從含有硝酸鹽的厭氧生長中分離的單元重組FNR單體的鐵含量為2.42個鐵。再加上我們確保在大腸桿菌體內FNR蛋白亞硝基化後形成Roussin Red Ester(RRE),並且以二硫亞磺酸鈉還原觀察陰離子Roussin Red Ester EPR特徵(g = 2.005, g║ = 1.97)。 並綜合 FNR的基因調控和隨後在大腸桿菌中的蛋白質表達譜進一步證明了此亞硝化型態在硝酸鹽厭氧呼吸下於大腸桿菌中讓FNR獲得新的功能,構成了它正向的基因自動調節。 | zh_TW |
| dc.description.abstract | Small molecule activation and sensing by metalloproteins play important roles in controlled alkane oxidation or nitric oxide sensing in nature. Here, I show two protien systems, one is particulate methane monooxygenase (pMMO), the other is the fumerate and nitrate reduction regulator (FNR).
In part 1, we describe efforts to clarify the role of the copper cofactors associated with subunit B (PmoB) of the pMMO from Methylococcus capsulatus (Bath) (M. capsulatus). This subunit exhibits strong affinity toward CuI ions. To elucidate the high copper affinity of the subunit, the full-length PmoB, and the N-terminal truncated mutants PmoB33–414 and PmoB55–414, each fused to the maltose-binding protein (MBP), are cloned and over-expressed into Escherichia coli(E. coli) K12 TB1 cells. The Y374F, Y374S and M300L mutants of these protein constructs are also studied. When this E. coli grown with the pmoB gene in 1.0 mM CuII, it behaves like M. capsulatus (Bath) cultured under high copper stress with abundant membrane accumulation and high Cu I content. The recombinant PmoB proteins are verified by Western blotting of antibodies directed against the MBP sub-domain in each of the copper-enriched PmoB proteins. Cu K-edge X-ray absorption near edge spectroscopy (XANES) of the copper ions confirms that all the PmoB recombinants are CuI proteins. All the PmoB proteins show evidence of a “dicopper site” according to analysis of the Cu extended X-ray absorption edge fine structure (EXAFS) of the membranes. No specific activities toward methane and propene oxidation are observed with the recombinant membrane-bound PmoB proteins. However, significant production of hydrogen peroxide is observed in the case of the PmoB33–414mutant. Reaction of the dicopper site with dioxygen produces hydrogen peroxide and leads to oxidation of the CuI ions residing in the C-terminal sub-domain of the PmoB subunit In part 2, FNR protein is a transcriptional factor containing 4Fe-4S cluster, which is sensitive to the presence of dioxygen molecules and can switch the physiological status from aerobic respiration to anaerobic nitrate respiration, i.e., the fermentated growth of E. coli. When E. coli BL21DE (PLyS) grown with transformed plasmid pET22b containing fnr gene insert in anaerobic conditions by the presence of the nitrate salts in LB buffer, significant amounts of recombinant FNR are accumulated from the SDS-Page analysis. The recombinant FNR with poly-histidine can be easily purified through Ni-NTA column chromatography. The FNR is subjected for EPR measurement. A strong paramagnetic signal appeared at gav = 2.03 indicates the formation of iron dinitrosylated complexes within the proteins. The iron contents of unit recombinant FNR monomer isolated from the anaerobic growth with the nitrate salts was 2.42. We ensure that there is formation of Roussin’s Red ester (RRE) after the nitrosylation of FNR protein in vivo with the further reduction mediated by dithionites for the observation of EPR characteristic (g = 2.005, g║ = 1.97) of anionic Roussin’s Red ester. The gene regulation of FNR and subsequent protein expression profiling in E. coli have further indicated that nitrosylated FNR in E. coli under anaerobic respiratory are auto-regulated. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T18:00:30Z (GMT). No. of bitstreams: 1 ntu-108-D01b46009-1.pdf: 4634536 bytes, checksum: 541d23d50988be8926d8a318eb3c56c2 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vii LIST OF FIGURES xii LIST OF TABLES xv Chapter 1 Introduction 1 1.1 The importance of biological methane oxidation 1 1.2 The particulate methane monooxygenase (pMMO): gene information 3 1.3 Three dimensional structures of pMMO and their functional implications 6 1.4 The quest for the catalytic sites and mechanism of C-H bond activation in pMMO 9 1.5 The importance of biological nitric oxide sensing 21 1.6 The chemistry of NO 22 1.7 The multiple electronic configurations of NO bound to the metal center 23 1.8 The origins and metabolism of nitric oxide in biology 24 1.9 The FNR (fumurate and nitrate respiratory protein): gene regulation 26 1.10 Three dimensional structures of FNR and their implications 27 1.11 The quest for the sensing mechanism of NO in FNR 29 1.12 Basic theory of X-ray absorption spectroscopy (XAS) 31 1.13 The physical basis of X-ray absorption spectrocopy 32 1.14 Extended X-ray absorption fine structure (EXAFS) 34 1.15 X-ray absorption near edge spectroscopy (XANES) 37 1.16 Advantages and limitations of XAS 38 1.17 Basic theory of EPR spectroscopy 40 1.18 Energy of magnetic dipoles in a magnetic field 41 1.19 The Zeeman effect 44 1.20 Thermal equilibrium and spin-lattice relaxation 45 1.21 g-values 47 1.22 Hyperfine interactions 48 Chapter 2 Methods and Experiments 50 2.1 Bacterial strains, plasmids, and growth conditions 50 2.2 Methods for DNA manipulation, mutagenesis studies, recombinant protein expression and purification of pMal-pmob containing membrane fraction 50 2.2.1 Construction of the expression plasmids pMAL-p2X(pmob) and pMALp2X(deSPpmob1 & deSPpmob2) 50 2.2.2 Mutagenesis of the expression plasmids pMAL-p2X(pmob) and pMALp2X(deSPpmob1 & deSPpmob2) 52 2.2.3 Purification and characterization of the expressed MBP-PmoB55–414 fusion protein and the target PmoB55–414 protein 54 2.3 Methods for DNA manipulation, recombinant protein expression and purification of FNR 55 2.4 Material 57 2.5 Instrumentations 59 Chapter 3 The PmoB Subunit of Particulate Methane Monooxygenase (pMMO) in Methylococcus capsulatus (Bath): The CuI Sponge and its Function 65 3.1 Background 66 3.2 Results 68 3.2.1 Expression of the MBP-PmoB fusion proteins in the E. coli membranes 68 3.2.2 Purification of the MBP-PmoB55-414 protein and determination of the copper content 70 3.2.3 Quantification of the MBP-PmoB proteins and the levels of copper ions in the membranes: Estimation of the copper contents of the various MBP-PmoB constructs 70 3.2.4 The bulk of the copper ions in the membranes are CuI 74 3.2.5 The MBP-PmoB fusion proteins expressed in the E. coli membranes are CuI- proteins based on X-ray absorption edge measurements 75 3.2.6 Effects of exposure of the MBP-PmoB proteins to air on the copper ions 77 3.2.7 Ferricyanide treatments of the MBP-PmoB fusion proteins in the purified membranes of the E. coli K12 TB1 cells 77 3.2.8 Determination of the copper contents in the E. coli membranes of the MBP-PmoB fusion proteins by ICP-OES 80 3.2.9 Quantification of the level of CuI in the E. coli membranes of the N-truncated MBP-PmoB55-414 fusion protein 80 3.2.10 Purification and characterization of the expressed MBP-PmoB55−414 fusion protein and the target PmoB55−414 protein 81 3.2.11 EXAFS of the copper ions in the various MBP-PmoB fusion proteins expressed in the membranes of the E. coli cells 82 3.2.12 Measurements of specific activities toward hydrocarbon oxidation mediated by the MBP-PmoB fusion proteins expressed in the E. coli membranes 90 3.2.13 Production of H2O2 by the E. coli membranes enriched with the MBP-PmoB proteins 91 3.3 Discussion 92 3.4 Experiments 99 3.4.1 Quantification of the total membrane proteins from the E. coli cytosolic membranes 99 3.4.2 Raising polyclonal antibodies against the recombinant PmoB55−414 protein 100 3.4.3 Western blotting with rabbit anti-PmoB55−414 antibodies (polyclonal) and anti-MBP monoclonal antibody/HRP conjugates 100 3.4.4 Determination of the copper contents in the E. coli membranes of the MBP-PmoB fusion proteins by ICP-OES 102 3.4.5 Quantification of the level of CuI in the E. coli membranes of the N-truncated MBP-PmoB55-414 fusion protein 103 3.4.6 Purification and characterization of the expressed MBP-PmoB55−414 fusion protein and the target PmoB55−414 protein 103 Chapter 4 Regulation of Anaerobic Nitrate and Nitrite Respiratory by the Iron Nitrosyl Complexes in FNR 105 4.1 Background 105 4.2 Results 106 4.2.1 Preparation of FNR proteins via Recombinant DNA Technology 106 4.2.2 Exploration of the physiological role of FNR protein under the nitrate respiration in anaerobic growth 107 4.2.3 The determination of metal core structure in FNR 109 4.2.4 FNR protein can bind to both the upstream and downstream regulatory domains of fnr operons 112 4.3 Conclusions 116 4.4 Experiments 117 4.4.1 Cloning of transcription factor, fumarate-nitrate reduction (FNR) 117 4.4.2 Strains, Media, and Culture Conditions 118 4.4.3 Recombinant FNR protein over-expression and purification 118 4.4.4 Nitrosylated FNR protein 118 4.4.5 Quantification of mRNA for fnr expression by real-time quantitative Polymerase Chain Reaction (RT-qPCR) 119 4.4.6 UV-vis spectroscopy 119 4.4.7 Circular Dichroism (CD) spectroscopy 120 4.4.8 X-ray absorption near edge spectra (XANES) 120 4.4.9 Quantification of the metal contents by inductively coupled plasma optical emission spectroscopy (ICP-OES). 120 4.4.10 Electrophoretic mobility shift assay (EMSA) 121 4.4.11 Fluorescence Anisotropy 121 Chapter 5 Summary and Conclusions 123 REFERENCES 131 APPENDIX 147 | |
| dc.language.iso | en | |
| dc.title | 金屬蛋白的小分子活化與感應 | zh_TW |
| dc.title | Small Molecule Activation and Sensing by Metalloproteins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 王彥士(Yane-Shih Wang) | |
| dc.contributor.oralexamcommittee | 陳長謙(Sunney I. Chan),鄒德里(Der-Lii M. Tzou),章為皓(Wei-Hau Chang),陳皇州(Kelvin Huang-Chou Chen) | |
| dc.subject.keyword | 甲烷單氧化酵素,雙銅金屬簇,延胡索酸與硝酸還原調控蛋白,一氧化氮,硝酸鹽呼吸, | zh_TW |
| dc.subject.keyword | Pmmo,dicopper cluster,FNR,nitric oxide,nitrate respiratory, | en |
| dc.relation.page | 160 | |
| dc.identifier.doi | 10.6342/NTU201903909 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-20 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 4.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
