請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79613完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林信甫(Hsin-Fu Lin) | |
| dc.contributor.author | Chih-Yuan Hsueh | en |
| dc.contributor.author | 薛智元 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:05:14Z | - |
| dc.date.available | 2021-09-17 | |
| dc.date.available | 2022-11-23T09:05:14Z | - |
| dc.date.copyright | 2021-09-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-11 | |
| dc.identifier.citation | 1. Kaptoge S, Pennells L, De Bacquer D, Cooney MT, Kavousi M, Stevens G, Riley LM, Savin S, Khan T, and Altay S. World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. The Lancet Global Health 7: 1332-1345, 2019. 2. Cecelja M, and Chowienczyk P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovascular Disease 1: 1-10, 2012. 3. Mah E, and Bruno RS. Postprandial hyperglycemia on vascular endothelial function: Mechanisms and consequences. Nutrition Research 32: 727-740, 2012. 4. Kobayashi R, Yoshida S, and Okamoto T. Arterial stiffness after glucose ingestion in exercise-trained versus untrained men. Applied Physiology, Nutrition, and Metabolism 40: 1151-1156, 2015. 5. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol J-P, and Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. Jama 295: 1681-1687, 2006. 6. Eichner NZ, Gaitán JM, Gilbertson NM, Khurshid M, Weltman A, and Malin SK. Postprandial augmentation index is reduced in adults with prediabetes following continuous and interval exercise training. Experimental Physiology 104: 264-271, 2019. 7. Ho SS, Dhaliwal SS, Hills A, and Pal S. Acute exercise improves postprandial cardiovascular risk factors in overweight and obese individuals. Atherosclerosis 214: 178-184, 2011. 8. Kobayashi R, Hashimoto Y, Hatakeyama H, and Okamoto T. Acute effects of aerobic exercise intensity on arterial stiffness after glucose ingestion in young men. Clinical Physiology and Functional Imaging 38: 138-144, 2018. 9. Pau M, Leban B, Collu G, and Migliaccio GM. Effect of light and vigorous physical activity on balance and gait of older adults. Archives of Gerontology and Geriatrics 59: 568-573, 2014. 10. Andersson C, and Vasan RS. Epidemiology of cardiovascular disease in young individuals. Nature Reviews Cardiology 15: 230, 2018. 11. AlGhatrif M, Strait JB, Morrell CH, Canepa M, Wright J, Elango P, Scuteri A, Najjar SS, Ferrucci L, and Lakatta EG. Longitudinal trajectories of arterial stiffness and the role of blood pressure: The baltimore longitudinal study of aging. Hypertension 62: 934-941, 2013. 12. Kobayashi R, Hatakeyama H, Hashimoto Y, and Okamoto T. Acute effects of different aerobic exercise duration on pulse wave velocity in healthy young men. J Sports Med Phys Fitness 57: 1695-1701, 2017. 13. Zieman SJ, Melenovsky V, and Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arteriosclerosis, Thrombosis, and Vascular Biology 25: 932-943, 2005. 14. Williams B. The aorta and resistant hypertension. Elsevier, 2009. 15. Sugawara J, Tomoto T, and Tanaka H. Arterial path length estimation for heart-to-brachium pulse wave velocity. Hypertension Research 41: 444-450, 2018. 16. Sugawara J, Tomoto T, and Tanaka H. Heart-to-brachium pulse wave velocity as a measure of proximal aortic stiffness: MRI and longitudinal studies. American Journal of Hypertension 32: 146-154, 2019. 17. McEniery CM, Wilkinson IB, and Avolio AP. Age, hypertension and arterial function. Clinical and Experimental Pharmacology and Physiology 34: 665-671, 2007. 18. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, Jones DW, Materson BJ, Oparil S, and Wright Jr JT. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. Jama 289: 2560-2571, 2003. 19. Kobayashi R, Yoshida S, and Okamoto T. Effects of acute aerobic exercise on arterial stiffness before and after glucose ingestion. International Journal of Sports Medicine 38: 12-18, 2017. 20. Stern MP, Williams K, and Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: Do we need the oral glucose tolerance test? Annals of Internal Medicine 136: 575-581, 2002. 21. Varty CJ. Effects of different exercise modalities on postprandial vascular endothelial function in overweight and obese adults. Miami University, 2018. 22. Baynard T, Carhart R, Weinstock R, Ploutz-Snyder L, and Kanaley J. Short-term exercise training improves aerobic capacity with no change in arterial function in obesity. European Journal of Applied Physiology 107: 299, 2009. 23. Maeda S, Miyauchi T, Kakiyama T, Sugawara J, Iemitsu M, Irukayama-Tomobe Y, Murakami H, Kumagai Y, Kuno S, and Matsuda M. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sciences 69: 1005-1016, 2001. 24. Wilkinson IB, and McEniery CM. Arterial stiffness, endothelial function and novel pharmacological approaches. Clinical and Experimental Pharmacology and Physiology 31: 795-799, 2004. 25. Kang S-J, Kim E-h, and Ko K-J. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome. Journal of Physical Therapy Science 28: 1764-1768, 2016. 26. Tucker WJ, Sawyer BJ, Jarrett CL, Bhammar DM, Ryder JR, Angadi SS, and Gaesser GA. High-intensity interval exercise attenuates but does not eliminate endothelial dysfunction after a fast food meal. American Journal of Physiology-Heart and Circulatory Physiology 314: 188-194, 2018. 27. Way KL, Sultana RN, Sabag A, Baker MK, and Johnson NA. The effect of high Intensity interval training versus moderate intensity continuous training on arterial stiffness and 24 h blood pressure responses: A systematic review and meta-analysis. Journal of Science and Medicine in Sport 22: 385-391, 2019. 28. Pescatello LS, Riebe D, and Thompson PD. ACSM's guidelines for exercise testing and prescription. Lippincott Williams Wilkins, 2014. 29. Murray T, Yang EY, Brunner G, Kumar A, Lakkis N, Misra A, Virani SS, Hartley CJ, Morrisett JD, and Ballantyne CM. Postprandial effects on arterial stiffness parameters in healthy young adults. Vascular Medicine 20: 501-508, 2015. 30. Mc Clean CM, Mc Laughlin J, Burke G, Murphy MH, Trinick T, Duly E, and Davison GW. The effect of acute aerobic exercise on pulse wave velocity and oxidative stress following postprandial hypertriglyceridemia in healthy men. European Journal of Applied Physiology 100: 225-234, 2007. 31. Colberg SR, Zarrabi L, Bennington L, Nakave A, Somma CT, Swain DP, and Sechrist SR. Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. Journal of the American Medical Directors Association 10: 394-397, 2009. 32. Nygaard H, Rønnestad BR, Hammarström D, Holmboe-Ottesen G, and Høstmark AT. Effects of exercise in the fasted and postprandial state on interstitial glucose in hyperglycemic individuals. Journal of Sports Science Medicine 16: 254, 2017. 33. Borror A, Zieff G, Battaglini C, and Stoner L. The effects of postprandial exercise on glucose control in individuals with type 2 diabetes: A systematic review. Sports Medicine 48: 1479-1491, 2018. 34. Larsen J, Dela F, Madsbad S, and Galbo H. The effect of intense exercise on postprandial glucose homeostasis in type II diabetic patients. Diabetologia 42: 1282-1292, 1999. 35. Zhou Z, He Z, Yuan M, Yin Z, Dang X, Zhu J, and Zhu W. Longer rest intervals do not attenuate the superior effects of accumulated exercise on arterial stiffness. European Journal of Applied Physiology 115: 2149-2157, 2015. 36. Zdrenghea D, Bódizs G, Ober MC, and Ilea M. Plasma nitric oxide metabolite levels increase during successive exercise stress testing–A link to delayed ischemic preconditioning? Experimental Clinical Cardiology 8: 26, 2003. 37. Kobayashi R, Hatakeyama H, Hashimoto Y, and Okamoto T. Acute effects of accumulated aerobic exercise on aortic and peripheral pulse wave velocity in young males. Journal of Physical Therapy Science 30: 181-184, 2018. 38. Shambrook P, Kingsley MI, Taylor NF, Wundersitz DW, Wundersitz CE, and Gordon BA. Multiple short bouts of exercise are better than a single continuous bout for cardiometabolic health: A randomised crossover trial. European Journal of Applied Physiology 1-9, 2020. 39. Morrison DJ, Kowalski GM, Grespan E, Mari A, Bruce CR, and Wadley GD. Measurement of postprandial glucose fluxes in response to acute and chronic endurance exercise in healthy humans. American Journal of Physiology-Endocrinology and Metabolism 314: 503-511, 2018. 40. Kobayashi R, Hashimoto Y, Hatakeyama H, and Okamoto T. Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion. Clinical and Experimental Hypertension 41: 123-129, 2019. 41. Malin SK, Rynders CA, Weltman JY, Jackson Roberts L, Barrett EJ, and Weltman A. Endothelial function following glucose ingestion in adults with prediabetes: Role of exercise intensity. Obesity 24: 1515-1521, 2016. 42. Takaishi T, and Hayashi T. Stair ascending–descending exercise accelerates the decrease in postprandial hyperglycemia more efficiently than bicycle exercise. BMJ Open Diabetes Research and Care 5: 2017. 43. Hatamoto Y, Goya R, Yamada Y, Yoshimura E, Nishimura S, Higaki Y, and Tanaka H. Effect of exercise timing on elevated postprandial glucose levels. Journal of Applied Physiology 123: 278-284, 2017. 44. Li Z, Hu Y, Yan R, Zhang D, Li H, Li F, Su X, and Ma J. Twenty minute moderate-intensity post-dinner exercise reduces the postprandial glucose response in chinese patients with type 2 diabetes. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 24: 7170, 2018. 45. Terada T, Wilson BJ, Myette-Côté E, Kuzik N, Bell GJ, McCargar LJ, and Boulé NG. Targeting specific interstitial glycemic parameters with high-intensity interval exercise and fasted-state exercise in type 2 diabetes. Metabolism 65: 599-608, 2016. 46. Park S, and Lakatta EG. Role of inflammation in the pathogenesis of arterial stiffness. Yonsei Medical Journal 53: 258-261, 2012. 47. Endemann DH, and Schiffrin EL. Endothelial dysfunction. Journal of the American Society of Nephrology 15: 1983-1992, 2004. 48. Mugge A, Elwell JH, Peterson TE, and Harrison DG. Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. American Journal of Physiology-Cell Physiology 260: 219-225, 1991. 49. Gaweł S, Wardas M, Niedworok E, and Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci Lekarskie (Warsaw, Poland: 1960) 57: 453-455, 2004. 50. Lacroix S, Des Rosiers C, Tardif J-C, and Nigam A. The role of oxidative stress in postprandial endothelial dysfunction. Nutrition Research Reviews 25: 288-301, 2012. 51. Sies H, Stahl W, and Sevanian A. Nutritional, dietary and postprandial oxidative stress. The Journal of Nutrition 135: 969-972, 2005. 52. Marfella R, Quagliaro L, Nappo F, Ceriello A, and Giugliano D. Acute hyperglycemia induces an oxidative stress in healthy subjects. The Journal of Clinical Investigation 108: 635-636, 2001. 53. Serin O, Konukoglu D, Firtina S, and Mavis O. Serum oxidized low density lipoprotein, paraoxonase 1 and lipid peroxidation levels during oral glucose tolerance test. Hormone and Metabolic Research 39: 207-211, 2007. 54. Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, Kugiyama K, Ogawa H, and Yasue H. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. Journal of the American College of Cardiology 34: 146-154, 1999. 55. Fisher-Wellman K, and Bloomer RJ. Acute exercise and oxidative stress: A 30 year history. Dynamic Medicine 8: 1-25, 2009. 56. Hauschka PV, Lian JB, Cole D, and Gundberg CM. Osteocalcin and matrix Gla protein: Vitamin K-dependent proteins in bone. Physiological Reviews 69: 990-1047, 1989. 57. Engelke JA, Hale JE, Suttie J, and Price PA. Vitamin K-dependent carylase: Utilization of decarylated bone Gla protein and matrix Gla protein as substrates. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1078: 31-34, 1991. 58. Zanatta LC, Boguszewski CL, Borba VZ, and Kulak CA. Osteocalcin, energy and glucose metabolism. Arquivos Brasileiros de Endocrinologia Metabologia 58: 444-451, 2014. 59. Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia 54: 1291-1297, 2011. 60. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, and Jung DY. Endocrine regulation of energy metabolism by the skeleton. Cell 130: 456-469, 2007. 61. Ferron M, Hinoi E, Karsenty G, and Ducy P. Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proceedings of the National Academy of Sciences 105: 5266-5270, 2008. 62. Chowdhury S, Schulz L, Palmisano B, Singh P, Berger JM, Yadav VK, Mera P, Ellingsgaard H, Hidalgo J, and Brüning J. Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. The Journal of Clinical Investigation 130: 2888-2902, 2020. 63. Greenhill C. Osteocalcin in the adaptation to exercise. Nature Reviews Endocrinology 12: 434-434, 2016. 64. Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galán-Díez M, Lacampagne A, Mitchell SJ, Mattison JA, and Chen Y. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metabolism 23: 1078-1092, 2016. 65. Levinger I, Zebaze R, Jerums G, Hare DL, Selig S, and Seeman E. The effect of acute exercise on undercarboxylated osteocalcin in obese men. Osteoporosis International 22: 1621-1626, 2011. 66. Yeap BB, Chubb SP, Flicker L, McCaul KA, Ebeling PR, Beilby JP, and Norman PE. Reduced serum total osteocalcin is associated with metabolic syndrome in older men via waist circumference, hyperglycemia, and triglyceride levels. European Journal of Endocrinology 163: 265-272, 2010. 67. Parati G, and Salvi P. Arterial stiffness and the sympathetic nervous system. In: Blood Pressure and Arterial Wall Mechanics in Cardiovascular DiseasesSpringer, 2014, 163-173. 68. Boutouyrie P, Lacolley P, Girerd X, Beck L, Safar M, and Laurent S. Sympathetic activation decreases medium-sized arterial compliance in humans. American Journal of Physiology-Heart and Circulatory Physiology 267: 1368-1376, 1994. 69. Mancia G, and Mark AL. Arterial baroreflexes in humans. Comprehensive Physiology 755-793, 2011. 70. Okada Y, Galbreath MM, Shibata S, Jarvis SS, VanGundy TB, Meier RL, Vongpatanasin W, Levine BD, and Fu Q. Relationship between sympathetic baroreflex sensitivity and arterial stiffness in elderly men and women. Hypertension 59: 98-104, 2012. 71. Garrard Jr CL, Weissler AM, and Dodge HT. The relationship of alterations in systolic time intervals to ejection fraction in patients with cardiac disease. Circulation 42: 455-462, 1970. 72. Lewis RP, Rittogers S, Froester W, and Boudoulas H. A critical review of the systolic time intervals. Circulation 56: 146-158, 1977. 73. Krohová J, Czippelová B, Turianiková Z, Lazarová Z, Tonhajzerová I, and Javorka M. Preejection period as a sympathetic activity index: A role of confounding factors. 2017. 74. Mezzacappa ES, Kelsey RM, and Katkin ES. The effects of epinephrine administration on impedance cardiographic measures of cardiovascular function. International Journal of Psychophysiology 31: 189-196, 1999. 75. Michael S, Graham KS, and Davis GM. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—A review. Frontiers in Physiology 8: 301, 2017. 76. Gould L, Reddy CR, Goswami K, Venkataraman K, and Gomprecht RF. Cardiac effects of two cocktails in normal man. Chest 63: 943-947, 1973. 77. Carpio-Rivera E, Moncada-Jiménez J, Salazar-Rojas W, and Solera-Herrera A. Acute effects of exercise on blood pressure: A meta-analytic investigation. Arquivos Brasileiros de Cardiologia 106: 422-433, 2016. 78. Title LM, Cummings PM, Giddens K, and Nassar BA. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: An effect prevented by vitamins C and E. Journal of the American College of Cardiology 36: 2185-2191, 2000. 79. Steinberg JG, Ba A, BRéGEON F, Delliaux S, and Jammes Y. Cytokine and oxidative responses to maximal cycling exercise in sedentary subjects. Medicine and Science in Sports and Exercise 39: 964-968, 2007. 80. Steinberg JG, Delliaux S, and Jammes Y. Reliability of different blood indices to explore the oxidative stress in response to maximal cycling and static exercises. Clinical Physiology and Functional Imaging 26: 106-112, 2006. 81. Vincent HK, Morgan JW, and Vincent KR. Obesity exacerbates oxidative stress levels after acute exercise. Medicine and Science in Sports and Exercise 36: 772-779, 2004. 82. Vider J, Lehtmaa J, Kullisaar T, Vihalemm T, Zilmer K, Kairane Č, Landor A, Karu T, and Zilmer M. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology 7: 263-270, 2001. 83. Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, Haga S, Ji LL, and Ohno H. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. European Journal of Applied Physiology 84: 1-6, 2001. 84. Buczynski A, Kedziora J, Tkaczewski W, and Wachowicz B. Effect of submaximal physical exercise on antioxidative protection of human blood platelets. International Journal of Sports Medicine 12: 52-54, 1991. 85. Elosua R, Molina L, Fito M, Arquer A, Sanchez-Quesada J, Covas M, Ordonez-Llanos J, and Marrugat J. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis 167: 327-334, 2003. 86. Gregersen S, Samocha-Bonet D, Heilbronn L, and Campbell L. Inflammatory and oxidative stress responses to high-carbohydrate and high-fat meals in healthy humans. Journal of Nutrition and Metabolism 2012: 2012. 87. Rong H, Berg U, Tørring O, Sundberg C, Granberg B, and Bucht E. Effect of acute endurance and strength exercise on circulating calcium‐regulating hormones and bone markers in young healthy males. Scandinavian Journal of Medicine Science in Sports 7: 152-159, 1997. 88. Welsh L, Rutherford O, James I, Crowley C, Comer M, and Wolman R. The acute effects of exercise on bone turnover. International Journal of Sports Medicine 18: 247-251, 1997. 89. Levinger I, Jerums G, Stepto NK, Parker L, Serpiello FR, McConell GK, Anderson M, Hare DL, Byrnes E, and Ebeling PR. The effect of acute exercise on undercarboxylated osteocalcin and insulin sensitivity in obese men. Journal of Bone and Mineral Research 29: 2571-2576, 2014. 90. Paldanius P, Ivaska K, Hovi P, Andersson S, Väänänen H, Kajantie E, and Mäkitie O. The effect of oral glucose tolerance test on serum osteocalcin and bone turnover markers in young adults. Calcified Tissue International 90: 90-95, 2012. 91. Maher JT, Beller GA, Ransil BJ, and Hartley LH. Systolic time intervals during submaximal and maximal exercise in man. American Heart Journal 87: 334-342, 1974. 92. Nandi PS, and Spodick DH. Recovery from exercise at varying work loads. Time course of responses of heart rate and systolic intervals. British Heart Journal 39: 958, 1977. 93. Fagius J, and Berne C. Increase in muscle nerve sympathetic activity in humans after food intake. Clinical Science 86: 159-167, 1994. 94. de Boer EC, de Rooij SR, Olthof MR, and Vrijkotte TG. Sugar-sweetened beverages intake is associated with blood pressure and sympathetic nervous system activation in children. Clinical Nutrition ESPEN 28: 232-235, 2018. 95. Synowski SJ, Kop WJ, Warwick ZS, and Waldstein SR. Effects of glucose ingestion on autonomic and cardiovascular measures during rest and mental challenge. Journal of Psychosomatic Research 74: 149-154, 2013. 96. Rowe JW, Young JB, Minaker KL, Stevens AL, Pallotta J, and Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 30: 219-225, 1981. 97. Vollenweider P, Tappy L, Randin D, Schneiter P, Jequier E, Nicod P, and Scherrer U. Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. The Journal of Clinical Investigation 92: 147-154, 1993. 98. Anderson EA, Hoffman R, Balon T, Sinkey C, and Mark A. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. The Journal of Clinical Investigation 87: 2246-2252, 1991. 99. Muntzel MS, Anderson EA, Johnson AK, and Mark AL. Mechanisms of insulin action on sympathetic nerve activity. Clinical and Experimental Hypertension 17: 39-50, 1995. 100. Reant P, Dijos M, Donal E, Mignot A, Ritter P, Bordachar P, Dos Santos P, Leclercq C, Roudaut R, and Habib G. Systolic time intervals as simple echocardiographic parameters of left ventricular systolic performance: Correlation with ejection fraction and longitudinal two-dimensional strain. European Journal of Echocardiography 11: 834-844, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79613 | - |
| dc.description.abstract | "背景: 高糖飲食可能會造成氧化壓力提高、動脈硬化,與提升罹患心血管疾病的風險; 單次有氧運動則有助於改善動脈硬化。然而,單次有氧運動對於攝取不同劑量葡萄糖後血管功能之改善效益,以及其他相關心血管因子變化尚不清楚,並且研究對象也僅限於健康成人。目的: 探討執行單次有氧運動後攝取不同劑量葡萄糖補充液,對於高血壓前期男性餐後動脈硬化、氧化壓力、骨鈣素 (osteocalcin, OC) 及交感神經之影響。方法: 12名高血壓前期男性 (28 ± 4歲) 為研究對象,隨機交叉分配為控制組 (安慰劑, Con)、低糖組 (25克葡萄糖, 25g) 與高糖組 (75克葡萄糖, 75g),每組實驗中間至少間隔一週。運動前測量血管硬化指標 (心跳、血壓、心-肱脈波傳導速度、收縮間隔) 與抽血取樣 (血糖、胰島素) 後,執行30分鐘65%保留心跳率 (heart rate reserve, HRR) 之跑步機慢跑,運動結束立即飲用250克葡萄糖補充液。接著,分別在運動後30、60、90與120分鐘測量血管硬化指標與抽血取樣。此外,在運動前與運動後30分鐘氧化壓力與骨鈣素也會進行採樣分析。結果: 75g組在運動後60分鐘之心-肱脈波傳導速度(heart-brachial pulse wave velocity, hbPWV) 顯著高於Con (75g: 3.35±0.48 m/s; Con: 3.14±0.40 m/s)。超氧化物歧化酶 (superoxide dismutase, SOD) 運動後些微上升,但無顯著差異。丙二醛 (malondialdehyde, MDA) 運動後僅25g組顯著上升 (Pre-test: 8.9±1.7 nmol/mL; 30min: 10.6±2.2 nmol/mL),75g組接近顯著差異 (Pre-test: 9.0±2.4 nmol/mL; 30min: 11.5±3.1 nmol/mL, p=0.059)。25g與75g組左心室射血時間 (ejection time, ET)、射血前期 (pre-ejection period, PEP) 在運動後30分鐘皆顯著下降。結論: 單次有氧運動對中心動脈硬化改善效果不顯著,但攝取高劑量葡萄糖後60分鐘會導致中心動脈硬化程度保持較高水平,可能與高胰島素濃度造成的心臟交感神經興奮有關,而非MDA或SOD。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:05:14Z (GMT). No. of bitstreams: 1 U0001-1009202100450300.pdf: 1818483 bytes, checksum: f26c363cccc26420546136e272162df7 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 IX 附錄 X 第壹章 緒論 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究假設 2 第四節 名詞操作性定義 2 第五節 研究限制 3 第六節 研究的重要性 3 第貳章 文獻探討 4 第一節 動脈硬化 4 (一) 動脈硬化之機轉 4 (二) 評估動脈硬化之指標 4 第二節 餐後高血糖與動脈硬化 5 第三節 有氧運動與動脈硬化 6 (一) 有氧運動改善動脈硬化之可能機轉 6 (二) 有氧運動變項與改善動脈硬化之關係 6 第四節 動脈硬化與氧化壓力之探討 13 第五節 有氧運動後攝取葡萄糖之血清總骨鈣素反應 13 第六節 動脈硬化與交感神經活動之探討 15 第參章 研究方法 17 第一節 實驗對象 17 第二節 實驗時間與地點 18 第三節 材料與設備 18 (一) 增補劑 18 (二) 儀器與設備 18 第四節 實驗流程 19 第五節 實驗方法與步驟 19 (一) 實驗前準備 19 (二) 運動前檢測 20 (三) 有氧運動與增補 20 (四) 運動後檢測 20 第六節 統計分析 21 第肆章 結果 22 第一節 血液樣本分析 22 (一) 血糖 22 (二) 胰島素 23 (三) 血清總骨鈣素 24 (四) 血清超氧化物歧化酶 25 (五) 血清丙二醛 25 第二節 生理訊號結果分析 25 (一) 心跳 26 (二) 收縮壓 27 (三) 舒張壓 27 (四) 射血時間 28 (五) 射血前期 28 (六) PEP/ET 29 (七) 心-肱脈波傳導速度 30 第三節 變項間之相關性與線性回歸 31 (一) 心跳率與射血時間 31 (二) 胰島素與射血前期 32 (三) PEP/ETc與心-肱脈波傳導速度 32 第伍章 討論與結論 34 第一節 攝取不同濃度葡萄糖後運動恢復期之生理反應 34 第二節 探討運動恢復期影響中心動脈硬化之可能機制 36 第三節 研究結果之應用與限制 38 第四節 結論 39 參考文獻 40 | |
| dc.language.iso | zh-TW | |
| dc.title | 有氧運動後攝取不同劑量葡萄糖對高血壓前期男性氧化壓力、心臟交感神經活動與中心脈波傳導速度之影響 | zh_TW |
| dc.title | "Effects of Glucose Intake Doses after Acute Aerobic Exercise on Oxide Stress, Cardiac Sympathetic Nervous Activity and Central Pulse Wave Velocity in Male Prehypertensives " | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖翊宏(Hsin-Tsai Liu),林原佑(Chih-Yang Tseng) | |
| dc.subject.keyword | 動脈功能,收縮間隔,氧化壓力,心臟交感神經活動,胰島素, | zh_TW |
| dc.subject.keyword | arterial function,systole time intervals,oxide stress,cardiac sympathetic nervous activity,insulin, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202103097 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-11 | |
| dc.contributor.author-dept | 共同教育中心 | zh_TW |
| dc.contributor.author-dept | 運動設施與健康管理碩士學位學程 | zh_TW |
| 顯示於系所單位: | 運動設施與健康管理碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1009202100450300.pdf | 1.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
