請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79601完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張育森(Yu-Sen Chang) | |
| dc.contributor.author | Cheng-Hsuan Chen | en |
| dc.contributor.author | 陳正瑄 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:04:54Z | - |
| dc.date.available | 2026-09-12 | |
| dc.date.available | 2022-11-23T09:04:54Z | - |
| dc.date.copyright | 2021-09-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-13 | |
| dc.identifier.citation | 林凡暐. 2019. 甜菜鹼與幾丁質對萵苣和玉米水利用效率之影響. 國立台灣大學園藝研究所碩士論文. 台北. 馬家齊. 2015. 氣候變遷下因應枯旱之水庫供灌區農業用水管理. 國立中央大學土木工程研究所博士論文. 桃園. 曹生奎、馮起、司建華、常宗強、卓瑪錯、席海洋、蘇永紅. 2009. 植物葉片水分利用效率研究綜述. 生態學報. 29:3882-3892. 陳映榕. 2017. 提升蔬菜作物水分利用效率之灌溉方式. 國立台灣大學園藝研究所碩士論文.台北. 楊田甜、申繼忠. 2016. 植物生物刺激劑簡介.中國農藥12:62-66. 劉秀秀、馮小亮、呂東波. 2017. 生物刺激素在農業中的應用現狀及發展前景. 南方農業 11:88-89 鄭友誠. 2016. 氣候變遷下農業灌溉水資源調適因應策略. 農政與農情第285期. 行政院農業委員會. 陳昱安. 2017. 臺灣水稻田轉作政策之思維演變. 農政與農情第301期. 行政院農業委員會. 王建程、嚴昌榮、卜玉山. 2005. 不同水分與養分水準對玉米葉綠素螢光特性的影響. 中國農業氣象 26:95-98. 吳甘霖、段仁燕、王志高、張中信、吳禮鳳. 2010. 乾旱和複水對草莓葉片葉綠素螢光特性的影響. 生態學報:3941-3946. 宋麗莉、趙華強、朱小倩、董根西, and 謝戎. 2011. 高溫脅迫對水稻光合作用和葉綠素螢光特性的影響. 安徽農業科學 39:13348-13353. 李曉、馮偉、曾曉春. 2006. 葉綠素螢光分析技術及應用進展. 西北植物學報 26:2186-2196. 蒙祖慶、宋豐萍、劉振興、張方凱. 2012. 乾旱及複水對油菜苗期光合及葉綠素螢光特性的影響. 中國油料作物學報 34:40. 林尉濤. 2002. 乾旱時期農業用水支援移用作業機制. 農政與農情第119期. 2021.03.28. <乾旱時期農業用水支援移用作業機制(農委會) (coa.gov.tw)> 郭松年. 丁林. 王福霞. 2009. 作物調虧灌溉理論與技術研究進展及發展趨勢. 中國農村水利水電. 8:12-16. 郭松年. 丁林. 王福霞. 2009. 作物調虧灌溉理論與技術研究進展及發展趨勢. 中國農村水利水電. 8:12-16. Agboma, P., M. Jones, P. Peltonen‐Sainio, H. Rita, and E. Pehu. 1997a. Exogenous glycinebetaine enhances grain yield of maize, sorghum and wheat grown under two supplementary watering regimes. J. Agron. Crop Sci. 178:29-37. Agboma, P., T. Sinclair, K. Jokinen, P. Peltonen-Sainio, and E. Pehu. 1997b. An evaluation of the effect of exogenous glycinebetaine on the growth and yield of soybean: timing of application, watering regimes and cultivars. Field Crops Res. 54:51-64. Agrawal, G.K., R. Rakwal, S. Tamogami, M. Yonekura, A. Kubo, and H. Saji. 2002. chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol. Biochem. 40:1061-1069. Ahmad, M. I., Shah, A. N., Sun, J., and Song, Y. 2020. Comparative study on leaf gas exchange, growth, grain yield, and water use efficiency under irrigation regimes for two maize hybrids. Agriculture, 10:369. Ahmed, N., Y. Zhang, K. Li, Y. Zhou, M. Zhang, and Z. Li. 2019. Exogenous application of glycine betaine improved water use efficiency in winter wheat (Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions. The Crop Journal 7:635-650. Ali, Z., S.M.A. Basra, H. Munir, A. Mahmood, and S. Yousaf. 2011. Mitigation of drought stress in maize by natural and synthetic growth promoters. J. Agric. Soc. Sci 7:56-62. Ashraf, M. and M. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Expt. Bot. 59:206-216. Attia, Z., A. Dalal, and M. Moshelion. 2020. Vascular bundle sheath and mesophyll cells modulate leaf water balance in response to chitin. Plant. 101:1368-1377. Bélair, G. and N. Tremblay. 1995. The influence of chitin-urea amendments applied to an organic soil on a Meloidogyne hapla population and on the growth of greenhouse tomato. Phytoprotection 76:75-80. Björkman, O. and B. Demmig. 1987. Photon yield of O 2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504. Boland, A. M., P. D. Mitchell, P. H. Jerie and I. Goodwin. 1993. The effect of regulated deficit irrigation on tree water use and growth of peach. J. Hortic. Sci. 68:261-264. Brown, P., S. Saa. 2015. Biostimulants in agriculture. Frontiers Plant Science. 6:671. Cakir, R. 2004. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89:1-16. Calatayud A., Barreno E. 2001. Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environmental Pollution 11: 283-289. Chai, Q., Y. Gan, C. Zhao, H.L. Xu, R.M. Waskom, Y. Niu, and K.H.MSiddique. 2015. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 36:3. Chaves, M. M. and M. M. Oliveira. 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J. Exp. Bot. 55:2365-2384. Chen, T.H. and N. Murata. 2002. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion Plant Biol. 5:250-257. Chen, T.H. and N. Murata. 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 13:499-505. Cheng, M., H. Wang, J. Fan, F. Zhang, and X. Wang. 2021. Effects of Soil Water Deficit at Different Growth Stages on Maize Growth, Yield, and Water Use Efficiency under Alternate Partial Root-Zone Irrigation. Water 13:148. Chiuta, N.E. and C.S. Mutengwa. 2018. Response of Yellow Quality Protein Maize Inbred Lines to Drought stress at Seedling Stage. Agronomy 8:287. Cicchino, M., J.I.R. Edreira, and M.E. Otegui. 2010. Heat Stress during Late Vegetative Growth of Maize: Effects on Phenology and Assessment of Optimum Temperature. Crop Science 50:1431-1437. doi: https://doi.org/10.2135/cropsci2009.07.0400. Comas, L.H., T.J. Trout, K.C. DeJonge, H. Zhang, and S.M. Gleason. 2019. Water productivity under strategic growth stage-based deficit irrigation in maize. Agricultural water management 212:433-440. Costa, J.M., M.F. Ortuño, and M.M. Chaves. 2007. Deficit Irrigation as a Strategy to Save Water: Physiology and Potential Application to Horticulture. Journal of Integrative Plant Biology 49:1421-1434. doi: https://doi.org/10.1111/j.1672-9072.2007.00556.x. Cutforth, H.W., C.F. Shaykewich, and C.M. Cho. 1986. Effect of soil water and temperature on corn (Zea mays) root growth during emergence. Canadian Journal of Soil Science 66:51-58. doi: 10.4141/cjss86-006. Davies, W.J. and J. Zhang. 1991. Root signals and the regulation of growth and development of plants in drying soil. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:55-76. de Oliveira Maia Júnior, S., J.R. de Andrade, C.M. dos Santos, J.V. Santos, L.K. dos Santos Silva, P.R. Aprígio Clemente, V.M. Ferreira, J.V. Silva, and L. Endres. 2020. Foliar-applied glycine betaine minimizes drought stress-related impact to gas exchange and the photochemical efficiency of PSII in sugarcane. Theoretical and Experimental Plant Physiology 32:315-329. doi: 10.1007/s40626-020-00188-5. de Souza, T. C., P. C. Magalhães, E. M. de Castro, P. E. P. de Albuquerque and M. A. Marabesi.2013. The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta physiologiae plantarum. 35:515-527. Demmig‐Adams, B. and W.W. Adams III. 2006. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytologist 172:11-21. Demming-Adams B., Adams W. W. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Science 1:21-26. Du Jardin, P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae. 196:3-14. Du, T., S. Kang, J. Zhang, and W. J. Davies. 2015. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 66:2253–2269. Efeoğlu, B., Y. Ekmekçi, and N. Çiçek. 2009. Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany 75:34-42. El Hadrami, A., L.R. Adam, I. El Hadrami, and F. Daayf. 2010. chitosan in plant protection. Marine Drugs 8:968-987. Eskling M., Arvidsson P.O., Akerlund H.E. 1997. The xanthophyll cycle, its regulation and components. Physiologia Plantarum 100 : 806-816. Farouk, S. and I.M. El-Metwally. 2019. Synergistic responses of drip-irrigated wheat crop to chitosan and/or silicon under different irrigation regimes. Agricultural Water Management 226:105807. Fracheboud, Y. and J. Leipner. 2003. The application of chlorophyll fluorescence to study light, temperature, and drought stress, p. 125-150.). Practical applications of chlorophyll fluorescence in plant biology. Springer. Fracheboud, Y., P. Haldimann, J. Leipner, and P. Stamp. 1999. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50. doi: 10.1093/jexbot/50.338.1533. Gaffney, J., J. Schussler, C. Löffler, W. Cai, S. Paszkiewicz, C. Messina, J. Groeteke, J. Keaschall, and M. Cooper. 2015. Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US Corn Belt. Crop Sci. 55:1608-1618. Gavloski, J., C. Ellis, and G. Whitfield. 1992. Effect of restricted watering on sap flow and growth in corn (Zea mays L.). Canadian Journal of Plant Science 72:361-368. Gilmore A.M., Hazlett T., Govindjee L. 1995. Xanthophyll cycle-dependent quenching photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime. Plant Biology 92: 2273-2277. Golabadi, M., A. Arzani, and S.M. Maibody. 2006. Assessment of drought tolerance in segregating populations in durum wheat. Afr. J. Agric. Res. 1:162-171. Goodwin, I. and A. M. Boland. 2002. Scheduling deficit irrigation of fruit trees for optimizing water use efficiency. In: Deficit irrigation practices, Water reports 22. FAO, Rome, pp 67-78. Gozzo, F. and F. Faoro. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J. Agr. Food Chem. 61:12473-12491. Grzesiak, S. 2001. Genotypic variation between maize (Zea mays L.) single cross hybrids in response to drought stress. Acta Physiol. Plant. 23:443-456. Hadwiger, L.A. 2013. Multiple effects of chitosan on plant systems: solid science or hype. J. Plant Pathol. 114:405-413. Halli, H.M., S. Angadi, A. Kumar, P. Govindasamy, R. Madar, D.O. El-Ansary, M.A. Rashwan, S.A.M. Abdelmohsen, A.M.M. Abdelbacki, E.A. Mahmoud, and H.O. Elansary. 2021. Influence of Planting and Irrigation Levels as Physical Methods on Maize Root Morphological Traits, Grain Yield and Water Productivity in Semi-Arid Region. Agronomy 11:294. Hayat, S., Q. Hayat, M.N. Alyemeni, A.S. Wani, J. Pichtel, and A. Ahmad. 2012. Role of proline under changing environments: a review. Plant signaling behavior 7:1456-1466. Howell, T.A. 2003. Irrigation efficiency. Encyclopedia of Water Science. Marcel Dekker, New York. 467-472. IEA. 2010. World Energy Outlook 2010. Paris: OECD/ International Energy Agency. doi: https://www.iea.org/reports/world-energy-outlook-2010 IEA. 2016. World energy outlook. Paris.improvement of global environment and food. Springer. Dordrecht, The Netherlands. doi: https://www.iea.org/reports/world-energy-outlook-2016 Iriti, M., V. Picchi, M. Rossoni, S. Gomarasca, N. Ludwig, M. Gargano, and F. Faoro. 2009. chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ. Expt. Bot. 66:493-500. Jagendorf, A.T. and T. Takabe. 2001. Inducers of glycinebetaine synthesis in barley. Plant Physiol.127:1827-1835. Jin, N., J. He and Q Fang. 2020. The Responses of Maize Yield and Water Use to Growth Stage-Based Irrigation on the Loess Plateau in China. Int. J. Plant Prod. 14, 621–633 Jin, N., J. He, Q. Fang, C. Chen, Q. Ren, L. He, N. Yao, L. Song, and Q. Yu. 2020. The Responses of Maize Yield and Water Use to Growth Stage-Based Irrigation on the Loess Plateau in China. International Journal of Plant Production 14:621-633. doi: 10.1007/s42106-020-00105-5. Jin, Z., Q.-w. XUE, K.E. Jessup, X.-b. HOU, B.-z. HAO, T.H. Marek, W.-w. XU, S.R. Evett, S.A. O'Shaughnessy, and D.K. Brauer. 2018. Shoot and root traits in drought tolerant maize (Zea mays L.) hybrids. Journal of integrative agriculture 17:1093-1105. Kaman, H. and C. Kırda. 2017. Response of maize to partial-root-drying irrigation. Pakistan Journal of Agricultural Sciences 54. Kang, S. Z. and J. H. Zhang. 2004. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J. Exp. Bot. 55:2437-2446. Kang, S.Z and J. H.Z.Hang. 2004. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J. Exp. Botany. 55:2437-2466. Karimizadeh, R. and M. Mohammadi. 2011. Association of canopy temperature depression with yield of durum wheat genotypes under supplementary irrigated and rainfed conditions. Aust. J. Crop. Sci. 5:138-146. Katiyar, D., A. Hemantaranjan, and B. Singh. 2015. chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J. Plant Physiol. 20:1-9. Kato M.C., Hikosaka K., Hirotsu N., Makino A., Hirose T. (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms the rate of photoinactivation in photosystem II. Plant Cell Physiol. 44(3):318-325. Kautsky H., Hirsch A. 1934. Das Fluoreszenzverhalten griiner Pflanzen. Biochem. Zeitschrift 274: 422-434 Kirkham, M. B. 1983. Physical model of water in a split-root system. Plant Soil. 75:153–168. Krupa Z., Oquist G., Huner N., 1992. The influence of cadmium on primary photosystem II photochemistry in bean as revealed by chlorophyll a fluorescence - a preliminary study. Acta Physiol. Plant., 14, 71–76. Kusakabe, A., B.A. Contreras-Barragan, C.R. Simpson, J.M. Enciso, S.D. Nelson, J.C. Melgar. 2016. Application of partial rootzone drying to improve irrigation water use efficiency in grapefruit trees. Agr. Water Mgt. 178:66-75. Li, F., C. Wei, F. Zhang, J. Zhang, M. Nong, and S. Kang. 2010. Water-use efficiency and physiological responses of maize under partial root-zone irrigation. Agricultural Water Management 97:1156-1164. doi: https://doi.org/10.1016/j.agwat.2010.01.024. Lin, F.-W., K.-H. Lin, C.-W. Wu, Y.-S. Chang, K.-H. Lin, and C.-W. Wu. 2020. Effects of Betaine and Chitin on Water Use Efficiency in Lettuce (Lactuca sativa var. capitata). HortScience horts 55:89. Liu, F. and H. Stützel. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci. Hort. 102:15–27. Liu, F., A. Shahnazari, M. N. Andersen, S. E. Jacobsen, and C. R. Jensen. 2006. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. J. Expt. Bot. 57:3727-3735. Liu, F., A. Shahnazari, M. N. Andersen, S. E. Jacobsen, and C. R. Jensen. 2006. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci. Hort. 109:113–117. Lu C., Zhang J. 1998. Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Australian Journal of Plant Physiology 25 : 883-892. Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics 444:139-158. Mäkelä, P., P. Peltonen-Sainio, K. Jokinen, E. Pehu, H. Setälä, R. Hinkkanen, and S.Somersalo. 1996. Uptake and translocation of foliar-applied glycinebetaine in crop plants. Plant Sci. 121:221-230. Mbagwu, J. and J. Osuigwe. 1985. Effects of varying levels and frequencies of irrigation on growth, yield, nutrient uptake and water use efficiency of maize and cowpeas on a sandy loam ultisol. Plant and soil 84:181-192. Michael James van oosten. 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Tech. Agri.4:89-96. Molden, D., 2003. A water-productivity framework for understanding and action. In: Kijne, J.W., Barker, R., Molden, D. (Eds.), Water Productivity in Agriculture: Limits and Opportunities for Improvement. International Water Management Institute, Colombo, Sri Lanka, pp.1-18. Moustakas, M., I. Sperdouli, T. Kouna, C.-I. Antonopoulou, and I. Therios. 2011. Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. Plant Growth Regulation 65:315-325. Murchie, E.H. and T. Lawson. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64:3983-3998. Najafi, P., and S.H. Tabatabaei. 2007. Effect of using subsurface drip irrigation and ET-HS model to increase WUE in irrigation of some crops. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage. 56:477-486 Nawaz, K. and M. Ashraf. 2010. Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J. Agron. Crop Sci. 196:28-37. Nawaz, M. and Z. Wang. 2020. Abscisic acid and glycine betaine mediated tolerance mechanisms under drought stress and recovery in Axonopus compressus: a new insight. Scientific reports 10:1-10. Osman, H.S. 2015. Enhancing antioxidant–yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Annals of Agricultural Sciences 60:389-402. Panozzo, A. D.C. Cortivo, M. Ferrari, B. S Vicelli, and T. Vamerali.2019. Morphological Changes and Expressions of AOX1A, CYP81D8, and Putative PFP Genes in a Large Set of Commercial Maize Hybrids Under Extreme Waterlogging. Frontiers in Plant Science. PEREIRA, Y.C., W.S. RODRIGUES, E.J.A. LIMA, L.R. SANTOS, M.H.L. SILVA, and A.K.S. LOBATO. 2019. Brassinosteroids increase electron transport and photosynthesis in soybean plants under water deficit. Photosynthetica 57:181-191. doi: 10.32615/ps.2019.029. Rashid, A., J.C. Stark, A. Tanveer, and T. Mustafa. 1999. Use of Canopy Temperature Measurements as a Screening Tool for Drought Tolerance in Spring Wheat. J. Agron. Crop Sci. 182:231-238. Raza, S.H., H.R. Athar, M. Ashraf, and A. Hameed. 2007. Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environmental and Experimental Botany 60:368-376. doi: https://doi.org/10.1016/j.envexpbot.2006.12.009. Ren, B., J. Zhang, S. Dong, P. Liu, and B. Zhao. 2016. Effects of Waterlogging on Leaf Mesophyll Cell Ultrastructure and Photosynthetic Characteristics of Summer Maize. PloS one 11:e0161424. doi: 10.1371/journal.pone.0161424. Rhodes, D.F. and A.D. Hanson. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann. Rev. Plant Biol. 44:357-384. Rhodes, D.F. and A.D. Hanson. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann. Rev. Plant Biol. 44:357-384. Rinaudo, M. 2006. chitin and chitosan: properties and applications. Prog. Polymer Sci. 31:603-632. Sadok, W. and T.R. Sinclair. 2011. Chapter Seven - Crops Yield Increase Under Water-Limited Conditions: Review of Recent Physiological Advances for Soybean Genetic Improvement. Adv. Agron. 113:325-349. Sah, R., M. Chakraborty, K. Prasad, M. Pandit, V. Tudu, M. Chakravarty, S. Narayan, M. Rana, and D. Moharana. 2020. Impact of water deficit stress in maize: Phenology and yield components. Scientific reports 10:1-15. Sánchez, B., Rasmussen, A. and Porter, J.R. (2014), Temperatures and the growth and development of maize and rice: a review. Glob Change Biol, 20: 408-417 Schroeder, J. I., J. M. Kwak, G. J. Allen. 2001. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327– 330. Shams, M., E. Yildirim, M. Ekinci, M. Turan, A. Dursun, F. Parlakova, and R. Kul. 2016. Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence systems in lettuce under salt stress. Hort. Environ. Biotechnol. 57:225-231. Shao, G. C., Z. Y. Zhang, N. Liu, S. E. Yu, and W. G. Xing. 2008. Comparative effects of deficit irrigation (DI) and partial root-zone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper. Sci. Hort. 119:11-16. Shemi, R., R. Wang, E.-S.M. Gheith, H.A. Hussain, S. Hussain, M. Irfan, L. Cholidah, K. Zhang, S. Zhang, and L. Wang. 2021. Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Scientific Reports 11:1-14. Sinclair, T.R., J. Devi, A. Shekoofa, S. Choudhary, W. Sadok, V. Vadez, M. Riar, and T. Rufty. 2017. Limited-transpiration response to high vapor pressure deficit in crop species. Plant Sci. 260:109-118. Strasser, R.J., A. Srivastava, and M. Tsimilli-Michael. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing photosynthesis: mechanisms, regulation and adaptation:445-483. Taiz L., and Zeiger E. 2002. Plant Physiology 3rd ed. P. 114, 137-162.Sinaure Associates Inc., Sunderland, Massaxhusetts. Takabe, T., V. Rai, and T. Hibino. 2006. Abiotic stress tolerance in plants: toward the improvement of global environment and food. p. 137- 151. Springer Netherlands. Berlin. Terzi, R., A. Sağlam, N. Kutlu, H. Nar, and A. Kadioğlu. 2010. Impact of soil drought stress on photochemical efficiency of photosystem II and antioxidant enzyme activities of Phaseolus vulgaris cultivars. Turkish Journal of Botany 34:1-10. Traore, S.B., R.E. Carlson, C.D. Pilcher, and M.E. Rice. 2000. Bt and Non-Bt Maize Growth and Development as Affected by Temperature and Drought Stress. Agronomy Journal 92:1027-1035. doi: https://doi.org/10.2134/agronj2000.9251027x. Trotel-Aziz, P., M. Couderchet, G. Vernet, and A. Aziz. 2006. chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. European. Veroneze, V., M. Martins, L. Mc Leod, K.R.D. Souza, P.R. Santos, P.C. Magalhaes, D.T. Carvalho, M.H. Santos, and T.C. Souza. 2020. Leaf application of chitosan and physiological evaluation of maize hybrids contrasting for drought tolerance under water restriction. Braz. J. Bio. 80:631-640. Villegas, D., L.F. García del Moral, Y. Rharrabti, V. Martos, and C. Royo. 2007. Morphological Traits above the Flag Leaf Node as Indicators of Drought Susceptibility Index in Durum Wheat. J. Agron. Crop Sci. 193:103-116. Wang, Z., F. Liu, S. Kang and C.R. Jensen. 2012. Alternate partial root-zone drying irrigation improves nitrogen nutrition in maize (Zea mays L.) leaves. Environ. Expt. Bot. 75:36-40. Wang, Z., G. Li, H. Sun, L. Ma, Y. Guo, Z. Zhao, H. Gao, and L. Mei. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7 World resources institute. 2017. Water risk atlas.http://www.wri.org/applications/maps/aqueduct-atlas/#x=-163.51 y=1.62 s=ws!20!28!c t=waterrisk w=def g=0 i=BWS-16!WSV-4!SV-2!HFO-4!DRO-4!STOR-8!GW-8!WRI-4!ECOS-2!MC-4!WCG-8!ECOV-2! tr=ind-1!prj-1 l=2 b=terrain m=group init=y Wu, W.-M., J.-C. Li, H.-J. Chen, S.-J. Wang, F.-Z. Wei, C.-Y. Wang, Y.-H. Wang, J.-D. Wu, and Y. Zhang. 2013. Effects of nitrogen fertilization on chlorophyll fluorescence change in maize (Zea mays L.) under waterlogging at seedling stage. J Food Agric Environ 11:545-552. Xu Lin, Geelen Danny.20118 developming biostimulants from agro-food and industrial by-product Xu, H. L., F. Qin, Q. Xu, J. Tan, and G. Liu. 2011. Applications of xerophytophysiology in plant production—the potato crop improved by partial root zone drying of early season but not whole season. Sci. Hortic. 129:528–534. Yamada, N., W. Promden, K. Yamane, H. Tamagake, T. Hibino, Y. Tanaka, and T. Takabe.2009. Preferential accumulation of betaine uncoupled to choline mono oxygenase inyoung leaves of sugar beet–importance of long-distance translocation of betaine under normal and salt-stressed conditions. J. Plant Physiol. 166:2058-2070. Yin, H., X. Zhao, and Y. Du. 2010. Oligochitosan: a plant diseases vaccine—a review. Carbohydrate Polymers 82:1-8. Yu, L.-X., M. Djebrouni, H. Chamberland, J.G. Lafontaine, and Z. Tabaeizadeh. 1998. chitinase: differential induction of gene expression and enzyme activity by drought stress in the wild (Lycopersicon chilense Dun.) and cultivated (L. esculentum Mill.) tomatoes. J. Plant Physiol. 153:745-753. Zhang, H., M. Han, L.H. Comas, K.C. DeJonge, S.M. Gleason, T.J. Trout, and L. Ma. 2019. Response of Maize Yield Components to Growth Stage‐Based Deficit Irrigation. Agronomy Journal 111:3244-3252. Zhang, J., U. Schurr, and W.J. Davies. 1987. Control of stomatal behaviour by abscisic acid which apparently originates in roots. J. Exp. Bot. 38:1174-1181. Zhang, R., Z. Yue, X. Chen, Y. Wang, Y. Zhou, W. Xu, and R. Huang. 2021. Foliar applications of urea and melatonin to alleviate waterlogging stress on photosynthesis and antioxidant metabolism in sorghum seedlings. Plant Growth Regulation. doi: 10.1007/s10725-021-00705-9. ZHANG, R.D., Y.F. ZHOU, Z.X. YUE, X.F. CHEN, X. CAO, X.X. XU, Y.F. XING, B. JIANG, X.Y. AI, and R.D. HUANG. 2019. Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica 57:1076-1083. doi: 10.32615/ps.2019.124. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79601 | - |
| dc.description.abstract | "近年因氣候變遷影響,導致國內水資源有匱乏的危險。由於國內對玉米需求逐漸上升,發展適合玉米的節水灌溉策略更顯刻不容緩。本研究以玉米‘玉美珍’ (Zea mays ‘White Pearl’)作為試驗材料,欲應用兩種節水灌溉技術:調缺灌溉(regulated deficit irrigation, RDI)以及部分根區灌溉(partial root-zone drying irrigation, PRD)之灌溉效果。並分別對玉米的不同生長期,營養生長期與生殖生長期進行節水灌溉,以確定玉米‘玉美珍’的水分敏感期。最終希望透過添加生物刺激素,使植株能比未施用者更佳耐旱,並提升水分利用效率。 在節水灌溉技術試驗方面,將使用RDI與PRD,評估玉米在兩種灌溉條件:75%田間容水量、50%田間容水量的生長狀態與節水效益。結果顯示, RDI處理組的植株發育較PRD處理組為佳。淨光合作用速率、蒸散速率、光化學淬滅(photochemical quenching, qP)、電子傳遞速率(electron transport rate, ETR)等生理狀態也呈現相似趨勢。此外,以PRD進行節水灌溉(50%田間容水量)之經濟產量、WUEyield、WUEbiomass乃各處理組當中最高,分別為35.12 g、19.14 kg·m-3與25.82 kg·m-3。顯示玉米‘玉美珍’不僅可以適應50%田間容水量的灌溉條件,使用PRD處理可顯著提升果穗發育與水分利用效率,並省下70%左右的水資源。 在不同生長期節水試驗方面,將使用RDI與PRD在玉米營養生長期與生殖生長期,分別進行中度缺水(田間容水量50%)節水灌溉試驗。營養生長期節水試驗分別以RDI與PRD進行灌溉(處理代號為R50_75、P50_75),生殖生長期節水試驗進行節水灌溉(處理代號為R75_50、P75_50),夏季與秋冬季各試驗一次。結果顯示,夏季玉米進行PRD灌溉處理,其淨光合作用雖略低於RDI處理組,但P50_75處理組可獲得最佳的經濟產量與WUEyield,分別為55.51 g、11.8 kg·m-3。秋冬季結果顯示,P50_75處理組的經濟產量和WUEyield在各處理組當中最佳,分別是40.31 g、17.32 kg·m-3,且省水量達52%。此結果與夏季試驗相似。但R75_75處理組的株高與經濟產量為各處理組當中最低 ,僅28.89 g。綜合產量與植物生理的表現,顯示秋冬季時,玉米生長的需水量比夏季少,因此有較多的節水空間。 在生物刺激素試驗方面,以RDI進行輕度缺水(75%田間容水量)的處理組為對照組,在中度缺水(50%田間容水量)的PRD處理組中,加入甜菜鹼(50 mM)和幾丁質(2 g/kg),並觀察玉米生長與產量之變化。結果顯示,添加甜菜鹼可以促進玉米發育,株高、總鮮重、根莖比、淨光合作用速率與蒸散速率等形態與生理指標,與對照組無異。但使用幾丁質或者複合使用兩個生物刺激素則沒有相似的效果。此外,添加甜菜鹼使玉米的最大光量子產量(maximum quantum yield, Fv/Fm)與ETR表現量有上升的趨勢,顯示甜菜鹼可以減緩植物因缺水產生的光抑制。幾丁質雖然在形態上無法觀察到促進玉米抗旱的效益,但葉綠素螢光的結果也指出,添加幾丁質具有減緩光抑制、提升ETR的益處。兩種生物刺激素之間的搭配與交互作用複雜,若要了解適合‘玉美珍’玉米的栽培濃度,需要進一步探討成本、生物刺激素之間的交互作用以及經濟產量的影響,方能研擬具備實際經濟效益的栽培管理方法。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:04:54Z (GMT). No. of bitstreams: 1 U0001-1209202119091900.pdf: 2776192 bytes, checksum: 7aca903807c0129355fa7aa3ec880c32 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 ii 目錄 vii 圖目錄 ix 表目錄 xi 第一章 前言(Introduction) 1 第二章 前人研究(Literature Review) 3 一、農業缺水困境的應對 3 (一)篩選、培育耐旱種作物 3 (二)植物水分利用效率指標與影響因子 5 二、農業節水技術 8 (一)調缺灌溉 8 (二)部分根區灌溉 9 (三)生物刺激素的發現與應用 10 三、葉綠素螢光的原理與應用 13 (一)葉綠素螢光原理 13 (二)葉綠素螢光指標 13 (三)葉綠素螢光的應用 16 第三章 節水灌溉技術對玉米生長與產量之影響 17 一、前言(Introduction) 17 二、材料與方法(Material and Methods) 18 試驗一 評估不同節水灌溉技術對玉米節水潛能與水分利用效率之效益 18 三、結果(Result) 22 四、討論(Discussion) 24 五、結論 (Conclusion) 26 第四章 不同生長期行節水灌溉對玉米水分利用效率之影響 35 一、 前言(Introduction) 36 二、材料與方法(Material and Methods) 36 試驗一夏季應用節水灌溉對不同生長階段玉米之影響 36 試驗二秋冬季應用節水灌溉對不同生長階段玉米之影響 40 三、結果(Result) 44 試驗一夏季應用節水灌溉對不同生長階段玉米之影響 44 試驗二秋冬季應用節水灌溉對不同生長階段玉米之影響 45 四、討論(Discussion) 47 試驗一 夏季應用節水灌溉對不同生長階段玉米之影響 47 試驗二 秋冬季應用節水灌溉對不同生長階段玉米之影響 49 五、結論(Conclusion) 51 第五章 外施生物刺激素對玉米水分利用效率之影響 68 一、前言 68 二、材料與方法 69 試驗一 外施生物刺激素對玉米水分利用效率之影響 69 三、結果(Result) 73 四、討論(Discussion) 75 五、結論 (Conclusion) 77 第六章 結論 (conclusion) 86 參考文獻(References) 87 附錄 102 | |
| dc.language.iso | zh-TW | |
| dc.title | 節水灌溉方法與生物刺激素對玉米‘玉美珍’生長發育之影響 | zh_TW |
| dc.title | Effects of Water-Saving Irrigation Methods and Biostimulants on the Growth and Development of Maize (Zea mays) ‘White Pearl’ | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林淑怡(Shu-I Lin) | |
| dc.contributor.oralexamcommittee | 林冠宏(Hsin-Tsai Liu),羅筱鳳(Chih-Yang Tseng) | |
| dc.subject.keyword | 調缺灌溉,部分根區灌溉,生物刺激素,乾旱逆境,葉綠素螢光, | zh_TW |
| dc.subject.keyword | regulated deficit irrigation,partial root-zone drying irrigation,biostimulant,drought stress,chlorophyll fluorescence, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202103133 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| dc.date.embargo-lift | 2026-09-12 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1209202119091900.pdf 此日期後於網路公開 2026-09-12 | 2.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
