請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79577完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志軒(Chih-Hsuan Chen) | |
| dc.contributor.author | Cheng-Tien Wu | en |
| dc.contributor.author | 吳政典 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:04:11Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-23T09:04:11Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-20 | |
| dc.identifier.citation | [1] J.L. Dupont, D. Coulomb, A. Pichard, The Role of Refrigeration in the Global Economy, International Institute of Refrigeration (2015). [2] W. Goetzler, R. Zogg, J. Young, C. Johnson, Energy savings potential and RD D opportunities for non-vapor-compression HVAC technologies, Navigant Consulting Inc., prepared for US Department of Energy (2014). [3] R. Hehemann, G. Sandrock, Relations between the premartensitic instability and the martensite structure in TiNi, Scripta Metallurgica 5(9) (1971) 801-805. [4] R. Wasilewski, S. Butler, J. Hanlon, D. Worden, Homogeneity range and the martensitic transformation in TiNi, Metallurgical Transactions 2(1) (1971) 229-238. [5] K. Otsuka, T. Sawamura, K. Shimizu, C. Wayman, Characteristics of the martensitic transformation in TiNi and the memory effect, Metallurgical Transactions 2(9) (1971) 2583-2588. [6] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in materials science 50(5) (2005) 511-678. [7] T.H. Nam, T. Saburi, K.i. Shimizu, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys, Materials Transactions, JIM 31(11) (1990) 959-967. [8] B. Strnadel, S. Ohashi, H. Ohtsuka, T. Ishihara, S. Miyazaki, Cyclic stress-strain characteristics of Ti Ni and Ti Ni Cu shape memory alloys, Materials Science and Engineering: A 202(1-2) (1995) 148-156. [9] S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, Y. Liu, Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires, Materials Science and Engineering: A 273 (1999) 658-663. [10] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nature materials 5(4) (2006) 286-290. [11] K. Otsuka, Origin of memory effect in Cu-Al-Ni alloy, Japanese Journal of Applied Physics 10(5) (1971) 571. [12] T. Tadaki, C. Wayman, Crystal structure and microstructure of a cold worked tini alloy with unusual elastic behavior, Scripta metallurgica 14(8) (1980) 911-914. [13] K. Otsuka, K. Shimizu, Pseudoelasticity and shape memory effects in alloys, International Metals Reviews 31(1) (1986) 93-114. [14] A. McKelvey, R. Ritchie, Fatigue‐crack propagation in Nitinol, a shape‐memory and superelastic endovascular stent material, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 47(3) (1999) 301-308. [15] C. LC, R. TA., Plastic deformation and diffusion-less phase changes in metals — the gold-cadmium beta phase, Trans AIME 189 (1951) 47-52. [16] W.J. Buehler, J.V. Gilfrich, R. Wiley, Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi, Journal of applied physics 34(5) (1963) 1475-1477. [17] L. Kaufman, M. Cohen, Prog. Met. Phys., 7 (1957) 169. [18] 李芝媛、吳錫侃, 淺談形狀記憶合金, 科儀新知第十六卷 (1995) 6. [19] K. Enami, A. Nagasawa, S. Nenno, Reversible Shape Memory Effect in Fe-Base Alloys, Scripta Metall Mater 9(9) (1975) 941-948. [20] A. Nagasawa, K. Enami, Y. Ishino, Y. Abe, S. Nenno, Reversible Shape Memory Effect, Scripta Metall Mater 8(9) (1974) 1055-1060. [21] T. Saburi, S. Nenno, Reversible Shape Memory in Cu-Zn-Ga, Scripta Metall Mater 8(12) (1974) 1363-1367. [22] T.A. Schroeder, C.M. Wayman, 2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals, Scripta Metall Mater 11(3) (1977) 225-230. [23] M. Nishida, T. Honma, All-Round Shape Memory Effect in Ni-Rich Tini Alloys Generated by Constrained Aging, Scripta Metall Mater 18(11) (1984) 1293-1298. [24] T.A. Schroeder, C.M. Wayman, Formation of Martensite and Mechanism of Shape Memory Effect in Single-Crystals of Cu-Zn Alloys, Acta Metall Mater 25(12) (1977) 1375-1391. [25] M. Nishida, T. Honma, Effect of Heat-Treatment on the All-Round Shape Memory Effect in Ti-51at Percent Ni, Scripta Metall Mater 18(11) (1984) 1299-1302. [26] M. Nishida, C.M. Wayman, T. Honma, Electron-Microscopy Studies of the All-Round Shape Memory Effect in a Ti-51.0 Atmospheric-Percent Ni-Alloy, Scripta Metall Mater 18(12) (1984) 1389-1394. [27] T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Crystal-Structure, Composition and Morphology of a Precipitate in an Aged Ti-51 at Percent-Ni Shape Memory Alloy, T Jpn I Met 27(10) (1986) 731-740. [28] T.Honma, Proc,Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin,China (1986) 709. [29] T. Honma, The Effect of Aging on the Spontaneous Shape Change and the All-Round Shape Memory Effect in Ni--Rich TiNi Alloy, Proceedings of the International Conference on Martensitic Transformations. ICOMAT-86, 1986, pp. 709-716. [30] 李芝媛、吳錫侃, 淺談形狀記憶合金, 科儀新知第十六卷 6 (1995) 6. [31] K. Otsuka, K. Shimizu, Pseudoelasticity, Met Forum 4(3) (1981) 142-152. [32] K. Otsuka, C.M. Wayman, in: Reviews on the Deformation Behavior of Materials, (1977). [33] K.Otsuka, C.M. Wayman, in: Proc. Int. Conf. On Solid to Solid Phase Transformations,, TMS-AIME Pittsburgh,Pa.(USA) (1981). [34] S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at% Ni alloy, Scripta Metallurgica 15(3) (1981) 287-292. [35] K. Otsuka, X.B. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528. [36] H.O. T.B. Massalski, P.R. Subramanian, L. Kacprzak. Editors. , Binary Alloys Phase Diagrams, ASM International 3 (1990) 2875. [37] C.M.W.W. Jackson, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110, (1972). [38] K. Otsuka, T. Sawamura, K. Shimizu, Crystal structure and internal defects of equiatomic TiNi martensite, Physica status solidi (a) 5(2) (1971) 457-470. [39] G. Michal, R. Sinclair, The structure of TiNi martensite, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 37(10) (1981) 1803-1807. [40] R.F. Hehemann, G.D. Sandrock, Scr. Metall. 5 (1971) 457. [41] W. Buhrer, R. Gotthardt, A. Kulik, O. Mercier, F. Staub, Powder neutron diffraction study of nickel-titanium martensite, Journal of Physics F: Metal Physics 13(5) (1983) L77. [42] Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Crystal structure of the martensite in Ti-49.2 at.% Ni alloy analyzed by the single crystal X-ray diffraction method, Acta Metallurgica 33(11) (1985) 2049-2056. [43] T. Saburi, M. Yoshida, S. Nenno, 18 (1984) 363. [44] S. Miyazaki, S. Kimura, K. Otsuka, Y. Suzuki, The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals, Scripta metallurgica 18(9) (1984) 883-888. [45] T.H. Nam, T. Saburi, Y. Nakata, K.i. Shimizu, Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys, Materials Transactions, JIM 31(12) (1990) 1050-1056. [46] T. Tadaki, C. Wayman, Electron microscopy studies of martensitic transformations in Ti50Ni50− xCux alloys. Part II. Morphology and crystal structure of martensites, Metallography 15(3) (1982) 247-258. [47] T. Saburi, Y. Watanabe, S. Nenno, Morphological characteristics of the orthorhombic martensite in a shape memory Ti–Ni–Cu alloy, ISIJ international 29(5) (1989) 405-411. [48] P. Potapov, A. Shelyakov, D. Schryvers, On the crystal structure of TiNi-Cu martensite, Scripta materialia 44(1) (2001) 1-8. [49] T. Hara, T. Ohba, E. Okunishi, K. Otsuka, Structural study of R-phase in Ti-50.23 at.% Ni and Ti-47.75 at.% Ni-1.50 at.% Fe alloys, Materials Transactions, JIM 38(1) (1997) 11-17. [50] E. Goo, R. Sinclair, The B2 to R transformation in Ti50Ni47Fe3 and Ti49. 5Ni50. 5 alloys, Acta Metallurgica 33(9) (1985) 1717-1723. [51] S. Miyazaki, K. Otsuka, Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti50Ni47Fe3 alloy, Philosophical Magazine A 50(3) (1985) 393-408. [52] S. Miyazaki, K. Otsuka, Deformation and transition behavior associated with theR-phase in Ti-Ni alloys, Metallurgical Transactions A 17(1) (1986) 53-63. [53] K. Knowles, D. Smith, The crystallography of the martensitic transformation in equiatomic nickel-titanium, Acta Metallurgica 29(1) (1981) 101-110. [54] K. Otsuka, X. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528. [55] H. Miyamoto, T. Taniwaki, T. Ohba, K. Otsuka, S. Nishigori, K. Kato, Two-stage B2–B19–B19′ martensitic transformation in a Ti50Ni30Cu20 alloy observed by synchrotron radiation, Scripta materialia 53(2) (2005) 171-175. [56] T. Ohba, T. Taniwaki, H. Miyamoto, K. Otsuka, K. Kato, In situ observations of martensitic transformations in Ti50Ni34Cu16 alloy by synchrotron radiation, Materials Science and Engineering: A 438 (2006) 480-484. [57] Y. Watanabe, T. Saburi, Y. Nakagawa, S. Nenno, Self-Accommodation Structure in the Ti--Ni--Cu Orthorhombic Martensite, Journal of the Japan Institute of Metals 54(8) (1990) 861-869. [58] T. Redeker, A. Bacher, C. Arcos, H. Kaesz, K. Stovall, Organometallic chemical vapor deposition (OMCVD) of thin films of titanium/nickel alloys (TiNi), ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 1998, pp. U188-U188. [59] J. Hanlon, S. Butler, R. Wasilewski, Effect of martensitic transformation on the electrical and magnetic properties of NiTi, AIME MET SOC TRANS 239(9) (1967) 1323-1326. [60] T. Saburi, T. Tatsumi, S. Nenno, Effects of heat treatment on mechanical behavior of Ti-Ni alloys, Le Journal de Physique Colloques 43(C4) (1982) C4-261-C4-266. [61] A. Lotkov, V. Grishkov, A. Kuznetsov, S. Kulkov, TiNi aging and its effect on the start temperature of the martensitic transformation, physica status solidi (a) 75(2) (1983) 373-377. [62] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metallurgical transactions A 17(1) (1986) 115-120. [63] T. Tadaki, Y. Nakata, K.i. Shimizu, Thermal cycling effects in an aged Ni-rich Ti–Ni shape memory alloy, Transactions of the Japan institute of metals 28(11) (1987) 883-890. [64] C. Hwang, M. Meichle, M. Salamon, C. Wayman, Transformation behaviour of a Ti50Ni47Fe3 alloy I. Premartensitic phenomena and the incommensurate phase, Philosophical Magazine A 47(1) (1983) 9-30. [65] M. Nishida, C. Wayman, A. Chiba, Electron microscopy studies of the martensitic transformation in an aged Ti-51at% Ni shape memory alloy, Metallography 21(3) (1988) 275-291. [66] G. Airoldi, G. Bellini, C. Di Francesco, Transformation cycling in NiTi alloys, Journal of Physics F: Metal Physics 14(8) (1984) 1983. [67] H. Lin, S. Wu, T. Chou, H. Kao, The effects of cold rolling on the martensitic transformation of an equiatomic TiNi alloy, Acta Metallurgica et Materialia 39(9) (1991) 2069-2080. [68] L. Bataillard, J.-E. Bidaux, R. Gotthardt, Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations, Philosophical magazine A 78(2) (1998) 327-344. [69] J.K. Allafi, X. Ren, G. Eggeler, The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys, Acta Materialia 50(4) (2002) 793-803. [70] T. Tadaki, Y. Nakata, K.i. Shimizu, K. Otsuka, Crystal structure, composition and morphology of a precipitate in an aged Ti-51 at% Ni shape memory alloy, Transactions of the Japan institute of metals 27(10) (1986) 731-740. [71] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Materialia 50(17) (2002) 4255-4274. [72] A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Multiple-step martensitic transformations in Ni-rich NiTi alloys--an in-situ transmission electron microscopy investigation, Philosophical Magazine 83(3) (2003) 339-363. [73] G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, K. Otsuka, Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys, Acta Materialia 52(14) (2004) 4351-4362. [74] J. Michutta, C. Somsen, A. Yawny, A. Dlouhy, G. Eggeler, Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates, Acta materialia 54(13) (2006) 3525-3542. [75] T. Fukuda, M. Kitayama, T. Kakeshita, T. Saburi, Martensitic transformation behavior of a shape memory Ti–40.5 Ni–10Cu alloy affected by the C11b-type precipitates, Materials Transactions, JIM 37(10) (1996) 1540-1546. [76] K.-N. Lin, S.-K. Wu, Multi-stage transformation in annealed Ni-rich Ti49Ni41Cu10 shape memory alloy, Intermetallics 18(1) (2010) 87-91. [77] 匡載訢, 時效對富鎳 Ti48Ni52 及 Ti48. 5Ni41. 5Cu10 形狀記憶合金相變態影響之研究, 臺灣大學材料科學與工程學研究所學位論文 (2015) 1-149. [78] S. Chang, S. Wu, G. Chang, Grain size effect on multiple-stage transformations of a cold-rolled and annealed equiatomic TiNi alloy, Scripta materialia 52(12) (2005) 1341-1346. [79] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv Eng Mater 10(6) (2008) 534-538. [80] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .2. Morphology and Crystal-Structure of Martensites, Metallography 15(3) (1982) 247-258. [81] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Mater Sci Tech-Lond 31(10) (2015) 1223-1230. [82] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z.Y. Zhang, I. Takeuchi, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat Mater 5(4) (2006) 286-290. [83] B. Strnadel, S. Ohashi, H. Ohtsuka, T. Ishihara, S. Miyazaki, Cyclic stress-strain characteristics of TiNi and TiNiCu shape memory alloys, Materials Science and Engineering: A 202(1) (1995) 148-156. [84] B. Strnadel, S. Ohashi, H. Ohtsuka, S. Miyazaki, T. Ishihara, Effect of mechanical cycling on the pseudoelasticity characteristics of TiNi and TiNiCu alloys, Materials Science and Engineering: A 203(1) (1995) 187-196. [85] H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, Y. Chumlyakov, Cyclic deformation behavior of single crystal NiTi, Materials Science and Engineering: A 314(1) (2001) 67-74. [86] E.A. Pieczyska, H. Tobushi, K. Kulasinski, Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera, Smart Materials and Structures 22(3) (2013). [87] T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, R. Kainuma, Ultra-large single crystals by abnormal grain growth, Nat Commun 8(1) (2017) 354. [88] T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, R. Kainuma, Abnormal grain growth induced by cyclic heat treatment, Science 341(6153) (2013) 1500-2. [89] L. Manosa, A. Planes, Materials with Giant Mechanocaloric Effects: Cooling by Strength, Adv Mater 29(11) (2017). [90] Y. Wu, E. Ertekin, H. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation, Acta Materialia 135 (2017) 158-176. [91] X. Xie, Q. Kan, G. Kang, F. Lu, K. Chen, Observation on rate-dependent cyclic transformation domain of super-elastic NiTi shape memory alloy, Materials Science and Engineering: A 671 (2016) 32-47. [92] Y. Li, D. Zhao, J. Liu, Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy, Sci Rep 6 (2016) 25500. [93] J. Tušek, K. Engelbrecht, L.P. Mikkelsen, N. Pryds, Elastocaloric effect of Ni-Ti wire for application in a cooling device, J Appl Phys 117(12) (2015). [94] L. Mañosa, S. Jarque-Farnos, E. Vives, A. Planes, Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys, Applied Physics Letters 103(21) (2013). [95] L. Zheng, Y. He, Z. Moumni, Lüders-like band front motion and fatigue life of pseudoelastic polycrystalline NiTi shape memory alloy, Scripta Materialia 123 (2016) 46-50. [96] H. Yin, Y. He, Z. Moumni, Q. Sun, Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy, International Journal of Fatigue 88 (2016) 166-177. [97] C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, A. Tuissi, Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, International Journal of Fatigue 66 (2014) 78-85. [98] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mat Sci Eng a-Struct 378(1-2) (2004) 24-33. [99] K. Zhang, G. Kang, Q. Sun, High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression, Scripta Materialia 159 (2019) 62-67. [100] Y. Watanabe, T. Saburi, Y. Nakagawa, S. Nenno, J. Jpn. Inst. Met. 54 (1990) 861. [101] J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, I. Takeuchi, Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires, Applied Physics Letters 101(7) (2012) 073904. [102] M. Schmidt, J. Ullrich, A. Wieczorek, J. Frenzel, A. Schütze, G. Eggeler, S. Seelecke, Thermal stabilization of NiTiCuV shape memory alloys: Observations during elastocaloric training, Shape Memory and Superelasticity 1(2) (2015) 132-141. [103] C. Chluba, H. Ossmer, C. Zamponi, M. Kohl, E. Quandt, Ultra-low fatigue quaternary TiNi-based films for elastocaloric cooling, Shape Memory and Superelasticity 2(1) (2016) 95-103. [104] C. Rodriguez, L. Brown, The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals, Metallurgical and Materials Transactions A 11(1) (1980) 147-150. [105] W. Sun, J. Liu, B. Lu, Y. Li, A. Yan, Large elastocaloric effect at small transformation strain in Ni 45 Mn 44 Sn 11 metamagnetic shape memory alloys, Scripta Materialia 114 (2016) 1-4. [106] R. Millán-Solsona, E. Stern-Taulats, E. Vives, A. Planes, J. Sharma, A.K. Nayak, K. Suresh, L. Mañosa, Large entropy change associated with the elastocaloric effect in polycrystalline Ni-Mn-Sb-Co magnetic shape memory alloys, Applied Physics Letters 105(24) (2014) 241901. [107] K.N. Melton, General applications of SMA and smart materials, (1998). [108] C.M. Wayman, Shape memory alloys, MRS bulletin 18(4) (1993) 49-56. [109] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall Trans A 17(1) (1986) 115-120. [110] M. Nishida, C.M. Wayman, T. Honma, Precipitation processes in near-equiatomic TiNi shape memory alloys, Metallurgical Transactions A 17(9) (1986) 1505-1515. [111] A. Ishida, M. Sato, Z. Gao, Effects of Ti content on microstructure and shape memory behavior of TixNi (84.5− x) Cu15. 5 (x= 44.6–55.4) thin films, Acta materialia 69 (2014) 292-300. [112] H. Hou, E. Simsek, T. Ma, N.S. Johnson, S. Qian, C. Cissé, D. Stasak, N. Al Hasan, L. Zhou, Y. Hwang, Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing, Science 366(6469) (2019) 1116-1121. [113] A. Ahadi, A.S. Ghorabaei, H. Shirazi, M. Nili-Ahmadabadi, Bulk NiTiCuCo shape memory alloys with ultra-high thermal and superelastic cyclic stability, Scripta Materialia 200 (2021) 113899. [114] J.-J. Shen, N.-H. Lu, C.-H. Chen, Research on The Elastocaloric Effect of Ti49.6Ni50.4 Bar, Ti48.9Ni51.1 and Ti50Ni48Fe2 Shape Memory Alloys, (2019). [115] R. DeHoff, Thermodynamics in materials science, CRC Press2006. [116] S. Qian, Y. Geng, Y. Wang, J. Ling, Y. Hwang, R. Radermacher, I. Takeuchi, J. Cui, A review of elastocaloric cooling: Materials, cycles and system integrations, international journal of refrigeration 64 (2016) 1-19. [117] Y. Liu, A. Mahmud, F. Kursawe, T.-H. Nam, Effect of pseudoelastic cycling on the Clausius–Clapeyron relation for stress-induced martensitic transformation in NiTi, Journal of Alloys and Compounds 449(1-2) (2008) 82-87. [118] K. Niitsu, Y. Kimura, T. Omori, R. Kainuma, Cryogenic superelasticity with large elastocaloric effect, NPG Asia Materials 10(1) (2018) e457-e457. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79577 | - |
| dc.description.abstract | "本文研究Ti49Ni41Cu10形狀記憶合金塊材於固溶處理後進行時效處理,並針對其相變態行為、顯微結構、壓縮超彈性及彈熱效應等性質加以探討。於400℃及500℃時效處理時,基地析出片狀Ti(Ni,Cu)2析出物,其周圍之應力場可為B19麻田散體相的異質成核點,使原先基地較低溫度之(B2↔B19)2相變態逐漸轉變為較高溫度之(B2↔B19)1相變態。經400℃時效處理168小時試片具有最優異的應力循環穩定性以及彈熱效應性能,因時效處理產生之Ti(Ni,Cu)2析出物具析出強化效果,於應力循環訓練過程中可有效阻擋差排滑移,使其相變態行為、超彈性性能保持穩定,且疲勞抗性佳。透過數位影像相關係數法與紅外線之影像分析,於壓縮實驗過程觀察應變場以及溫度變化分布,可發現試片整體之相變態十分均勻,經1000次訓練後絕熱降溫變化量僅下降5.5%,保有-17.0 K之溫度變化量,並且於60℃操作溫度下材料效能係數高達26.0,與普遍TiNi二元形狀記憶合金相比更為優秀。經500時效處理24小時試片因尺寸較大的Ti(Ni,Cu)2析出物長大佔據基地,使其擁有(B2↔B19)1 以及(B2↔B19)2之多階段相變態,雖因析出物成長失去與基地之整合性,在應力循環訓練過程中抵抗塑性變形能力不如400℃時效處理168小時者,但由於應力循環訓練後材料內部導入差排,使超彈性性質穩定,且相變態溫度範圍變寬,低溫之(B2↔B19)2相變態可提供彈熱效應溫度變化,進一步擴展彈熱效應使用範圍。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:04:11Z (GMT). No. of bitstreams: 1 U0001-1609202114010400.pdf: 14231788 bytes, checksum: 531dbacb9daa3a4cbe87c6b3b62d5f0f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 v Abstract vi 圖目錄 xi 表目錄 xviii 第一章 前言 1 第二章 文獻回顧 2 2-1 形狀記憶合金簡介 2 2-2 形狀記憶合金之相變態 3 2-3 形狀記憶效應之機制 5 2-4 超彈性之機制 6 2-5 TiNi(Cu)形狀記憶合金之晶體結構 8 2-6 TiNi(Cu)形狀記憶合金之麻田散體相變態 9 2-7 TiNi形狀記憶合金之多階段相變態 10 2-7-1 析出物之影響 10 2-7-2 不同晶粒大小影響 11 2-8 應力循環對形狀記憶合金之影響 12 2-8-1 應力循環對於超彈性之影響 12 2-8-2 熱機處理對應力循環之影響 12 2-9 彈熱效應簡介 13 2-9-1 理論計算彈熱效應之溫度變化 14 2-9-2 應變速率及應變量對於彈熱效應影響 15 2-9-3 環境操作溫度對彈熱效應之影響 16 2-9-4 疲勞強度之於彈熱效應材料 16 第三章 實驗方法 40 3-1 合金配置與熔煉 40 3-2 固溶處理 41 3-3 時效處理 42 3-4 DSC量測 42 3-5 EBSD晶體方位分析 43 3-6 光學顯微鏡(OM)及掃描式電子顯微鏡(SEM)觀察 43 3-7 穿透式電子顯微鏡(TEM)微結構觀察 43 3-8 XRD分析 44 3-9 顯微維克式硬度測試 44 3-10 應力循環測試 44 3-11 試片之超彈性訓練與彈熱效應 44 3-12 不同操作溫度下之彈熱性能測試 45 第四章 時效處理對於相變態行為之影響 52 4-1 Ti49Ni41Cu10形狀記憶合金之固溶處理 52 4-2 EBSD晶體方位分析結果 53 4-3 時效處理對於相變態性質之影響 54 4-3-1 於300 ℃時效處理之DSC結果 54 4-3-2 於400 ℃時效處理之DSC結果 55 4-3-3 於500 ℃時效處理之DSC結果 55 4-3-4 時效處理對於顯微結構之影響 56 4-4 XRD實驗結果 58 4-5 時效處理對硬度之影響 59 4-6 本章結語 60 第五章 合金應力循環與彈熱效應 77 5-1 應力循環訓練結果 77 5-1-1 於400 ℃時效48hr試片進行訓練之結果 77 5-1-2 於400 ℃時效168hr試片進行訓練之結果 79 5-1-3 於500 ℃時效24hr試片進行訓練之結果 80 5-1-4 於應力循環訓練時之彈熱效應結果討論 82 5-1-5 於應力循環訓練時之應變分布變化及紅外線影像 84 5-2 不同操作溫度下於固定應力測試之彈熱效應 86 5-2-1 於400℃時效48hr試片在不同操作溫度下之彈熱效應 86 5-2-2 於400℃時效168hr試片在不同操作溫度下之彈熱效應 87 5-2-3 於500℃時效24hr試片在不同操作溫度下之彈熱效應 88 5-2-4 固定應力下於不同操作溫度之彈熱效應比較 88 5-3 不同操作溫度下於固定應變量測試之彈熱效應 89 第六章 結論 123 參考文獻 126 | |
| dc.language.iso | zh-TW | |
| dc.title | 時效處理對Ti49Ni41Cu10形狀記憶合金塊材之超彈性與彈熱效應研究 | zh_TW |
| dc.title | Research on the Pseudoelasticity and Elastocaloric Effect of Aged Ti49Ni41Cu10 Shape Memory Alloy | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊杉(Hsin-Tsai Liu),陳建彰(Chih-Yang Tseng) | |
| dc.subject.keyword | TiNiCu形狀記憶合金,時效處理,多階段相變態,應力循環,彈熱效應, | zh_TW |
| dc.subject.keyword | TiNiCu SMA,aging treatment,multi-stage transformation,stress cycling,elastocaloric effect, | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU202103208 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1609202114010400.pdf | 13.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
