Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79575
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任(Yuh-Renn Wu)
dc.contributor.authorCheng-Han Hoen
dc.contributor.author何承翰zh_TW
dc.date.accessioned2022-11-23T09:04:08Z-
dc.date.available2022-09-16
dc.date.available2022-11-23T09:04:08Z-
dc.date.copyright2021-10-23
dc.date.issued2021
dc.date.submitted2021-09-17
dc.identifier.citation[1] D.-S. Han, J.-Y. Kim, S.-I. Na, S.-H. Kim, K.-D. Lee, B. Kim, and S.-J. Park, “Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate,” IEEE Photonics Technology Letters, vol. 18, no. 13, pp. 1406–1408, 2006. [2] “on the search for efficient solid state light emitters: Past, present, future,” [3] T. Gessmann and E. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” Journal of applied physics, vol. 95, no. 5, pp. 2203–2216, 2004. [4] G. Lheureux, C. Lynsky, Y.-R. Wu, J. S. Speck, and C. Weisbuch, “A 3D simulation comparison of carrier transport in green and blue c-plane multi-quantum well nitride light emitting diodes,” Journal of Applied Physics, vol. 128, no. 23, p. 235703, 2020. [5] K. Qwah, M. Monavarian, G. Lheureux, J. Wang, Y.-R. Wu, and J. Speck, “Theoretical and experimental investigations of vertical hole transport through unipolar AlGaN structures: impacts of random alloy disorder,” Applied Physics Letters, vol. 117, no. 2, p. 022107, 2020. [6] C. Lynsky, A. I. Alhassan, G. Lheureux, B. Bonef, S. P. DenBaars, S. Nakamura, Y.-R. Wu, C. Weisbuch, and J. S. Speck, “Barriers to carrier transport in multiple quantum well nitride-based c-plane green light emitting diodes,” Physical Review Materials, vol. 4, no. 5, p. 054604, 2020. [7] J.-T. Oh, S.-Y. Lee, Y.-T. Moon, J. H. Moon, S. Park, K. Y. Hong, K. Y. Song, C. Oh, J.-I. Shim, H.-H. Jeong, et al., “Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures,” Optics express, vol. 26, no. 9, pp. 11194–11200, 2018. [8] A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Physics Reports, vol. 498, no. 4-5, pp. 189–241, 2011. [9] M. S. Wong, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High efficiency of IIInitride and AlGaInP micro-light-emitting diodes using atomic layer deposition,” in Light-Emitting Devices, Materials, and Applications XXV, vol. 11706, p. 117060B, International Society for Optics and Photonics, 2021. [10] S. Zhou, B. Cao, and S. Liu, “Optimized ICP etching process for fabrication of oblique GaN sidewall and its application in LED,” Applied Physics A, vol. 105, no. 2, pp. 369–377, 2011. [11] Y. Boussadi, N. Rochat, J.-P. Barnes, B. B. Bakir, P. Ferrandis, B. Masenelli, and C. Licitra, “Investigation of sidewall damage induced by reactive ion etching on AlGaInP MESA for micro-LED application,” Journal of Luminescence, vol. 234, p. 117937, 2021. [12] D. Hwang, A. Mughal, C. D. Pynn, S. Nakamura, and S. P. DenBaars, “Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs,” Applied Physics Express, vol. 10, no. 3, p. 032101, 2017. [13] M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, S. Nakamura, et al., “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments,” Optics express, vol. 28, no. 4, pp. 5787–5793, 2020. [14] M. A. Der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, “Efficiency drop in green InGaN/GaN light emitting diodes: The role of random alloy fluctuations,” Physical review letters, vol. 116, no. 2, p. 027401, 2016. [15] M. A. der Maur, A. Pecchia, and A. Di Carlo, “Influence of random alloy fluctuations in InGaN/GaN quantum wells on LED efficiency,” in 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), pp. 153–156, IEEE, 2015. [16] D. Watson-Parris, M. Godfrey, P. Dawson, R. Oliver, M. Galtrey, M. Kappers, and C. Humphreys, “Carrier localization mechanisms in In x Ga 1- x N/GaN quantum wells,” Physical Review B, vol. 83, no. 11, p. 115321, 2011. [17] T.-J. Yang, R. Shivaraman, J. S. Speck, and Y.-R. Wu, “The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior,” Journal of Applied Physics, vol. 116, no. 11, p. 113104, 2014. [18] Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Applied Physics Letters, vol. 101, no. 8, p. 083505, 2012. [19] T. Veal, L. Piper, I. Mahboob, H. Lu, W. Schaff, and C. F. McConville, “Electron accumulation at InN/AlN and InN/GaN interfaces,” physica status solidi (c), vol. 2, no. 7, pp. 2246–2249, 2005. [20] O. Ambacher, R. Dimitrov, M. Stutzmann, B. Foutz, M. Murphy, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Chumbes, et al., “Role of Spontaneous and Piezoelectric Polarization Induced Effects in Group-III Nitride Based Heterostructures and Devices,”physica status solidi (b), vol. 216, no. 1, pp. 381–389, 1999. [21] A. Wright and J. Nelson, “Consistent structural properties for AlN, GaN, and InN,”Physical Review B, vol. 51, no. 12, p. 7866, 1995. [22] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, et al., “Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors,” Nature materials, vol. 5, no. 10, pp. 810–816, 2006. [23] S. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes,” Applied Physics Letters, vol. 66, no. 10, pp. 1249–1251, 1995. [24] V. Voronenkov, N. Bochkareva, R. Gorbunov, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, and Y. Shreter, “Nature of V-shaped defects in GaN, “ Japanese Journal of Applied Physics, vol. 52, no. 8S, p. 08JE14, 2013. [25] H. Yoshida, T. Hikosaka, H. Nago, and S. Nunoue, “Impact of dislocations and defects on the relaxation behavior of InGaN/GaN multiple quantum wells grown on Si and sapphire substrates,” physica status solidi (b), vol. 252, no. 5, pp. 917–922, 2015. [26] A. Romanov, T. Baker, S. Nakamura, J. Speck, and E. U. Group, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” Journal of Applied Physics, vol. 100, no. 2, p. 023522, 2006. [27] S.-W. Chen, H. Li, C.-J. Chang, and T.-C. Lu, “Effects of nanoscale V-shaped pits on GaN-based light emitting diodes,” Materials, vol. 10, no. 2, p. 113, 2017. [28] C.-K. Li, C.-K. Wu, C.-C. Hsu, L.-S. Lu, H. Li, T.-C. Lu, and Y.-R. Wu, “3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits,” AIP Advances, vol. 6, no. 5, p. 055208, 2016. [29] Q. Wu, J. Zhang, C. Mo, X. Wang, Z. Quan, X. Wu, S. Pan, G. Wang, J. Liu, and F. Jiang, “Effects of the number of wells on the performance of green InGaN/GaN LEDs with V-shape pits grown on Si substrates,” Superlattices and Microstructures, vol. 114, pp. 89–96, 2018. [30] S. Mahanty, M. Hao, T. Sugahara, R. Q. Fareed, Y. Morishima, Y. Naoi, T. Wang, and S. Sakai, “V-shaped defects in InGaN/GaN multiquantum wells,” Materials Letters, vol. 41, no. 2, pp. 67–71, 1999. [31] S.-H. Han, D.-Y. Lee, H.-W. Shim, J. Wook Lee, D.-J. Kim, S. Yoon, Y. Sun Kim, and S.-T. Kim, “Improvement of efficiency and electrical properties using intentionally formed V-shaped pits in InGaN/GaN multiple quantum well light-emitting diodes,”Applied Physics Letters, vol. 102, no. 25, p. 251123, 2013. [32] H.-Y. Ryu, D.-S. Shin, and J.-I. Shim, “Analysis of efficiency droop in nitride lightemitting diodes by the reduced effective volume of InGaN active material,” Applied Physics Letters, vol. 100, no. 13, p. 131109, 2012. [33] H.-Y. Ryu, H.-S. Kim, and J.-I. Shim, “Rate equation analysis of efficiency droop in InGaN light-emitting diodes,” Applied Physics Letters, vol. 95, no. 8, p. 081114, 2009. [34] J.-J. Huang, H.-C. Kuo, and S.-C. Shen, Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications. Woodhead Publishing, 2017. [35] A. Di Vito, A. Pecchia, A. Di Carlo, and M. Auf der Maur, “Simulating random alloy effects in III-nitride light emitting diodes,” Journal of Applied Physics, vol. 128, no. 4, p. 041102, 2020. [36] M. Filoche, M. Piccardo, Y.-R. Wu, C.-K. Li, C. Weisbuch, and S. Mayboroda, “Localization landscape theory of disorder in semiconductors. I. Theory and modeling,”Physical Review B, vol. 95, no. 14, p. 144204, 2017. [37] D. N. Arnold, G. David, D. Jerison, S. Mayboroda, and M. Filoche, “Effective confining potential of quantum states in disordered media,” Physical review letters, vol. 116, no. 5, p. 056602, 2016. [38] M. Filoche and S. Mayboroda, “Universal mechanism for Anderson and weak localization,”Proceedings of the National Academy of Sciences, vol. 109, no. 37,pp. 14761–14766, 2012. [39] S. Sinha, F.-G. Tarntair, C.-H. Ho, Y.-R. Wu, and R.-H. Horng, “Investigation of Electrical and Optical Properties of AlGaInP Red Vertical Micro-Light-Emitting Diodes With Cu/Invar/Cu Metal Substrates,” IEEE Transactions on Electron Devices, vol. 68, no. 6, pp. 2818–2822, 2021. [40] T. Kim, P. O. Leisher, A. J. Danner, R. Wirth, K. Streubel, and K. D. Choquette,“Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED,” IEEE photonics technology letters, vol. 18, no. 17, pp. 1876–1878, 2006. [41] H.-H. Chen, J. S. Speck, C. Weisbuch, and Y.-R. Wu, “Three dimensional simulation on the transport and quantum efficiency of UVC-LEDs with random alloy fluctuations,”Applied Physics Letters, vol. 113, no. 15, p. 153504, 2018. [42] C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, “Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors,” Applied Physics Letters, vol. 106, no. 18, p. 181110, 2015. [43] L. Le, D. Zhao, D. Jiang, L. Li, L. Wu, P. Chen, Z. Liu, Z. Li, Y. Fan, J. Zhu, et al.,“Carriers capturing of V-defect and its effect on leakage current and electroluminescence in InGaN-based light-emitting diodes,” Applied Physics Letters, vol. 101, no. 25, p. 252110, 2012. [44] X. Wu, J. Liu, Z. Quan, C. Xiong, C. Zheng, J. Zhang, Q. Mao, and F. Jiang, “Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes,” Applied Physics Letters, vol. 104, no. 22, p. 221101, 2014. [45] C.-Y. Chang, H. Li, Y.-T. Shih, and T.-C. Lu, “Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells,” Applied Physics Letters, vol. 106, no. 9, p. 091104, 2015. [46] S. Tomiya, Y. Kanitani, S. Tanaka, T. Ohkubo, and K. Hono, “Atomic scale characterization of GaInN/GaN multiple quantum wells in V-shaped pits,” Applied Physics Letters, vol. 98, no. 18, p. 181904, 2011. [47] C. Jia, X. Hu, Q. Wang, and Z. Liang, “The Effect of Nanometre-Scale V-Pits Layer on the Carrier Recombination Mechanisms and Efficiency Droop of GaN-based Green Light-Emitting Diodes,” physica status solidi (a). [48] “minority carrier diffusion length in gan: Dislocation density and doping concentration dependence,” [49] S. Y. Karpov and Y. N. Makarov, “Dislocation effect on light emission efficiency in gallium nitride,” Applied Physics Letters, vol. 81, no. 25, pp. 4721–4723, 2002. [50] K. S. Qwah, C. A. Robertson, Y.-R. Wu, and J. Speck, “Modeling dislocation-related reverse bias leakage in GaN pn diodes,” Semiconductor Science and Technology, 2021. [51] S.-H. Park, “Piezoelectric and spontaneous polarization effects on many-body optical gain of wurtzite InGaN/GaN quantum well with arbitrary crystal orientation,”Japanese journal of applied physics, vol. 42, no. 8R, p. 5052, 2003. [52] A. H. Mukund, InGaN/GaN Multiple Quantum Well Light-Emitting Diodes grown on Polar, Semi-polar and Non-Polar Orientations. North Carolina State University, 2014. [53] T. Yang, K. Uchida, T. Mishima, J. Kasai, and J. Gotoh, “Control of initial nucleation by reducing the V/III ratio during the early stages of GaN growth,” physica status solidi (a), vol. 180, no. 1, pp. 45–50, 2000. [54] R. C. White, M. Khoury, M. S. Wong, S. Keller, D. Sotta, S. Nakamura, and S. P. DenBaars, “Morphological improvement and elimination of V-pits from longwavelength all-InGaN based uLEDs grown by MOCVD on compliant substrates,” in Gallium Nitride Materials and Devices XVI, vol. 11686, p. 116861N, International Society for Optics and Photonics, 2021. [55] Y. Li, W. Tang, Y. Zhang, M. Guo, Q. Li, X. Su, A. Li, and F. Yun, “Nanoscale characterization of V-defect in InGaN/GaN QWs LEDs using near-field scanning optical microscopy,” Nanomaterials, vol. 9, no. 4, p. 633, 2019. [56] S. Zhou, X. Liu, H. Yan, Y. Gao, H. Xu, J. Zhao, Z. Quan, C. Gui, and S. Liu, “The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes,” Scientific reports, vol. 8, no. 1, pp. 1–12, 2018. [57] J. Yang, D. Zhao, D. Jiang, P. Chen, J. Zhu, Z. Liu, X. Li, F. Liang, W. Liu, S. Liu, et al., “
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79575-
dc.description.abstract微型的發光二極體在下一個世代中會是一個好的照明設備。它具有功耗低、高解析度等優勢。而發光設備需要由紅、藍、綠等三原色組成。而這三原色的發光二極體所需要的材料不同。紅光是用磷化鋁鎵铟為材料,而藍綠光是以氮化鎵為材料。此外,隨著發光二極體的微縮下,側壁表面複合效應對發光二極體的影響會更嚴重。以往的研究報告指出,側壁表面複合效應在紅光的發光二極體下會比氮化鎵為材料的藍綠光二極體更加嚴重,因為磷化鋁鎵铟材料具有更高的載子遷移率和更輕的有效質量。因此,載子會很快的擴散到側壁並且透過側壁的缺陷進行複合。在這篇論文中,我們會去探討載子遷移率和等效質量在不同磊晶層中對於效率下降的比重。在結果中,我們發現大部分的載子會在電子電洞層中就流進側壁的缺陷中進行複合,使得只有少部分載子能留進去發光層造成效率低下。 側壁表面複合效應也會影響氮化鎵發光二極體,但氮化鎵發光二極體的效率受強壓電場影響較大而不是側壁表面複合效應。壓電場會導致量子井的能障更高,使發光二極的的開啟電壓更高。然而,氮化铟鎵和藍寶石基板之間較大的晶格失配引起的缺陷將導致發光二極體上會產生V型缺陷。與c軸方向上的磊晶相比,V形缺陷將具有更低的極化場和更低的量子井能障;因此,電流很容易從V型缺陷流入c軸方向上的量子井內並降低開啟電壓。我們將模擬V形缺陷的不同密度和直徑去看發光二極體的效率變化,而發現藍綠發光二極體受到V型缺陷的影響不同。藍光的極化場較小,因此開啟電壓只會受到V型缺陷的密度影響而效率只會受到V型缺陷直徑影響。而綠光發光二極體的極化場較強,所以開啟電壓和效率會同時受到V型缺陷的密度和直徑影響。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:04:08Z (GMT). No. of bitstreams: 1
U0001-1609202115555400.pdf: 15416851 bytes, checksum: e872f13868c9d9b23df9e5e73f7959e5 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"Acknowledgements i 摘要 ii Abstract iv Contents vi List of Figures ix List of Tables xiv Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 The Sidewall Effect to the μ-LED . . . . . . . . . . . . . . . . . . 2 1.2.2 Random Alloy Fluctuation Problem . . . . . . . . . . . . . . . . . 4 1.2.3 Quantum Confined Stark Effect . . . . . . . . . . . . . . . . . . . . 5 1.2.4 The V-shape Pits to the LEDs . . . . . . . . . . . . . . . . . . . . . 8 1.2.5 Droop Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.5.1 Auger recombination . . . . . . . . . . . . . . . . . . 12 1.2.5.2 Carrier leakage . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 2 Methodology 17 2.1 Computation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Methodology of Analyzing 2D Solver . . . . . . . . . . . . . . . . 18 2.1.2 Localization Landscape Solver . . . . . . . . . . . . . . . . . . . . 20 2.1.3 Random Indium Fluctuation Generator . . . . . . . . . . . . . . . . 21 Chapter 3 The Sidewall Effect to the Different Size of Vertical μ-LEDs 23 3.1 The Structure of μ-LEDs for Simulation . . . . . . . . . . . . . . . . 24 3.2 The Definition of the Sidewall Region on the 2D Simulation Structure of the μ-LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 The Influence of Size Shrinking for the Red μ-LED. . . . . . . . . . 29 3.4 The Influence of Size Shrinking for the Blue μ-LED. . . . . . . . . . 33 3.5 The Distribution of Mobility to the Blue μ-LED. . . . . . . . . . . . 36 3.6 The Influence of Random Alloy Potential Fluctuation, Piezoelectric Field, and p-n Layer Mobility. . . . . . . . . . . . . . . . . . . . . . 39 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Chapter 4 The Efficiency and Forward Voltage of the Blue and Green Lateral LED with V-shape Pit in QWs 47 4.1 The V-shaped Pits Definition to the Lateral LED . . . . . . . . . . . 49 4.2 The Performance of the V-shaped Pit on the LED . . . . . . . . . . . 55 4.3 The Forward Voltage of the V-shaped LED . . . . . . . . . . . . . . 60 4.3.1 The Forward Voltage of Blue LED . . . . . . . . . . . . . . . . . . 60 4.3.2 The Forward Voltage of Green LED . . . . . . . . . . . . . . . . . 64 4.4 The Efficiency of LED on V-shaped Pit Structure . . . . . . . . . . . 67 4.4.1 The Efficiency in the Blue LED . . . . . . . . . . . . . . . . . . . 67 4.4.2 The Efficiency in the Green LED . . . . . . . . . . . . . . . . . . . 72 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Chapter 5 Conclusion 79 References 81"
dc.language.isoen
dc.title探討隨機合金擾動及V型結構密度在紅綠藍發光二極體上的效率影響zh_TW
dc.titleStudy of the Influences of Random Alloy Fluctuation and the V-shaped Pits Density to the Efficiency of RGB LEDsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳肇欣(Hsin-Tsai Liu),賴韋志(Chih-Yang Tseng),洪瑞華
dc.subject.keyword磷化鋁鎵铟,氮化鎵,微發光二極體,壓電效應,側壁效應,V 形缺陷,zh_TW
dc.subject.keywordAlGaInP,GaN,micro-LED,piezoelectric effect,sidewall effect,shaped pits,en
dc.relation.page107
dc.identifier.doi10.6342/NTU202103212
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1609202115555400.pdf15.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved