Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊雯如(Wen-Ju Yang)
dc.contributor.authorTing-Yu Huangen
dc.contributor.author黃亭瑜zh_TW
dc.date.accessioned2022-11-23T09:03:23Z-
dc.date.available2026-09-22
dc.date.available2022-11-23T09:03:23Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-24
dc.identifier.citation江怡睿、宋妤. 2004. 乙烯與結球萵苣種子發芽之關係. 中國園藝50:307-320. 宋妤、江怡睿. 2004. 滲調處理促進結球萵苣種子發芽時endo-β-mannanase之活性. 中國園藝 50:295-306. 宋妤、劉頌恩. 2004. 種子處理對人工老化萵苣種子抗氧化作用之影響. 中國園藝 50:321-335. 行政院農委會. 2019. 農業統計年報. 余敘嫻. 2016. 提高尖葉萵苣種子於25°C下發芽表現. 中興大學國際農學碩士學位學程學位論文. 台中. 邱阿昌. 1971. 環境因子影響萵苣種子發芽之檢討. 中國園藝 17:289-294. 黃玉梅、王小華、陳國雄. 2002. 種子滲調處理於菠菜生產栽培之應用. 中國園藝 48:117-123. 鄧書麟、呂福原、沈勇強、潘昱光. 2006. 台灣濱海鹽濕地造林技術與適生樹種調查. 台灣林業 32(1):30-35. 謝明憲、蔡淳瑩、徐敏記、郭江龍. 2017. 臺灣與日本之萵苣市場交易品項及趨勢簡介. 臺南區農業專訊 100:1-6. Abdollahi, F. and L. Jafari. 2012. Effect of NaCl and KNO3 priming on seed germination of canola (Brassica Napus L.) under salinity conditions. Intl. J. Agric: Res. and Rev. 2:573-579. Abeles, F.B. and J. Lonski. 1969. Stimulation of lettuce seed germination by ethylene. Plant Physiol. 44:277-280. Akbari, G., S.A. Sanavy, and S. Yousefzadeh. 2007. Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pakistan J. Biol. Sci. 10:2557-2561. Alboresi, A., C. Gestin, M.T. Leydecker, M. Bedu, C. Meyer, and H. N. Truong. 2005. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant cell Environ. 28:500-512. Ali, M. M., T. Javed, R.P. Mauro, R. Shabbir, I. Afzal, and A. F. Yousef. 2020. Effect of seed priming with potassium nitrate on the performance of tomato. Agriculture 10(11): 1-10. Ali-Rachedi, S., D. Bouinot, M.H. Wagner, M. Bonnet, B. Sotta, P. Grappin, and M. Jullien. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479-488. Almansouri, M., J.M. Kinet, and S. Lutts. 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil 231:243-254. Amjad, M., K. Ziaf, Q. Iqbal, I. Ahmad, M.A. Riaz, and Z.A. Saqib. 2007. Effect of seed priming on seed vigour and salt tolerance in hot pepper. Pak. J. Agri. Sci. 44:408-416. Bahcesular, B., E.D. Yildirim, M. Karaçocuk, M. Kulak, and S. Karaman. 2020. Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L.) under salinity stress. Ind. Crops Prod. 146:112165. Berrie, A.M.M. 1966. The effect of temperature and light on the germination of lettuce Seeds. Physiol. Plant. 19:429-436. Bewley, J. D. 1997. Seed germination and dormancy. Plant Cell 9:1055-1066. Biddington, N.L. and T.H. Thomas. 1976. Influence of different cytokinins on the germination of lettuce (Lactuca sativa) and celery (Apium graveolens) seeds. Physiol. Plant. 37:12-16. Borthwick, H. and W. Robbins. 1928. Lettuce seed and its germination. Hilgardia 3:275-304. Bradford, K.J. 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience 21:1105-1112. Bruce, T.J., M.C. Matthes, J.A. Napier, and J.A. Pickett. 2007. Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci. 173:603-608. Cantliffe, D.J. 1983. Sowing primed seed. Am. Veg. Grower 31:42-43. Cantliffe, D.J. 1991. Benzyladenine in the priming solution reduces thermodormancy of lettuce seeds. HortTechnology 1:95-97. Cantliffe, D.J., J.M. Fischer, and T.A. Nell. 1984. Mechanism of seed priming in circumventing thermodormancy in lettuce. Plant Physiol. 75:290-294. Castañares, J.L. and C.A. Bouzo. 2018. Effect of different priming treatments and priming durations on melon germination behavior under suboptimal conditions. Open Agr. 3:386-392. Chen, K. and R. Arora. 2011. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci. 180:212-220. Chen, K. and R. Arora. 2013. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 94:33-45. Coons, J. M., R. O. Kuehl and N. R. Simons. 1990. Tolerance of ten lettuce cultivars to high temperature combined with NaCl during germination. J. Amer. Soc. Hort. Sci. 115:1004-1007. Daszkowska-Golec, A. 2011. Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. OMICS. 15:763-774. Dawood, M.G. and M.E. El-Awadi. 2015. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biol. Colomb. 20:223-235. Deng, Z. and S. Song. 2012. Sodium nitroprusside, ferricyanide, nitrite and nitrate decrease the thermo-dormancy of lettuce seed germination in a nitric oxide-dependent manner in light. S. Afr. J. Bot. 78:139-146. Dong, T., J. Tong, L. Xiao, H. Cheng, and S. Song. 2012. Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul. 66:191-202. Duermeyer, L., E. Khodapanahi, D. Yan, A. Krapp, S.J. Rothstein, and E. Nambara. 2018. Regulation of seed dormancy and germination by nitrate. Seed Sci. Res. 23:2003-2010. Duman, I. 2006. Effects of seed priming with PEG or K3PO4 on germination and seedling growth in lettuce. Pak. J. Biol. Sci. 9:923-928. Dutta, S., K. J. Bradford, and D.J. Nevins. 1997. Endo-β-mannanase activity present in cell wall extracts of lettuce endosperm prior to radicle emergence. Plant Physiol. 113:155-161. Dunlap, J.R. and P.W. Morgan. 1977. Reversal of induced dormancy in lettuce by ethylene, kinetin, and gibberellic acid. Plant Physiol. 60:222-224. Evenari, M. 1965. Light and seed dormancy, p. 804-847. In: Lang (ed.). Encyclopedia of plant physiology. Springer, Berlin, Heidelberg. Girolamo, G.D. and L. Barbanti. 2012. Treatment conditions and biochemical processes influencing seed priming effectiveness. Ital. J. Agron. 7:178-188. Gonai, T., S. Kawahara, M. Tougou, S. Satoh, T. Hashiba, N. Hirai, H. Kawaide, Y. Kamiya, and T. Yoshioka. 2004. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. J. Exp. Bot. 55:111-118. Gupta, B. and B. Huang. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics doi: 10.1155/2014/70159. Haigh, A.M. and E.R. Barlow. 1987. Germination and priming of tomato, carrot, onion, and sorghum seeds in a range of osmotica. J. Am. Soc. Hortic. Sci. 112:202-208. Halmer, P., J.D. Bewley, and T.A. Thorpe. 1975. Enzyme to break down lettuce endosperm cell wall during gibberellin-and light-induced germination. Nature 258:716-718. Hela, M., Z. Hanen, T. Imen, B. Olfa, N. Nawel, B.M. Raouia, Z. Maha, A. Wissal, H. Jun, H. Abdelali, L. Mokhtar, and O. Zeineb. 2012. Combined effect of hormonal priming and salt treatments on germination percentage and antioxidant activities in lettuce seedlings. Afr. J. Adv. Biotechnol. 11:10373-10380. Heydecker, W., J. Higgins, and R.L. Gulliver. 1973. Accelerated germination by osmotic seed treatment. Nature 246:42-44. Hill, H. J., J.D. Cunningham, K.J. Bradford, and A.G. Taylor. 2007. Primed lettuce seeds exhibit increased sensitivity to moisture content during controlled deterioration. HortScience 42:1436-1439. Hills, P.N. and J.V. Staden. 2003. Thermoinhibition of seed germination. S. Afr. J. Bot. 69:455-461. Hilton, J. R. 1984. The influence of light and potassium nitrate on the dormancy and germination of Avena Fatua L. (wild oat) seed and its ecological significance. New Phytol. 96:31-34. Hopper, N.W., J.R. Overholt, and J.R. Martin. 1979. Effect of cultivar, temperature and seed size on the germination and emergence of soya beans (Glycine max (L.) Merr.). Ann. Bot. 44:301-308. Hsiao, A.H. and W. Vidaver. 1971. Water content and phytochrome-induced potential germination responses in lettuce seeds. Plant Physiol. 47:186-188. Huang, Y.M., W.C. Chung, and K.H. Chen. 2008. Combined effects of priming and fungicides on control of damping-off of sweet pepper. Seed and Nursery 10:21-37. Läuchli, A. and S.R. Grattan. 2007. Plant growth and development under salinity stress. p. 1-32. In: M.A. Jenks, P.M. Hasegawa, and J.S. Mohan (eds.). Advances in molecular breeding towards drought and salt tolerant crops. Springer, Dordrecht. Jafar, M.Z., M. Farooq, M.A. Cheema, I. Afzal, S.M.A. Basra, M.A. Wahid, T. Aziz, and M. Shahid. 2012. Improving the performance of wheat by seed priming under saline conditions. J. Agron. Crop Sci. 198:38-45. Jahromi, F, R. Aroca, R. Porcel, and J.M. Ruiz-Lozano. 2008. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb. Ecol. 55:45-53. Kahn, A. 1960. Promotion of lettuce seed germination by gibberellin. Plant Physiol. 35:333-339. Khan, A.A., N.H. Peck, and C. Samimy. 1980. Seed osmoconditioning: physiological and biochemical changes. Isr. J. Bot. 29:133-144. Kristie, D.N., P.K. Bassi, and M.S. Spencer. 1981. Factors affecting the induction of secondary dormancy in lettuce. Plant Physiol. 67:1224-1229. Matakiadis, T., A. Alboresi, Y. Jikumaru, K. Tatematsu, O. Pichon, J.P. Renou, Y. Kamiya, E. Nambara, and H.N. Truong. 2009. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant physiol. 149:949-960. McDonald, M.B. 2000. Seed priming, p. 287-325. In: M. Black and J.D. Bewley (eds.). Seed technology and its biological basis. Sheffield Academic Press, Sheffield, UK, Ind. Michel, B.E. and M.R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51:914-916. Mirza, S. R., N. Ilyas, and N. Batool. 2015. Seed priming enhanced seed germination traits of wheat under water, salt and heat stress. Pure Appl. Biol. 4:650-658. Nascimento, W.M. and R.S. Pereira. 2007. Preventing thermo-inhibition in carrot by seed priming. Seed Sci. Technol. 35:504-507. Nascimento, W.M. and D.J. Cantliffe. 1999. Circumventing thermodormancy in lettuce. Acta Hort. 504:147-152. Nascimento, W.M., D.J. Cantliffe, and D.J. Huber. 2000. Thermotolerance in lettuce seeds: association with ethylene and endo-β-mannanase. J. Am. Soc. Hort. Sci. 125:518-524. Nascimento, W.M., D.J. Cantliffe, and D.J. Huber. 2001. Endo-β-mannanase activity and seed germination of thermosensitive and thermotolerant lettuce genotypes in response to seed priming. Seed Sci. Res. 11:255-264. Nascimento, W.M., D.J. Cantliffe, and D.J. Huber. 2004. Ethylene evolution and endo-β-mannanase activity during lettuce seed germination at high temperature. Sci. Agr. 61:156-163. Nascimento, W.M., D.J. Cantliffe, and D.J. Huber. 2005. Seed aging affects ethylene production and endo-β-mannanase activity during lettuce seed germination at high temperature. Seed Sci. Technol. 33:11-17. Nasri, N., R. Kaddour, H. Mahmoudi, O. Baatour, N. Bouraoui, and M. Lachaâl. 2011. The effect of osmopriming on germination, seedling growth and phosphatase activities of lettuce under saline condition. Afr. J. Adv. Biotechnol. 10:14366-14372. Nawaz, A., M. Amjad, M.M. Jahangir, S.M. Khan, H. Cui, and J. Hu. 2012. Induction of salt tolerance in tomato (Lycopersicon esculentum Mill.) seeds through sand priming. Aust. J. Crop Sci. 6:1199-1203. Paparella, S., S.S. Araújo, G. Rossi, M. Wijayasinghe, D. Carbonera, and A. Balestrazzi. 2015. Seed priming: state of the art and new perspectives. Plant Cell Rep. 34:1281-1293. Rahman, A., K. Nahar, M. Hasanuzzaman, and M. Fujita. 2016. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front. Plant Sci. 7:609. Ruttanaruangboworn, A., W. Chanprasert, P. Tobunluepop, and D. Onwimol. 2017. Effect of seed priming with different concentrations of potassium nitrate on the pattern of seed imbibition and germination of rice (Oryza sativa L.). J. Integr. Agric. 16:605-613. Sakamoto, T. and S. Kimura. 2018. Plant temperature sensors. Sensors 18:4365. Sawada, Y., M. Aoki, K. Nakaminami, W. Mitsuhashi, K. Tatematsu, T. Kushiro, T. Koshiba, Y. Kamiya, Y. Inoue, E. Nambara, and T. Toyomasu. 2008. Phytochrome-and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds. Plant Physiol. 146:1386-1396. Scheibe, J. and A. Lang. 1969. Lettuce seed germination: effects of high temperature and of repeated far‐red treatment in relation to phytochrome. Photochem. Photobiol. 9:143-150. Schwember, A.R. and K.J. Bradford. 2005. Drying rates following priming affect temperature sensitivity of germination and longevity of lettuce seeds. HortScience 40:778-781. Schwember, A.R. and K.J. Bradford. 2010. A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures. Plant Mol. Biol. 73:105-118. Shafiq, F., S.H. Raza, A. Bibi, I. Khan and M. Iqbal. 2018. Influence of proline priming on antioxidative potential and ionic distribution and its relationship with salt tolerance of wheat. Cereal Res. Commun. 46:287-300. Shinomura, T. 1997. Phytochrome regulation of seed germination. J. Plant Res. 110:151-161. Sivritepe, N., H.O. Sivritepe, and A. Eris. 2003. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci. Hort. 97:229-237. Small, J. C. and Y. Gutterman. 1992. Effects of sodium chloride on prevention of thermodormancy, ethylene and protein synthesis and respiration in Grand Rapids lettuce seeds. Physiol. Plant. 84:35-40. Soares, C., M.E.A. Carvalho, R.A. Azevedo, and F. Fidalgo. 2019. Plants facing oxidative challenges—A little help from the antioxidant networks. Environ. Exp. Bot. 161:4-25. Sung, Y., D.J. Cantliffe, and R. Nagata. 1998. Using a puncture test to identify the role of seed coverings on thermotolerant lettuce seed germination. J. Amer. Soc. Hort. Sci. 123:1102-1106. Sung, Y., D.J. Cantliffe, R.T. Nagata, and W.M. Nascimento. 2008. Structural changes in lettuce seed during germination at high temperature altered by genotype, seed maturation temperature, and seed priming. J. Amer. Soc. Hort. Sci. 133:300-311. Taylor, A.G., D.E. Klein, and T.H. Whitlow. 1988. SMP: solid matrix priming of seeds. Sci. Hort. 37:1-11. Toole, V.K. 1973. Effects of light, temperature and their interactions on the germination of seeds. Seed Sci. Tech. 1:339-396. Toole, E.H., H.A. Borthwick, S.B. Hendricks, and V.K. Toole. 1953. Physiological studies of the effects of light and temperature on seed germination. ISTA. 18:270-275. Vertucci, C.W., F.A. Vertucci, and A.C. Leopold. 1987. Water content and the conversion of phytochrome regulation of lettuce dormancy. Plant Physiol. 84:887-890. Welbaum, G.E., Z. Shen, M.O. Oluoch, and L.W. Jett. 1998. The evolution and effects of priming vegetable seeds. Seed Technol. 20:209-235. Wu, L., W. Huo, D. Yao, and M. Li. 2019. Effects of solid matrix priming (SMP) and salt stress on broccoli and cauliflower seed germination and early seedling growth. Sci. Hort. 255:161-168. Xu, C. and B. Mou. 2015. Evaluation of lettuce genotypes for salinity tolerance. HortScience 50:1441-1446. Zhu, Z., R.F. Zhang, T.W. Liu, and H.L. Zheng. 2011. Solute accumulation and osmotic adjustment characteristics of the mangrove Avicennia marina under NaCl-induced salinity stress. Bot. Mar. 54:335-341.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79548-
dc.description.abstract"萵苣(Lactuca sativa L.)為菊科萵苣屬之一年生溫帶作物,產期集中於秋冬季。夏季生產,除了要提高植株本身的耐熱性外,種子的熱抑制與熱休眠也是亟需克服的。土壤鹽化降低土地的可耕性,提升種子發芽及幼苗對鹽逆境的耐性已經成為重要的課題。因此,本研究擬透過KNO3與NaCl滲調處理,評估種子與幼苗於高溫與高鹽下耐受性的提升效益。‘皺葉’不結球與‘大地’結球萵苣種子對溫度與NaCl的敏感度相似,發芽適溫範圍介於20-30°C間,低於適溫範圍,萌發速度變慢,但最終發芽率(FGP, final germination percentage)不受影響,FGP仍達100%;高於適溫範圍,發芽參數差異不大,FGP大幅下降,35°C時僅剩約35%。在20°C適溫下,種子可忍受中度NaCl逆境(≦100 mM),雖然萌芽速度減緩,但FGP及幼苗發育不受影響。高度NaCl逆境(≧150 mM)下,FGP下降,且因過多Na+和Cl-離子導致種子全數發育為畸形苗。‘皺葉’不結球萵苣種子以200 mM KNO3滲調12 h或100 mM NaCl滲調18 h,可提升35°C高溫下,FGP80%並且恢復幼苗正常發育能力。‘大地’結球萵苣種子的滲調建議條件為200 mM KNO3滲調18 h或200 mM NaCl滲調18 h,FGP及幼苗發育可恢復至90%以上。種子量與滲調液比例1:20、1:50、1:80與1:110四種滲調處理間,FGP與發芽參數無顯著差異,因此後續所有處理皆選擇1:50。以上述選定的滲調條件進行鹽逆境試驗,滲調可回復20°C下種子在100 mM NaCl(10 dSm-1)鹽逆境的萌發速度。在35°C及50 mM NaCl(5.41 dSm-1)的複合逆境下,‘皺葉’不結球萵苣未滲調及滲調種子的FGP分別為10%與50%、‘大地’結球萵苣種子分別為25%及80%。NaCl的滲調效果略高於KNO3。萵苣種子滲調與否,其幼苗在適溫下栽培5週,無論有無鹽逆境,幼苗生長無顯著差異,但滲調組的生長量略高。種子滲調的抗逆境效果,僅在種子發芽表現上。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:03:23Z (GMT). No. of bitstreams: 1
U0001-2209202102220200.pdf: 3228663 bytes, checksum: aa490ab396fd454fab41ca30f10d48e4 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 致謝 ii 中文摘要 iii 英文摘要 iv 目錄 vi 圖目錄 viii 表目錄 ix 前言 1 第一章、前人研究 2 第一節、萵苣種子發芽特性 2 第二節、滲調處理 4 第二章、材料與方法 9 第一節、試驗材料 9 第二節、溫度與鹽度對萵苣種子發芽之影響 9 第三節、滲調處理對高溫及鹽逆境下萵苣種子發芽之影響 10 第四節、統計分析 12 第三章、結果 13 第一節、溫度與NaCl逆境對萵苣種子發芽表現之影響 13 第二節、KNO3與NaCl滲調處理對高溫逆境下萵苣種子發芽之影響 14 第三節、KNO3與NaCl滲調處理對高鹽逆境下萵苣種子發芽與幼苗生長之影響 15 第四節、KNO3與NaCl滲調處理對高溫與高鹽逆境下萵苣種子發芽之影響 16 第四章、討論 17 第一節、溫度與NaCl逆境對萵苣種子發芽表現之影響 17 第二節、KNO3與NaCl滲調處理對高溫逆境下萵苣種子發芽之影響 18 第三節、KNO3與NaCl滲調處理對高鹽逆境下萵苣種子發芽與幼苗生長之影響 19 第四節、KNO3與NaCl滲調處理對高溫與高鹽逆境下萵苣種子發芽之影響 20 第五章、結論 53 參考文獻 54
dc.language.isozh-TW
dc.title滲調處理提升萵苣種子及其幼苗對高溫與高鹽的耐受性zh_TW
dc.titleSeed Priming Improves Seed Germination and Seedling Performance of Lettuce (Lactuca sativa L.) Under High Temperature or High Salinity Stressen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪進雄(Hsin-Tsai Liu),陳葦玲(Chih-Yang Tseng)
dc.subject.keyword熱抑制,硝酸鉀,氯化鈉,滲透勢,種子發芽,zh_TW
dc.subject.keywordthermoinhibition,potassium nitrate,sodium chloride,osmotic potential,seed germination,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202103277
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
dc.date.embargo-lift2026-09-22-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-2209202102220200.pdf
  此日期後於網路公開 2026-09-22
3.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved