Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor席行正(Hsing-Cheng Hsi)
dc.contributor.authorChe-Jung Hsuen
dc.contributor.author許哲榮zh_TW
dc.date.accessioned2022-11-23T09:03:13Z-
dc.date.available2021-10-04
dc.date.available2022-11-23T09:03:13Z-
dc.date.copyright2021-10-04
dc.date.issued2021
dc.date.submitted2021-09-28
dc.identifier.citation1. UNEP, 2019. Global mercury assessment 2018. 2. McNutt, M. 2013. Mercury and health. Science, 341(6153), 1430-1430. 3. Fernandes Azevedo, B., Barros Furieri, L., Peçanha, F.M., Wiggers, G.A., Frizera Vassallo, P., Ronacher Simões, M., Fiorim, J., Rossi de Batista, P., Fioresi, M., Rossoni, L., Stefanon, I., Alonso, M.J., Salaices, M., and Valentim Vassallo, D. 2012. Toxic effects of mercury on the cardiovascular and central nervous systems. Journal of biomedicine and biotechnology, 2012, 949048. 4. UNEP, 2013. Global mercury assessment 2013. 5. Hadi, P., To, M.H., Hui, C.W., Lin, C.S.K., and McKay, G. 2015. Aqueous mercury adsorption by activated carbons. Water Research, 73, 37-55. 6. Yardim, M.F., Budinova, T., Ekinci, E., Petrov, N., Razvigorova, M., and Minkova, V. 2003. Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere, 52(5), 835-841. 7. USEPA, 1995. IRIS chemical assessment summaries - elemental mercury. 8. USEPA, 2005. IRIS chemical assessment summaries - elemental mercury. 9. Björkman, L., Lundekvam, B.F., Laegreid, T., Bertelsen, B.I., Morild, I., Lilleng, P., Lind, B., Palm, B., and Vahter, M. 2007. Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environmental Health : A Global Access Science Source, 6, 30. 10. USEPA, 2001. IRIS chemical assessment summaries - methylmercury. 11. USEPA, 2000. Reference dose for methylmercury. 12. Lide, D.R. and Frederikse, H.P.R., 1995. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data, Chemical Rubber Company. 13. Schroeder, W.H., Yarwood, G., and Niki, H. 1991. Transformation processes involving mercury species in the atmosphere — results from a literature survey. Water Air and Soil Pollution, 56(1), 653-666. 14. Schuster, E. 1991. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes - A review of the literature. Water Air and Soil Pollution, 56(1), 667-680. 15. Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., and Maxson, P. 2010. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44(20), 2487-2499. 16. EU, 2011. Restriction of hazardous substances in electrical and electronic equipment (RoHS). 17. UNEP, 2013. The minamata convention on mercury. http://www.mercuryconvention.org/Convention/tabid/3426/Default.aspx 18. ZHB, 2011. Emission standard of air pollutants for thermal power plants (GB 13223-2011). 19. USEPA, 2002. Guidelines for reviewing TMDLs under existing regulations issued in 1992. 20. CCME, 1989. National guidelines on physical-chemical-biological treatment of hazardous wastes. 21. NEPA, 1996. Integrated wastewater discharge standard. 22. TWEPA, 2014. Effluent standards. 23. IEA, 2020. Global energy review 2019: The latest trends in energy and emissions in 2019. 24. IEA, 2018. World energy outlook 2018. 25. Galbreath, K.C. and Zygarlicke, C.J. 2000. Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65-66, 289-310. 26. Guo, X., Zheng, C.G., and Xu, M. 2007. Characterization of mercury emissions from a coal-fired power plant. Energy and Fuels, 21(2), 898-902. 27. Hsi, H.C., Rood, M.J., Rostam-Abadi, M., Chen, S., and Chang, R. 2001. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs). Environmental Science and Technology, 35(13), 2785-2791. 28. Krishnakumar, B. and Helble, J.J. 2007. Understanding mercury transformations in coal-fired power plants:  evaluation of homogeneous Hg oxidation mechanisms. Environmental Science and Technology, 41(22), 7870-7875. 29. Liu, S.H., Yan, N.Q., Liu, Z.R., Qu, Z., Wang, H.P., Chang, S.G., and Miller, C. 2007. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants. Environmental Science and Technology, 41(4), 1405-1412. 30. Tsai, C.Y., Chiu, C.H., Chuang, M.W., and Hsi, H.C. 2017. Influences of copper(II) chloride impregnation on activated carbon for low-concentration elemental mercury adsorption from simulated coal combustion flue gas. Aerosol and Air Quality Research, 17(6), 1537-1548. 31. Hsi, H.C., Lee, H.H., Hwang, J.F., and Chen, W. 2010. Mercury speciation and distribution in a 660-megawatt utility boiler in taiwan firing bituminous coals. Journal of the Air and Waste Management Association, 60(5), 514-522. 32. Batrakova, N., Travnikov, O., and Rozovskaya, O. 2014. Chemical and physical transformations of mercury in the ocean: a review. Ocean Science, 10, 1047-1063. 33. Zhao, L., Li, C., Zhang, X., Zeng, G., Zhang, J., and Xie, Y.e. 2015. A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts. Catalysis Science and Technology, 5(7), 3459-3472. 34. Laudal, D.L., Thompson, J.S., Pavlish, J.H., Brickett, L.A., Chu, P., Srivastava, R.K., Lee, C.W., and Kilgroe, J.D., Evaluation of mercury speciation at power plants using SCR and SNCR NOx control technologies, International Air Quality Conference III, Arlington, 2002. 35. Chou, C.P., Chiu, C.H., Chang, T.C., and Hsi, H.C. 2021. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes. Journal of the Air and Waste Management Association, 71(5), 553-563. 36. Blythe, G.M., Miller, C.E., Rhudy, R.G., Wiemuth, B., Kyle, J., and Lally, J., Wet FGD additive for enhanced mercury control, Proceedings of the EPA-DOE-EPRI-A and WMA Power Plant Air Pollutant Control Mega Symposium 2006, Baltimore , Maryland, 2006. 37. Díaz-Somoano, M., Unterberger, S., and Hein, K.R.G. 2005. Using wet-FGD systems for mercury removal. Journal of Environmental Monitoring, 7(9), 906-909. 38. FeIsvang, K. and Brown, B., High SO2 and mercury removal by dry FGD systems, Proceedings of the American Power Conference, Chicago, Illinois, 1992. 39. Hargrove, O.W., Carey, T.R., Rhudy, R.G., and Brown, T.D., Enhanced control of mercury by innovative modifications to wet FGD processes, Air and Waste Management Association's Annual Meeting and Exhibition, Pittsburgh, Pennsylvania, 1996. 40. Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L., and Benson, S.A. 2003. Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 82(2-3), 89-165. 41. Renninger, S.A., Farthing, G.A., Ghorishi, S.B., Teets, C., and Neureuter, J.A. 2004. Using wet FGD systems to absorb mercury. Power, 148(8), 44-49. 42. Miller, C.E., Feeley, T.J., Aljoe, W., Lani, B., Schroeder, K., Kairies, C.L., McNemar, A., Jones, A., and Murphy, J., Mercury capture and fate using wet FGD at coal-fired power plants, DOE/NETL Mercury and Wet FGD R D, 2006. 43. Chang, J.C.S. and Zhao, Y., Pilot plant testing of elemental mercury re-emission from wet scrubbers, Proceedings of the EPA-DOE-EPRI-A and WMA Power Plant Air Pollutant Control Mega Symposium 2006, Baltimore, Maryland, 2006. 44. Chen, C., Liu, S., Gao, Y., and Liu, Y. 2014. Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry. The Scientific World Journal, 2014. 45. Chen, C. and Zhang, J., The effect of anions on mercury re-emission from wet flue gas desulfurization liquors, Proceedings - 4th International Conference on Intelligent Computation Technology and Automation, ICICTA 2011, 2011. 46. Ghorishi, B., Downs, B., and Renninger, S., Role of sulfides in the sequestration of mercury by wet scrubbers, Proceedings of the EPA-DOE-EPRI-A and WMA Power Plant Air Pollutant Control Mega Symposium 2006, 2006. 47. USEPA, 2015. Steam electric power generating effluent guidelines - 2015 final rule. 48. Chang, L., Zhao, Y., Li, H., Tian, C., Zhang, Y., Yu, X., and Zhang, J. 2017. Effect of sulfite on divalent mercury reduction and re-emission in a simulated desulfurization aqueous solution. Fuel Processing Technology, 165, 138-144. 49. Wo, J., Zhang, M., Cheng, X., Zhong, X., Xu, J., and Xu, X. 2009. Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors. Journal of Hazardous Materials, 172(2-3), 1106-1110. 50. Chen, J.S., Luo, J.J., and Luo, J.Y. 2009. Study on the mercury emission from seawater for coal-fired flue gas de-sulphurization during aeration process. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 29(11), 39-43. 51. Li, R., Wu, H., Ding, J., Fu, W., Gan, L., and Li, Y. 2017. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Scientific Reports, 7(1), 46545. 52. Liu, X., Sun, L., Yuan, D., Yin, L., Chen, J., Liu, Y., Liu, C., Liang, Y., and Lin, F. 2011. Mercury distribution in seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system. Environmental Science and Pollution Research, 18(8), 1324-1332. 53. Liu, X., Yuan, D., and Chen, Y. 2013. Bioaccumulation of mercury in Crassostrea sp. exposed to waste seawater discharged from a coal-fired power plant equipped with a seawater flue-gas desulfuriaztion system. Huanjing Kexue/Environmental Science, 34(4), 1374-1379. 54. Siddiqi, Z.M., 2018. Transport and fate of mercury (Hg) in the environment: need for continuous monitoring, in: Handbook of Environmental Materials Management, Springer International Publishing, Cham, 1-20. 55. Wang, K., Orndorff, W., Cao, Y., and Pan, W. 2013. Mercury transportation in soil via using gypsum from flue gas desulfurization unit in coal-fired power plant. Journal of Environmental Sciences, 25(9), 1858-1864. 56. CCME, 2006. Canada-wide standard (CWS) for Hg emissions from coal-fired electric power generation plants. 57. USEPA, 2020. History of the MATS regulation. https://www.epa.gov/mats/history-mats-regulation 58. Córdoba, P. 2015. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs. Fuel, 144, 274-286. 59. Heidel, B., Rogge, T., and Scheffknecht, G. 2016. Controlled desorption of mercury in wet FGD waste water treatment. Applied Energy, 162, 1211-1217. 60. Jędrusik, M., Gostomczyk, M.A., Świerczok, A., Łuszkiewicz, D., and Kobylańska, M. 2019. Mercury re-emission from adipic acid enhanced FGD absorber – Full scale investigations on ∼400 MWe boiler (lignite) with oxidant injection to flue gas. Fuel, 238, 507-513. 61. Ochoa-González, R., Díaz-Somoano, M., and Martínez-Tarazona, M.R. 2013. Influence of limestone characteristics on mercury re-emission in WFGD systems. Environmental Science and Technology, 47(6), 2974-2981. 62. Ochoa-González, R., Díaz-Somoano, M., and Martínez-Tarazona, M.R. 2013. Effect of anion concentrations on Hg2+ reduction from simulated desulphurization aqueous solutions. Chemical Engineering Journal, 214, 165-171. 63. Omine, N., Romero, C.E., Kikkawa, H., Wu, S., and Eswaran, S. 2012. Study of elemental mercury re-emission in a simulated wet scrubber. Fuel, 91(1), 93-101. 64. USEPA, 1978. Flue gas desulfurization system capabilities for coal-fired steam generators, technical report. 65. Wu, C.L., Cao, Y., He, C.C., Dong, Z.B., and Pan, W.P. 2010. Study of elemental mercury re-emission through a lab-scale simulated scrubber. Fuel, 89(8), 2072-2080. 66. Liu, X., Wang, S., Zhang, L., Wu, Y., Duan, L., and Hao, J. 2013. Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China. Fuel, 111, 621-627. 67. Michalski, J.A. 2006. Equilibria in limestone-based FGD process:  magnesium addition. Industrial and Engineering Chemistry Research, 45(6), 1945-1954. 68. Weiß, B.D. and Harasek, M. 2021. Solubility data of potential salts in the MgO-CaO-SO2-H2O-O2 system for process modeling. Processes, 9(1), 1-17. 69. Xiang, J. 2012. Comparative study on the calcium desulfurization and magnesium desulfurization. Shanghai Energy Conservation, 11, 5. 70. Chen, J.S. 2006. Prediction of the effect of discharge water from seawater flue gas desulfurized system on sea water quality. Ocean technology, 25(2), 112-116. 71. Frossard, A.A., Gérard, V., Duplessis, P., Kinsey, J.D., Lu, X., Zhu, Y., Bisgrove, J., Maben, J.R., Long, M.S., Chang, R.Y.W., Beaupré, S.R., Kieber, D.J., Keene, W.C., Nozière, B., and Cohen, R.C. 2019. Properties of seawater surfactants associated with primary marine aerosol particles produced by bursting bubbles at a model air–sea interface. Environmental Science and Technology, 53(16), 9407-9417. 72. Huang, S., Yuan, D., Lin, H., Sun, L., and Lin, S. 2017. Fractionation of mercury stable isotopes during coal combustion and seawater flue gas desulfurization. Applied Geochemistry, 76, 159-167. 73. Luo, H.Z. and Zeng, S.Y. 2010. The comparison between seawater desulphurization and limestone-gypsum wet flue gas desulfurization. Technological Development of Enterprise, 29(15), 90-92. 74. Oikawa, K., Yongsiri, C., Takeda, K., and Harimoto, T. 2003. Seawater flue gas desulfurization: Its technical implications and performance results. Environmental Progress, 22(1), 67-73. 75. Su, S., Liu, L., Wang, L., Syed-Hassan, S.S.A., Kong, F., Hu, S., Wang, Y., Jiang, L., Xu, K., Zhang, A., and Xiang, J. 2017. Mass flow analysis of mercury transformation and effect of seawater flue gas desulfurization on mercury removal in a full-scale coal-fired power plant. Energy and Fuels, 31(10), 11109-11116. 76. Fukuzaki, S. 2006. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Science, 11(4), 147-157. 77. Saleem, M., Chakrabarti, M.H., Hasan, D.B., Islam, M.S., Yussof, R., Hajimolana, S.A., Hussain, M.A., Khan, G.M.A., and Si Ali, B. 2012. On site electrochemical production of sodium hypochlorite disinfectant for a power plant utilizing seawater. International Journal of Electrochemical Science, 7(5), 3929-3938. 78. Simon, F.X., Berdalet, E., Gracia, F.A., España, F., and Llorens, J. 2014. Seawater disinfection by chlorine dioxide and sodium hypochlorite. A comparison of biofilm formation. Water, Air, and Soil Pollution, 225(4), 11. 79. Zhang, Y., Wang, Y., Zhou, J., Liu, J., and Li, T. 2020. Basic characteristics and comprehensive utilization of FGD gypsum. IOP Conference Series: Earth and Environmental Science, 510, 052002. 80. Chang, L., Yang, J.P., Yu, X.H., Tian, C., Zhang, J.Y., Zhao, Y.C., and Zheng, C.G. 2017. The experimental study on the effect of pH value on Hg2+ reduction mechanism in the wet flue gas desulphurization system. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 38(4), 885-889. 81. Liu, Y., Wang, Y., Wu, Z., Zhou, S., and Wang, H. 2011. A mechanism study of chloride and sulfate effects on Hg2+ reduction in sulfite solution. Fuel, 90(7), 2501-2507. 82. Senior, C.L. 2007. Review of the role of aqueous chemistry in mercury removal by acid gas scrubbers on incinerator systems. Environmental Engineering Science, 24(8), 1129-1134. 83. Han, L., Air injection techniques for seawater flue gas desulphurization (SWFGD) aeration system, School of Architecture and the Built Environment, Kungliga Tekniska Högskolan, Master, 2012. 84. Koralegedara, N.H., Pinto, P.X., Dionysiou, D.D., and Al-Abed, S.R. 2019. Recent advances in flue gas desulfurization gypsum processes and applications – A review. Journal of Environmental Management, 251, 109572. 85. Eden, D. and Luckas, M. 1998. A heat and mass transfer model for the simulation of the wet limestone flue gas scrubbing process. Chemical Engineering and Technology, 21(1), 56-60. 86. Gerbec, M., Stergaršek, A., and Kocjančič, R. 1995. Simulation model of wet flue gas desulphurization plant. Computers and Chemical Engineering, 19, 283-286. 87. Gutiérrez Ortiz, F.J., Vidal, F., Ollero, P., Salvador, L., Cortés, V., and Giménez, A. 2006. Pilot-plant technical assessment of wet flue gas desulfurization using limestone. Industrial and Engineering Chemistry Research, 45(4), 1466-1477. 88. Wang, Q., Liu, Y., Wang, H., Weng, X., and Wu, Z. 2015. Mercury re-emission behaviors in magnesium-based wet flue gas desulfurization process: The effects of oxidation inhibitors. Energy and Fuels, 29(4), 2610-2615. 89. Wang, Q., Liu, Y., Yang, Z., Wang, H., Weng, X., Wang, Y., and Wu, Z. 2014. Study of mercury re-emission in a simulated WFGD solution containing thiocyanate and sulfide ions. Fuel, 134(Supplement C), 588-594. 90. Lee, J.T. and Chen, M.C., 2011. Using seawater to remove SO2 in a FGD system, in: Waste water - treatment and reutilization, InTech, 427-436. 91. Shen, Z., Ni, M., Guo, S., Chen, X., Tong, M., and Lu, J. 2013. Studies on magnesium-based wet flue gas desulphurization process with a spray scrubber. Asian Journal of Chemistry, 25(12), 6727-6732. 92. Wang, Q., Liu, Y., Yang, Z., Wang, H., Weng, X., Wang, Y., and Wu, Z. 2014. Study of mercury re-emission in a simulated WFGD solution containing thiocyanate and sulfide ions. Fuel, 134, 588-594. 93. Wang, L., Qi, T., Hu, M., Zhang, S., Xu, P., Qi, D., Wu, S., and Xiao, H. 2017. Inhibiting mercury re-emission and enhancing magnesia recovery by cobalt-loaded carbon nanotubes in a novel magnesia desulfurization process. Environmental Science and Technology, 51(19), 11346-11353. 94. Chen, H., Wang, Y., Wei, Y., Peng, L., Jiang, B., Li, G., Yu, G., and Du, C. 2018. Wet flue gas desulfurization wastewater treatment with reclaimed water treatment plant sludge: a case study. Water Science and Technology, 78(11), 2392-2403. 95. Conidi, C., Macedonio, F., Ali, A., Cassano, A., Criscuoli, A., Argurio, P., and Drioli, E. 2018. Treatment of flue gas desulfurization wastewater by an integrated membrane-based process for approaching zero liquid discharge. Membranes, 8(4), 117. 96. Krzyżyńska, R., Szeliga, Z., Pilar, L., Borovec, K., and Regucki, P. 2020. High mercury emission (both forms: Hg0 and Hg2+) from the wet scrubber in a full-scale lignite-fired power plant. Fuel, 270, 117491-117500. 97. Riffe, M.R., Heimbigner, B.E., Kutzora, P.G., and Braunstein, K.A., Wastewater treatment for FGD purge streams, 7th Power Plant Air Pollutant Control 'Mega' Symposium, Baltimore, United States, 2008. 98. ETI, 2019. Managing the new FGD wastewater regulations. 99. Bogataj, M. and Glavič, P., Mercury chemistry in wet flue gas desulfurization process, 17th European Roundtable on Sustainable Consumption and Production, Slovenia, 2014. 100. Munthe, J., Xiao, Z.F., and Lindqvist, O. 1991. The aqueous reduction of divalent mercury by sulfite. Water Air and Soil Pollution, 56(1), 621-630. 101. Ravichandran, M. 2004. Interactions between mercury and dissolved organic matter––a review. Chemosphere, 55(3), 319-331. 102. Smith, R.M. and Martell, A.E., 1976. Critical stability constants - inorganic complexes, Springer. 103. Van Loon, L.L., Mader, E., and Scott, S.L. 2000. Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSO3 and its intramolecular redox reaction. Journal of Physical Chemistry A, 104(8), 1621-1626. 104. Van Loon, L.L., Mader, E.A., and Scott, S.L. 2001. Sulfite stabilization and reduction of the aqueous mercuric ion:  kinetic determination of sequential formation constants. The Journal of Physical Chemistry A, 105(13), 3190-3195. 105. Blythe, G.M., Currie, J., and DeBerry, D., 2008. Bench-scale kinetics study of mercury reactions in FGD Liquors. 106. Heidel, B., Hilber, M., and Scheffknecht, G. 2014. Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization. Applied Energy, 114, 485-491. 107. Ma, Y., Xu, H., Qu, Z., Yan, N., and Wang, W. 2014. Absorption characteristics of elemental mercury in mercury chloride solutions. Journal of Environmental Sciences (China), 26(11), 2257-2265. 108. Blythe, G.M., Richardson, M., Dene, C., Rhudy, R.G., and Nolan, P., Field study of mercury partitioning and re-emissions in wet FGD, Air and Waste Management Association - 8th Power Plant Air Pollutant Control Mega Symposium 2010, Baltimore, Maryland, 2010. 109. Currie, J., Deberry, D.W., Blythe, G., Pletcher, S., and Rhudy, R., Bench-scale kinetics study of mercury reactions in FGD liquors, DOE NETL Mercury Control Technology Conference, Pittsburgh, Pennsylvania, 2006. 110. Heidel, B. and Klein, B. 2017. Reemission of elemental mercury and mercury halides in wet flue gas desulfurization. International Journal of Coal Geology, 170, 28-34. 111. Heidel, B., Rogge, T., and Scheffknecht, G. 2014. Controlled re-emission of mercury in waste water treatment. Energy Procedia, 61, 2307-2310. 112. Chai, L.Y., Wang, Q.W., Wang, Y.Y., Li, Q.Z., Yang, Z.H., and Shu, Y.D. 2010. Thermodynamic study on reaction path of Hg(II) with S(II) in solution. Journal of Central South University of Technology, 17(2), 289-294. 113. Singh, J., Srivastav, A.N., Singh, N., and Singh, A., 2019. Stability constants of metal complexes in solution, stability and applications of coordination compounds, IntechOpen. 114. Chen, C., Zhang, J., and Yu, L. 2011. Study on the characteristics of mercury reemission from wet flue gas desulfurization solution. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 31(5), 48-51. 115. Liu, Z., Wang, D., Peng, B., Chai, L., Yang, S., Liu, C., Zhang, C., Xie, X., and Liu, H. 2017. Mercury re-emission in the smelting flue gas cleaning process: the influence of arsenite. Energy and Fuels, 31(10), 11053-11059. 116. Cai, J.H. and Jia, C.Q. 2010. Mercury removal from aqueous solution using coke-derived sulfur-impregnated activated carbons. Industrial and Engineering Chemistry Research, 49(6), 2716-2721. 117. Peng, B., Liu, Z., Chai, L., Liu, H., Yang, S., Yang, B., Xiang, K., and Liu, C. 2016. The effect of selenite on mercury re-emission in smelting flue gas scrubbing system. Fuel, 168, 7-13. 118. Peng, B., Liu, Z., Chai, L., Liu, H., Yang, S., Yang, B., Xiang, K., and Liu, C. 2017. Effect of copper ions on the mercury re-emission in a simulated wet scrubber. Fuel, 190, 379-385. 119. Sharma, G., Kumar, A., Sharma, S., Naushad, M., Prakash Dwivedi, R., Alothman, Z.A., and Mola, G.T. 2019. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. Journal of King Saud University - Science, 31(2), 257-269. 120. Tang, T., Xu, J., Lu, R., Wo, J., and Xu, X. 2010. Enhanced Hg2+ removal and Hg0 re-emission control from wet fuel gas desulfurization liquors with additives. Fuel, 89(12), 3613-3617. 121. Wu, H., Sun, J., Zhou, C., and Yang, H. 2019. Effect of additives on stabilization and inhibition of mercury re-emission in simulated desulphurization slurry. International Journal of Environmental Science and Technology, 16, 7705-7714. 122. Wang, Q., Liu, Y., and Wu, Z. 2018. Laboratory study on mercury release of the gypsum from the mercury coremoval wet flue gas desulfurization system with additives. Energy and Fuels, 32(2), 1005-1011. 123. Jia, W., Chen, C., and Liu, S. 2020. Characteristics and kinetics study of mercury re-emission inhibited by DTCR in simulated desulfurization slurry. Energy and Fuels, 34(9), 11330-11340. 124. Ok, Y.S., Bhatnagar, A., Hou, D., Bhaskar, T., and Mašek, O. 2020. Advances in algal biochar: Production, characterization and applications. Bioresource Technology, 317, 123982. 125. Hagemann, N., Spokas, K., Schmidt, H.-P., Kägi, R., Böhler, M.A., and Bucheli, T.D. 2018. Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water, 10(2), 182. 126. Tan, X.F., Liu, Y.G., Gu, Y.L., Xu, Y., Zeng, G.M., Hu, X.J., Liu, S.B., Wang, X., Liu, S.M., and Li, J. 2016. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318-333. 127. Bansal, R.C. and Goyal, M., 2005. Activated carbon adsorption, CRC Press, Boca Raton. 128. Yang, Q., Wang, Y., and Zhong, H. 2021. Remediation of mercury-contaminated soils and sediments using biochar: A critical review. Biochar, 3(1), 23-35. 129. Burwell Jr, R.L., 1976. Section 1 - definitions and terminology, in: Manual of symbols and terminology for physicochemical quantities and units–appendix II, Pergamon, 74-86. 130. Marsh, H. and Rodríguez-Reinoso, F., 2006. Activated carbon, Elsevier Science. 131. Yang, R.T., 2003. Activated carbon, in: Adsorbents: Fundamentals and Applications, John Wiley Sons, Inc., 79-130. 132. Everett, D.H. 1972. Manual of symbols and terminology for physicochemical quantities and units, appendix ii: definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry, 31(4), 577. 133. Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.M., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K. 1994. Recommendations for the Characterization of Porous Solids (Technical Report). 66(8), 1739-1758. 134. Ie, I.R., Chen, W.C., Yuan, C.S., Hung, C.H., Lin, Y.C., Tsai, H.H., and Jen, Y.S. 2012. Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon. Journal of Hazardous Materials, 217-218, 43-50. 135. Korpiel, J.A. and Vidic, R.D. 1997. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environmental Science and Technology, 31(8), 2319-2325. 136. Krishnan, K.A. and Anirudhan, T.S. 2002. Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies. Journal of Hazardous Materials, 92(2), 161-183. 137. Saha, D., Barakat, S., Van Bramer, S.E., Nelson, K.A., Hensley, D.K., and Chen, J. 2016. Noncompetitive and competitive adsorption of heavy metals in sulfur-functionalized ordered mesoporous carbon. ACS Applied Materials and Interfaces, 8(49), 34132-34142. 138. Wajima, T. and Sugawara, K. 2011. Adsorption behaviors of mercury from aqueous solution using sulfur-impregnated adsorbent developed from coal. Fuel Processing Technology, 92(7), 1322-1327. 139. Wang, J., Deng, B., Wang, X., and Zheng, J. 2009. Adsorption of aqueous Hg(II) by sulfur-impregnated activated carbon. Environmental Engineering Science, 26(12), 1693-1699. 140. Yang, R.T., 2003. Fundamental factors for designing adsorbent, in: Adsorbents: Fundamentals and Applications, John Wiley Sons, Inc., 8-16. 141. Pearson, R.G. 1988. Absolute electronegativity and hardness: application to inorganic chemistry. Inorganic Chemistry, 27(4), 734-740. 142. Adams, M.D. 1991. The mechanisms of adsorption of Hg(CN)2 and HgCl2 on to activated carbon. Hydrometallurgy, 26(2), 201-210. 143. Lopes, C.B., Otero, M., Lin, Z., Silva, C.M., Pereira, E., Rocha, J., and Duarte, A.C. 2010. Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate. Journal of Hazardous Materials, 175(1), 439-444. 144. Namasivayam, C. and Periasamy, K. 1993. Bicarbonate-treated peanut hull carbon for mercury (II) removal from aqueous solution. Water Research, 27(11), 1663-1668. 145. Allen, S.J., McKay, G., and Porter, J.F. 2004. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280(2), 322-333. 146. Vijayaraghavan, K., Padmesh, T.V.N., Palanivelu, K., and Velan, M. 2006. Biosorption of nickel(II) ions onto sargassum wightii: application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133(1-3), 304-308. 147. Weber, T.W. and Chakravorti, R.K. 1974. Pore and solid diffusion models for fixed‐bed adsorbers. AIChE Journal, 20(2), 228-238. 148. Freundlich, H. 1906. Über die absorption in lösungen. Über Die Adsorption in Lösungen, 385-470. 149. Ho, Y.S. and McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. 150. Ringot, D., Lerzy, B., Chaplain, K., Bonhoure, J.-P., Auclair, E., and Larondelle, Y. 2007. In vitro biosorption of ochratoxin A on the yeast industry by-products: Comparison of isotherm models. Bioresource Technology, 98(9), 1812-1821. 151. Temkin, M. and Pyzhev, V. 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochimica URSS, 12, 6. 152. Ho, Y.S. and McKay, G. 1998. A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76(4), 332-340. 153. Sen Gupta, S. and Bhattacharyya, K.G. 2011. Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science, 162(1-2), 39-58. 154. Lagergren, S. 1898. About the theory of so-called adsorption of soluble substance. Kungliga Svenska Vetenskapsakademiens, Handlingar, 24(4), 39. 155. Hubbe, M.A., Azizian, S., and Douven, S. 2019. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources, 14(3), 7582-7626. 156. Aharoni, C. and Tompkins, F.C. 1970. Kinetics of adsorption and desorption and the Elovich equation. Advances in Catalysis, 21, 49. 157. Weber, W.J. and Morris, J.C., Advances in water pollution research: removal of biologically resistant pollutant from waste water by adsorption, 1st International Conference on Water Pollution Symposium, 1962. 158. Dotto, G.L., Ocampo-Pérez, R., Moura, J.M., Cadaval, T.R.S., and Pinto, L.A.A. 2016. Adsorption rate of reactive black 5 on chitosan based materials: geometry and swelling effects. Adsorption, 22(7), 973-983. 159. Rivera-Utrilla, J., Sánchez-Polo, M., and Ocampo-Pérez, R., 2017. Removal of antibiotics from water by adsorption/biosorption on adsorbents from different raw materials, in: (1), Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Cham, 139-204. 160. Abdelouahab-Reddam, Z., Wahby, A., El Mail, R., Silvestre-Albero, J., Rodríguez-Reinoso, F., and Sepúlveda-Escribano, A. 2014. Activated carbons impregnated with Na2S and H2SO4: Texture, surface chemistry and application to mercury removal from aqueous solutions. Adsorption Science and Technology, 32(2-3), 101-115. 161. Asasian, N. and Kaghazchi, T. 2012. Comparison of dimethyl disulfide and carbon disulfide in sulfurization of activated carbons for producing mercury adsorbents. Industrial and Engineering Chemistry Research, 51(37), 12046-12057. 162. Asasian, N., Kaghazchi, T., Faramarzi, A., Hakimi-Siboni, A., Asadi-Kesheh, R., Kavand, M., and Mohtashami, S. 2014. Enhanced mercury adsorption capacity by sulfurization of activated carbon with SO2 in a bubbling fluidized bed reactor. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1588-1596. 163. Lopez-Gonzalez, J.D.D., Moreno-Castilla, C., Guerrero-Ruiz, A., and Rodriguez-Reinoso, F. 1982. Effect of carbon-oxygen and carbon-sulphur surface complexes on the adsorption of mercuric chloride in aqueous solutions by activated carbons. Journal of chemical technology and biotechnology, 32(5), 575-579. 164. Wang, J., Feng, X., Anderson, C.W.N., Wang, H., Zheng, L., and Hu, T. 2012. Implications of mercury speciation in thiosulfate treated plants. Environmental Science and Technology, 46(10), 5361-5368. 165. Wang, J., Yang, J., and Liu, Z. 2009. Adsorption and removal of gas-phase Hg0 over V2O5/AC catalyst in the presence of SO2. Environmental Science, 30(12), 6. 166. Yu, J.G., Yue, B.Y., Wu, X.W., Liu, Q., Jiao, F.P., Jiang, X.Y., and Chen, X.Q. 2016. Removal of mercury by adsorption: A review. Environmental Science and Pollution Research, 23(6), 5056-5076. 167. Lee, S.S., Lee, J.Y., and Keener, T.C. 2009. Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents. Fuel Processing Technology, 90(10), 1314-1318. 168. Yang, J., Zhao, Y., Zhang, J., and Zheng, C. 2016. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 2. Identification of in………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79541-
dc.description.abstract由於食物鏈及食物網的生物累積與生物放大,環境及工業中的汞分布對人體健康造成相當大的威脅,因此,汞的使用及排放為全球關注的重要議題。為了減緩汞排放對環境的衝擊,本論文合成官能化碳材並應用於工業汞控制(5.1、5.2及5.3節)與汞污染水體之環境整治(5.4節)。 於5.1節中,本論文藉由批次式吸附實驗獲取商用硫化活性碳(SAC)於石灰石濕式煙氣脫硫廢水中汞去除的最佳吸附參數。實驗結果顯示,在所有測試pH下,SAC1對液相汞(Hg(II))的吸附量及去除率平均高於SAC2(CS2預處理之SAC1)0.32 mg/g與21%。此外,當pH由4上升至7,SAC1之Hg(II)吸附效果下降了22%(0.27 mg/g)。吸附動力擬合結果顯示擬二階與Elovich方程式可用以敘述SAC1對Hg(II)的吸附行為,由等溫吸附曲線擬合結果則可看出linear與Freundlich方程式較符合該化學吸附反應。吸附熱力學計算結果證實SAC1在該系統中對Hg(II)的吸附屬於自發性的放熱反應。於Hg0再逸散實驗結果可發現,當SO32-由0上升至0.01 mM,Hg0再逸散量下降了88%,SAC1的添加可完全抑制Hg0再逸散。整體而言,藉由添加SAC1可成功捕捉液相Hg(II)並抑制氣相Hg0再逸散發生。 5.2節則自行合成SAC,並於不同吸附參數下測試SAC在海水煙氣脫硫廢水中對Hg(II)之吸附行為。批次吸附結果顯示,當初始Hg(II)濃度高於4.7 µg/L,SAC之Hg(II)去除明顯優於AC。此外,SAC在pH 7及8下的吸附效果高於在pH 2至6之間。吸附動力擬合結果顯示擬二階方程式可用以敘述SAC對Hg(II)的吸附行為。由等溫吸附曲線擬合結果則可看出linear方程式較符合該化學吸附反應。吸附熱力學計算結果證實SAC在該系統中對Hg(II)的吸附屬於自發性的吸熱反應。另外,於Hg0再逸散實驗中發現NaClO的添加可有效降低Hg0再逸散,然而NaClO的添加促使Hg–Cl錯合物的形成,間接降低了SAC對Hg(II)的吸附。 合成銅硫共含浸活性碳(Cu-S-AC)並將其應用於海水煙氣脫硫廢水中的Hg(II)捕捉及Hg0再逸散抑制為5.3節的研究方向。批次吸附結果顯示,當初始Hg(II)濃度高於8 µg/L,Cu-S-AC之Hg(II)去除明顯優於硫含浸活性碳(S-AC)及AC。此外,Cu-S-AC在pH 7及8下的吸附效果高於在酸性條件。吸附動力擬合結果顯示擬二階方程式可用以敘述Cu-S-AC對Hg(II)的吸附行為,由等溫吸附曲線擬合結果則可看出線性與Freundlich方程式較符合該化學吸附反應。吸附熱力學計算結果證實Cu-S-AC在該系統中對Hg(II)的吸附屬於自發性的吸熱反應。Hg0再逸散實驗結果顯示,pH及溫度的上升會促進海水煙氣脫硫廢水中的Hg0再逸散,而Cu-S-AC的添加則可有效降低92%的Hg0再逸散。 將生物炭(biochar)的碳化、磁化及硫化合併為單一的熱處理程序以製備硫化磁性生物炭(SMBC)並將SMBC應用於水體Hg(II)去除為5.4節之研究主軸。批次吸附結果顯示,於600 °C下熱裂解合成的SMBC之Hg(II)最大吸附量(8.93 mg/g)高於400、500、700、800及900 °C下熱裂解合成的SMBC。此外,SMBC的Hg(II)吸附分別高於磁性生物炭(MBC)及一般生物炭(BC)53.0%及11.5%。酸性條件(pH 3.5–5)則有利於SMBC的Hg(II)吸附。吸附動力擬合結果顯示擬二階及外部質量傳輸方程式可用以敘述SMBC對Hg(II)的吸附行為。吸附熱力學計算結果證實SMBC在該系統中對Hg(II)的吸附屬於自發性的吸熱反應。SMBC在三種實際環境水體的吸附結果顯示,汞在淡水的分配係數(PC)為4.964 mg/g/µM,高於河口水(0.176 mg/g/µM)及海水(0.275 mg/g/µM),該數據也顯示鹽度對SMBC環境整治應用的影響。 總結而言,官能化AC(SAC及Cu-S-AC)可有效於濕式煙氣脫硫(石灰石或海水)廢水中捕捉液相Hg(II)並同時抑制氣相Hg0再逸散。除此之外,SMBC的合成快速且便捷,對Hg(II)吸附的效果良好,將來可實際應用於水體、底泥及土壤等環境介質之汞污染整治。本論文的研究成果不僅在污染控制技術或清潔生產有所貢獻,更針對工業排放及環境汞污染問題提出不同的新穎材料應用策略。綜上所述,本論文所產出之科學貢獻橫跨環境工程、材料科學及化學工程等三個重要領域。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:03:13Z (GMT). No. of bitstreams: 1
U0001-2309202115242300.pdf: 8434016 bytes, checksum: 97b8454bf2387c389662356fc7b4746e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 i ACKNOWLEDGEMENT iii 中文摘要 iv ABSTRACT vi LIST OF CONTENTS ix LIST OF FIGURES xiii LIST OF TABLES xvi NOMENCLATURE xvii Chapter 1 INTRODUCTION 1 Chapter 2 LITERATURE REVIEW 3 2.1 Mercury 3 2.1.1 Characteristic and toxicity 3 2.1.2 Source 4 2.1.3 Restrictions and regulations 6 2.2 Hg releases from coal-fired power plant 8 2.2.1 WFGD and Hg0 re-emission 9 2.2.2 Types of WFGD 11 2.2.3 Effect of pH and SO32- on Hg0 re-emission 15 2.2.4 Effect of temperature on Hg0 re-emission 17 2.2.5 Hg0 re-emission inhibitions 18 2.3 Carbonaceous adsorbent and adsorption phenomena 22 2.3.1 The properties of carbonaceous adsorbent 22 2.3.2 Types of adsorption 23 2.3.3 Aqueous Hg(II) adsorption parameters 24 2.3.4 Isothermal adsorption models 26 2.3.5 Adsorption kinetic models 28 2.3.6 Sulfurization of material 31 2.3.7 Copper-modification of material 32 2.3.8 Magnetization of material 33 Chapter 3 RESEARCH GOALS AND IMPORTANCE 35 3.1 Objectives and importance 35 3.2 Research framework 36 Chapter 4 MATERIALS AND METHODS 38 4.1 Simultaneous aqueous Hg(II) adsorption and gaseous Hg0 re-emission inhibition from Ca-added WFGD wastewater by using commercial SAC 38 4.1.1 Properties of actual lime-based WFGD wastewater 38 4.1.2 Preparation of adsorbent 38 4.1.3 Hg(II) adsorption and Hg0 re-emission inhibition 39 4.2 Simultaneous aqueous Hg(II) adsorption and gaseous Hg0 re-emission inhibition from SFGD wastewater by using synthesized SAC and NaClO 40 4.2.1 SFGD wastewater 41 4.2.2 Preparation of adsorbent 41 4.2.3 Hg(II) adsorption and Hg0 re-emission inhibition 42 4.3 Simultaneous aqueous Hg(II) adsorption and gaseous Hg0 re-emission inhibition from SFGD wastewater by using Cu-S-AC 43 4.3.1 SFGD wastewater 43 4.3.2 Preparation of adsorbent 43 4.3.3 Hg(II) adsorption and Hg0 re-emission inhibition 44 4.4 Aqueous Hg(II) capture by using SMAC 45 4.4.1 Preparation of materials 45 4.4.2 Batch Hg(II) adsorption testing 47 Chapter 5 RESULTS AND DISCUSSION 50 5.1 Simultaneous aqueous Hg(II) adsorption and gaseous Hg0 re-emission inhibition from Ca-added WFGD wastewater by using commercial SAC 50 5.1.1 Physical and chemical characteristics of SACs 50 5.1.2 Functional groups and bonding analysis for SACs 51 5.1.3 Effect of pH 53 5.1.4 Effect of adsorbent dosage 54 5.1.5 Adsorption kinetics 55 5.1.6 Adsorption isotherms and thermodynamic parameters 57 5.1.7 Inhibitions of Hg0 re-emission 59 5.1.8 The mechanisms of Hg(II) adsorption and Hg0 re-emission inhibition 61 5.2 Simultaneous aqueous Hg(II) adsorption and gaseous Hg0 re-emission inhibition from SFGD wastewater by using synthesized SAC and NaClO 62 5.2.1 Characterizations of adsorbents and actual SFGD wastewater 62 5.2.2 Effect of C0, sulfurization of AC, and pH on Hg(II) adsorption 66 5.2.3 Adsorption kinetics 68 5.2.4 Adsorption isotherms and thermodynamic parameters 69 5.2.5 Effect of the addition of NaClO 71 5.2.6 Possible mechanisms of Hg(II) adsorption and Hg0 re-emission inhibition 74 5.3 Simultaneous aqueous Hg(II) adsorption and gaseous Hg0 re-emission inhibition from SFGD wastewater by using Cu-S-AC 76 5.3.1 Characterizations of adsorbents and actual SFGD wastewater 76 5.3.2 Effect of C0, modifications of AC, and pH on Hg(II) adsorption 79 5.3.3 Adsorption kinetics 82 5.3.4 Adsorption isotherms and thermodynamic parameters 85 5.3.5 Effect of pH on Hg0 re-emission 87 5.3.6 Effect of temperature on Hg0 re-emission 88 5.3.7 Inhibitions of Hg0 re-emission 89 5.4 Aqueous Hg(II) capture by using SMBC 93 5.4.1 Characterizations of adsorbents 93 5.4.2 Effect of pyrolysis temperature 103 5.4.3 Effects of magnetization and desulfurization 104 5.4.4 Effect of pH 107 5.4.5 Adsorption kinetics 108 5.4.6 Adsorption isotherms and thermodynamic parameters 111 5.4.7 Hg(II) adsorption in environmental waters 114 Chapter 6 SUMMARY AND RECOMMENDATIONS 117 REFERENCES 120 ORIGINAL PUBLICATIONS OF THIS DISSERTATION 150"
dc.language.isoen
dc.title碳材於水圈汞污染控制之新穎應用zh_TW
dc.titleNovel Applications of Carbonaceous Materials for Aqueous Hg(II) Capture as Potential Methods for Pollution Control in Hydrosphereen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.author-orcid0000-0001-9762-356X
dc.contributor.oralexamcommittee林正芳(Hsin-Tsai Liu),林逸彬(Chih-Yang Tseng),林錕松,侯嘉洪,陳孝行
dc.subject.keyword汞,再逸散,活性碳,生物炭,吸附,硫化,磁化,zh_TW
dc.subject.keywordmercury,re-emission,activated carbon,biochar,adsorption,sulfurization,magnetization,en
dc.relation.page152
dc.identifier.doi10.6342/NTU202103320
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2309202115242300.pdf8.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved