Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79526
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭安妮(On-Lei Annie Kwok)
dc.contributor.authorWei-Cheng Wangen
dc.contributor.author王偉丞zh_TW
dc.date.accessioned2022-11-23T09:02:47Z-
dc.date.available2021-11-08
dc.date.available2022-11-23T09:02:47Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-28
dc.identifier.citation1. ASTM D422–63. (2007). Standard test methods for particle-size analysis of soils. ASTM International, West Conshohocken, PA 2. ASTM D5311–11. (2011). Standard test methods for load controlled cyclic triaxial strength of soil. ASTM International, West Conshohocken, PA. 3. ASTM D6836–16. (2019). Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge. ASTM International, West Conshohocken, PA. 4. ASTM D854–10. (2010). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA. 5. Azmi, M., Ramli, M. H., Hezmi, M. A., Yusoff, S. M., and Alel, M. A. (2019). Estimation of Soil Water Characteristic Curves (SWCC) of mining sand using soil suction modelling. In IOP Conference Series: Materials Science and Engineering (Vol. 527, No. 1, p. 012016). IOP Publishing. 6. Belkhatir, M., Arab, A., Schanz, T., Missoum, H., and Della, N. (2011). Laboratory study on the liquefaction resistance of sand-silt mixtures: effect of grading characteristics. Granular Matter, 13(5), 599-609. 7. Castro, G. (1975). Liquefaction and cyclic mobility of saturated sands. Journal of the Geotechnical Engineering Division, 101(6), 551-569. 8. Chang, N. Y., and Ko, H. Y. (1982). Effects of grain size distribution on dynamic properties and liquefaction potential of granular soils. NASA STI/Recon Technical Report N, 83, 18966. 9. Dash, H. K., Sitharam, T. G., and Baudet, B. A. (2010). Influence of non-plastic fines on the response of a silty sand to cyclic loading. Soils and Foundations, 50(5), 695-704. 10. Erten, D., and Maher, M. H. (1995). Cyclic undrained behavior of silty sand. Soil Dynamics and Earthquake Engineering, 14(2), 115-123. 11. Finn, W. L., Pickering, D. J., and Bransby, P. L. (1971). Sand liquefaction in triaxial and simple shear tests. Journal of the soil mechanics and foundations division, 97(4), 639-659. 12. Fredlund, D. G. (2006). Unsaturated soil mechanics in engineering practice. Journal of geotechnical and geoenvironmental engineering, 132(3), 286-321. 13. Fredlund, D. G., and Morgenstern, N. R. (1977). Stress state variables for unsaturated soils. Journal of the geotechnical engineering division, 103(5), 447-466. 14. Fredlund, D. G., Rahardjo, H., Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. John Wiley and Sons, Inc., New Jersey, Hoboken. 15. Hilf, J. W. (1956). An investigation of pore-water pressure in compacted cohesive soils. Ph.D. dissertation, Technical Memo (654), U.S. Department of Interior, Bureau of Reclaation, Design and Construction Devision, Denver, Colorado. 16. Huang, Y., Tsuchiya, H. and Ishihara, K. (1999). Estimation of partial saturation effect on liquefaction resistance of sand using P-wave velocity, Proc. JGS Symposium, (113), 431–434. 17. Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351-451. 18. Jiaer, W. U., Kammerer, A. M., Riemer, M. F., Seed, R. B., and Pestana, J. M. (2004, August). Laboratory study of liquefaction triggering criteria. In 13th world conference on earthquake engineering, Vancouver, BC, Canada, Paper (No. 2580). 19. Jiang, X., Wu, L., and Wei, Y. (2020). Influence of fine content on the soil–water characteristic curve of unsaturated soils. Geotechnical and Geological Engineering, 38(2), 1371-1378. 20. JSSMFE (1979). Soil Testing Manual, 2nd Revised Edition, Japan, pp. 172-188. 21. Kansai University School of Societal Safety Sciences. (2018) The Fukushima and Tohoku Disaster. Elsevier Inc., 22. Karim, M. E., and Alam, M. J. (2017). Effect of nonplastic silt content on undrained shear strength of sand–silt mixtures. International Journal of Geo-Engineering, 8(1), 1-26. 23. Kazama, M., Takamura, H., Unno, T., Sento, N. and Uzuoka, R. (2006): Liquefaction mechanism of unsaturated volcanic sandy soils, Journal of Geotechnical Engineering, JSCE, 62(2), 546–561. 24. Krahn, J., and Fredlund, D. G. (1972). On total, matric and osmotic suction. The emergence of unsaturated soil mechanics, 35. 25. Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India. 26. Lee, J. (2011). Limits to Continuity of Unsaturated, Compacted Soils. 27. Li, P. T. (2018). Measurement of Drying and Wetting SWCCs by Flow Pump Method. Master’s thesis, National Taiwan University, Taiwan. 28. Lien, C. Y. (2018). Dynamic properties of Penghu calcareous sand by resonant column and cyclic triaxial tests. Master’s thesis, National Taiwan University, Taiwan. 29. Liu, A. H., Stewart, J. P., Abrahamson, N. A., and Moriwaki, Y. (2001). Equivalent number of uniform stress cycles for soil liquefaction analysis. Journal of Geotechnical and Geoenvironmental Engineering, 127(12), 1017-1026. 30. Liu, J. (2020a). Influence of Fines Contents on Soil Liquefaction Resistance in Cyclic Triaxial Test. Geotechnical and Geological Engineering, 38(5), 4735-4751. 31. Liu, J. R. (2020b). Experimental Investigation of the Liquefaction Behavior of Unsaturated Sandy Soil under Cyclic Loading. Master’s thesis, National Taiwan University, Taiwan. 32. Marto, A., Tan, C. S., Makhtar, A. M., and Jusoh, S. N. (2016). Cyclic behaviour of Johor sand. International Journal of GEOMATE, 10(21), 1891-1898. 33. Measurement and Estimation of State Variables. (2012). In Unsaturated Soil Mechanics in Engineering Practice (pp. 109-183). 34. Mele, L., Tian, J. T., Lirer, S., Flora, A., and Koseki, J. (2019). Liquefaction resistance of unsaturated sands: experimental evidence and theoretical interpretation. Géotechnique, 69(6), 541-553. 35. National Research Council. (1985). Liquefaction of soils during earthquakes. Committee on Earthquake Engineering. 36. Nature and Phase Properties of Unsaturated Soil. (2012). In Unsaturated Soil Mechanics in Engineering Practice (pp. 29-79). 37. Nishimura, T. (2015). Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes. 38. Okamura, M., and Noguchi, K. (2009). Liquefaction resistances of unsaturated non-plastic silt. Soils and Foundations, 49(2), 221-229. 39. Okamura, M., Ishihara, M., and Oshita, T. (2003). Liquefaction resistance of sand deposit improved with sand compaction piles. Soils and foundations, 43(5), 175-187. 40. Pearsall, I. S. (1972). Cavitations. Mc Graw Hill, New York. 41. Raghunandan, M., Juneja, A., and Hsiung, B. (2013). Preparation of reconstituted sand samples in the laboratory. International Journal of Geotechnical Engineering, 6(1), 125-131. 42. Rao, A. N. K. (2001). Liquefaction Studies on Silty Clays Using Cyclic Triaxial Tests. 43. Rao, S. E., Prabhakar, Y. S., Kumar, T. S., and Balaji, K. V. D. G. (2020). Experimental Research on Effect of Fines Content on Liquefaction Properties of Sand. 44. Seed, H. B., and Peacock, W. H. (1971). Test procedures for measuring soil liquefaction characteristics. Journal of the Soil Mechanics and Foundations Division, 97(8), 1099-1119. 45. Sladen, J. A., D'hollander, R. D., and Krahn, J. (1985). The liquefaction of sands, a collapse surface approach. Canadian geotechnical journal, 22(4), 564-578. 46. Song, Y.-S., Hwang, W.-K., Jung, S.-J., and Kim, T.-H. (2012). A comparative study of suction stress between sand and silt under unsaturated conditions. Engineering Geology, 124, 90-97. 47. Thevanayagam, S., Shenthan, T., Mohan, S., and Liang, J. (2002). Undrained fragility of clean sands, silty sands, and sandy silts. Journal of geotechnical and geoenvironmental engineering, 128(10), 849-859. 48. Tokimatsu, K., Yoshimi, Y., and Ariizumi, K. (1990). Evaluation of liquefaction resistance of sand improved by deep vibratory compaction. Soils and Foundations, 30(3), 153-158. 49. Towhata, I. (2008). Mitigation of liquefaction-induced damage. In Geotechnical Earthquake Engineering (pp. 588-642). Springer, Berlin, Heidelberg. 50. Tsukamoto, Y., Kawabe, S., Matsumoto, J., and Hagiwara, S. (2014). Cyclic resistance of two unsaturated silty sands against soil liquefaction. Soils and Foundations, 54(6), 1094-1103. 51. Unno, T., Kazama, M., Uzuoka, R., and Sento, N. (2008). Liquefaction of unsaturated sand considering the pore air pressure and volume compressibility of the soil particle skeleton. Soils and foundations, 48(1), 87-99. 52. Ural, N., and Gunduz, Z. (2014). Behavior of nonplastic silty soils under cyclic loading. ScientificWorldJournal, 2014, 635763. 53. Wang, Y., and Wang, Y. (2010). Study of effects of fines content on liquefaction properties of sand. In Soil Dynamics and Earthquake Engineering (pp. 272-277). 54. Yegian, M. K., Eseller-Bayat, E., Alshawabkeh, A. S., and Ali, S. (2007). Induced-partial saturation for liquefaction mitigation: experimental investigation. Journal of geotechnical and geoenvironmental engineering, 133(4), 372-380. 55. Zapata, C. E., Houston, W. N., Houston, S. L., and Walsh, K. D. (2000). Soil–water characteristic curve variability. In Advances in unsaturated geotechnics (pp. 84-124). 56. Znidarcic, D., Illangasekare, T. and Manna, M. (1991). Laboratory testing and parameter estimation for two-phase flow problems. Proceedings of the Geotechnical Engineering Congress, Boulder, Colorado, McLean, Campbell and Harris, Eds., ASCE, New York, 1078-1089.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79526-
dc.description.abstract土壤液化行為研究主要建立在飽和且土壤為砂土的條件下,然而,非飽和土壤亦具有土壤液化潛能,如果滿足適當的條件可能會觸發非飽和土壤的液化,根據以往的研究指出飽和度較低的土壤具有較高的抗液化能力,並在實際液化發生後的土壤中發現含有細粒料,其細粒料會影響土壤之液化行為,因此細粒料含量與飽和度對於砂土的液化阻抗影響需要進一步的了解。本研究發展了以GDS開發的動力三軸試驗儀進行非飽和含細粒料砂土試驗的實驗流程,改良了傳統底座並鑲嵌高進氣陶板以利進行軸平移技術,採用濕夯法重模方式控制不同細粒料含量砂土試體的孔隙比,相對於常見的基質吸力控制方式使土壤達到非飽和狀態,本研究使用定流量汞以飽和度控制方式來降地土壤飽和度,並加入了純砂試體當作對照組探討含細粒料砂土在不同飽和度狀態下其循環載重過程中與液化行為的差異。 根據實驗結果可以發現初始液化後的行為在純砂與含細粒料砂土具有不同的特性,純砂試體在初始液化前無明顯勁度變化的趨勢且在液化發生後的應變變化行為呈現對稱之關係,然而在含細粒料砂土在加載階段開始時即不斷往以微小的增量在壓縮應變側增加,液化發生後的應變變化行為呈非對稱之關係,然而不同飽和度對於同一土壤組成而言無明顯之液化後行為差異。降低飽和度提升土壤試體抗液化潛能的程度在含細粒料砂土中的效果比純砂土更佳,發現基質吸力隨加載循環次數增加而遞減至零時即發生大應變的趨勢,透過一系列試驗結果的觀察討論本研究的實驗流程與改良設備以供後人進行非飽和土壤試驗做為參考。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:02:47Z (GMT). No. of bitstreams: 1
U0001-2709202113515900.pdf: 12608874 bytes, checksum: 995832d21e54f3937b4774ee855a86da (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents謝辭 ii 摘要 iii ABSTRACT iv TABLE OF CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xvi CHAPTER 1 INTRODUCTION 1 1.1 Introduction 1 1.2 Research Method 2 1.3 Thesis Organization 3 CHAPTER 2 LITERATURE REVIEW 4 2.1 Cognition of Unsaturated Soil 4 2.1.1 Conformation of Unsaturated Soil 4 2.1.2 Stress State for Unsaturated Soil 6 2.1.3 Soil-Water Characteristic Curve 9 2.2 Measurement and application of Soil Suction 13 2.2.1 Axis Translation Technique 13 2.2.2 Determination of Soil-Water Characteristic Curve Using Pressure Extractor 14 2.2.3 Determination of Soil-Water Characteristic Curve Using Flow Pump Method 16 2.3 Soil Liquefaction 18 2.3.1 Types of Liquefaction Failure 19 2.3.2 Liquefaction Failure Criteria 23 2.3.3 Liquefaction Resistance 25 2.2.4 Effects of Sample Preparation on Cyclic Triaxial Test 35 2.3.5 Effects of Fine Content on Cyclic Triaxial Test 37 2.4 Research on Unsaturated Soil Liquefaction 42 2.4.1 Cyclic Tests without Applying Axis Translation Technique on Unsaturated Soil 44 2.4.2 Mechanisms of enhancing liquefaction resistance on unsaturated soil 46 CHAPTER 3 EXPERIMENTAL PROGRAM 51 3.1 Objective 51 3.2 Physical Properties of Soil Material 51 3.2.1 Specific Gravity Test 53 3.2.2 Relative Density Test 54 3.2.3 Grain Size Analysis 55 3.3 Apparatus 58 3.3.1 GDS Instrument System 58 3.3.2 High entry value ceramic plate 65 3.3.3 Modified pedestal 68 3.3.4 Flow pump device 70 3.4 Specimen Preparation of Modified Isotropic Undrained Cyclic Triaxial Test 71 3.4.1 Step of HAE Ceramic saturation 72 3.4.2 Step of Soil Preparation 74 3.4.3 Step of Remolding Specimen 74 3.4.4 Step of Specimen Saturation 78 3.4.5 Step of Consolidation and Docking 82 3.4.6 Step of Water Extracting 84 3.4.7 Step of cyclic loading 86 CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSIONS 87 4.1 Results and Discussion of Two Versions of Modified pedestal 90 4.1.1 Influence of Grain Size to liquefaction resistance 91 4.1.2 Testing of Second Modified Pedestal 93 4.1.3 Advantages of using second modified pedestal 97 4.2 Results and Discussions of Modified CIUCyc tests 98 4.2.1 Saturated clean sand specimen 99 4.2.2 Saturated sand with fines particles specimen 104 4.2.3 Unsaturated clean sand specimen 109 4.2.4 Unsaturated sand with fines particles specimen 114 4.2.5 Generation of excess pore water pressure 123 4.2.6 Form after liquefaction failure 128 4.3 Effects of degree of saturation and fines content on liquefaction curves 130 4.4 Liquefaction Resistance of clean sand and sand with non-plastic fines 132 CHPATER 5 CONCLUSIONS AND RECOMMENDATIONS 136 5.1 Conclusions 136 5.2 Recommendations for Future Research 137 REFERENCE 139 APPENDIX 145
dc.language.isoen
dc.title以實驗方法探討非飽和含細粒料砂土之液化行為研究zh_TW
dc.titleExperimental Investigation of the Liquefaction Behavior of Unsaturated Sand with Non-Plastic Finesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊國鑫(Hsin-Tsai Liu),鄧福宸(Chih-Yang Tseng)
dc.subject.keyword非飽和土壤,土壤液化,動力三軸試驗,軸平移技術,定流量汞,zh_TW
dc.subject.keywordunsaturated soil,soil liquefaction,cyclic triaxial test,axis translation technique,flow pump device,en
dc.relation.page208
dc.identifier.doi10.6342/NTU202103391
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-2709202113515900.pdf12.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved