請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7951
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林軒田 | |
dc.contributor.author | I-Ting Chen | en |
dc.contributor.author | 陳奕廷 | zh_TW |
dc.date.accessioned | 2021-05-19T18:00:01Z | - |
dc.date.available | 2024-08-17 | |
dc.date.available | 2021-05-19T18:00:01Z | - |
dc.date.copyright | 2019-08-20 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-18 | |
dc.identifier.citation | [1] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin. Learning from data, volume 4. AMLBook New York, NY, USA:, 2012.
[2] K. Azizzadenesheli, A. Liu, F. Yang, and A. Anandkumar. Regularized learning for domain adaptation under label shifts. In International Conference on Learning Representations, 2019. [3] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. V. Gool. Domain adaptive faster R-CNN for object detection in the wild. CoRR, abs/1803.03243, 2018. [4] J. Donahue, J. Hoffman, E. Rodner, K. Saenko, and T. Darrell. Semi-supervised domain adaptation with instance constraints. In 2013 IEEE Conference on Computer Vision and Pattern Recognition, pages 668–675, 2013. [5] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. Domain-adversarial training of neural networks. Journal of Machine Learning Research, 17(1):2096-2030, 2016 [6] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment classification: A deep learning approach. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 513–520, 2011. [7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014. [8] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723-773, 2012. [9] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell. CyCADA: Cycle-consistent adversarial domain adaptation. In Proceedings of the 35th International Conference on Machine Learning, volume 80, pages 1989–1998, 2018. [10] J. Huang, A. Gretton, K. Borgwardt, B. Schölkopf, and A. J. Smola. Correcting sample selection bias by unlabeled data. In Advances in Neural Information Processing Systems 19, pages 601–608. 2007. [11] M. J. Keiser, V. Setola, J. J. Irwin, C. Laggner, A. I. Abbas, S. J. Hufeisen, N. H. Jensen, M. B. Kuijier, R. C. Matos, T. B. Tran, et al. Predicting new molecular targets for known drugs. Nature, 462(7270):175–181, 2009. [12] A. Kumar, A. Saha, and H. Daume. Co-regularization based semi-supervised domain adaptation. In Advances in neural information processing systems, pages 478–486, 2010. [13] Z. Lipton, Y.-X. Wang, and A. Smola. Detecting and correcting for label shift with black box predictors. In Proceedings of the 35th International Conference on Machine Learning, volume 80, pages 3122–3130, 2018. [14] M. Long, Z. CAO, J. Wang, and M. I. Jordan. Conditional adversarial domain adaptation. In Advances in Neural Information Processing Systems 31, pages 1640–1650. 2018. [15] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Deep transfer learning with joint adaptation networks. In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 2208–2217, 2017. [16] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean. Efficient estimation of word representations in vector space, 2013. [17] E. Moradi, C. Gaser, H. Huttunen, and J. Tohka. Mri based dementia classification using semi-supervised learning and domain adaptation. In MICCAI 2014 Workshop Proceedings, Challange on Computer-Aided Diagnosis of Dementia, based on Structural MRI Data, 2014. [18] J. Quionero Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence. Dataset shift in machine learning. 2009. [19] S. Sankaranarayanan, Y. Balaji, C. D. Castillo, and R. Chellappa. Generate to adapt: Aligning domains using generative adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018. [20] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe. Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60(4):699–746, 2008. [21] L. van der Maaten and G. Hinton. Visualizing high-dimensional data using t-sne. Journal of Machine Learning Research, 9:2579–2605, 2008. [22] V. Vapnik. The nature of statistical learning theory. Springer science & business media, 2013. [23] C. Wachinger and M. Reuter. Domain adaptation for alzheimer’s disease diagnostics. Neuroimage, 139:470-479, 2016. [24] F. Wan and J. M. Zeng. Deep learning with feature embedding for compound-protein interaction prediction. bioRxiv, 2016. [25] Y. Wu, E. Winston, D. Kaushik, and Z. Lipton. Domain adaptation with asymmetrically-relaxed distribution alignment. In Proceedings of the 36th International Conference on Machine Learning, volume 97, pages 6872–6881, 2019. [26] Y.-L. Yu and C. Szepesvári. Analysis of kernel mean matching under covariate shift. In Proceedings of the 29th International Conference on International Conference on Machine Learning, ICML’12, pages 1147–1154, 2012. [27] K. Zhang, B. Schölkopf, K. Muandet, and Z. Wang. Domain adaptation under target and conditional shift. In International Conference on Machine Learning, pages 819– 827, 2013. [28] Y. Zou, Z. Yu, B. Vijaya Kumar, and J. Wang. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In Proceedings of the European Conference on Computer Vision (ECCV), pages 289–305, 2018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7951 | - |
dc.description.abstract | 領域自適應是一種解決數據集分佈改變的技術,其中訓練 (源域) 資料和測試 (目標域) 資料可能來自不同的分佈。目前的研究主要集中在共變量分佈改變和標籤分佈改變這兩種設置,而不同的設置下,對源域和目標域之間的關聯會做出不同的假設。然而,我們觀察到這兩種設置都不能完全滿足現實世界生物化學的應用需求。我們仔細研究了這些設置在應用層面遇到的困難,並提出了一種新穎的解決方法,它將兩種設置都考慮在內以提高應用上的性能表現。我們提出的解決方法的關鍵想法是從源域數據中挑選與目標域分佈相似的數據。我們更進一步探索兩種挑選的方案,將相似性嵌入最近鄰居法風格的硬選擇方案,以及透過軟性約束來強制相似性的軟選擇方案。實驗顯示我們提出的解決方案不僅可以達到更高的精準度在生物化學應用上,而且在能具體定義相似性的時候,其他領域自適應的任務上也展示出有希望的性能表現。 | zh_TW |
dc.description.abstract | Domain adaptation is a technique that tackles the dataset shift scenario, where the training (source) data and the test (target) data can come from different distributions. Current research works mainly focus on either the covariate shift or the label shift settings, each making a different assumption on how the source and target data are related. Nevertheless, we observe that neither of the settings can perfectly match the needs of a real-world bio-chemistry application. We carefully study the difficulties encountered by those settings on the application and propose a novel method that takes both settings into account to improve the performance on the application. The key idea of our proposed method is to select examples from the source data that are similar to the target distribution of interest. We further explore two selection schemes, the hard-selection scheme that plugs similarity into a nearest-neighbor style approach, and the soft-selection scheme that enforces similarity by soft constraints. Experiments demonstrate that our proposed method not only achieves better accuracy for the bio-chemistry application but also shows promising performance on other domain adaptation tasks when the similarity can be concretely defined. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T18:00:01Z (GMT). No. of bitstreams: 1 ntu-108-R06922136-1.pdf: 1247257 bytes, checksum: 12d597461765d85455d6f63e3effa23a (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 1 Introduction 1 2 Background 5 2.1 Notation and Problem Setup 5 2.2 Related Work 6 3 Motivation 8 3.1 Covariate Shift Assumption 9 3.2 Label Shift Assumption 12 3.3 C2H Dataset 13 4 Proposed Method 14 4.1 Domain Adversarial Neural Network (DANN) 15 4.2 Representatives Selection 16 4.2.1 Hard Distance-Based Selection (HS) 17 4.2.2 Soft Distance-Based Selection (SS-β) 17 5 Experiments 19 5.1 C2H Dataset Evaluation 19 5.2 Digit Dataset Evaluation 21 5.3 Noisy C2H Dataset Evaluation 24 6 Conclusion 28 Bibliography 29 | |
dc.language.iso | en | |
dc.title | 用挑選代表的技術來改進非監督領域自適應 | zh_TW |
dc.title | Improving Unsupervised Domain Adaptation with Representative Selection Techniques | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳縕儂,李宏毅 | |
dc.subject.keyword | 領域自適應,數據集分佈改變,共變量分佈改變,標籤分佈改變, | zh_TW |
dc.subject.keyword | Domain Adaptation,Dataset Shift,Covariate Shift,Label Shift, | en |
dc.relation.page | 32 | |
dc.identifier.doi | 10.6342/NTU201903940 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-08-18 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-17 | - |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf | 1.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。