Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79509
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor戴璽恆(Albert Dai)
dc.contributor.authorYu-Lin Huangen
dc.contributor.author黃友麟zh_TW
dc.date.accessioned2022-11-23T09:02:15Z-
dc.date.available2021-11-08
dc.date.available2022-11-23T09:02:15Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-10-08
dc.identifier.citationAdduce, C., Sciortino, G., and Proietti, S. (2012). Gravity currents produced by lock-exchanges: experiments and simulations with a two layer shallow-water model with entrainment. J. Hydraul. Eng., 138(2):111–121. Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press. Beghin, P., Hopfinger, E. J., and Britter, R. E. (1981). Gravitational convection from instantaneous sources on inclined boundaries. J. Fluid Mech., 107:407–422. Cantero, M., Balachandar, S., and Garcia, M. (2007a). Highresolution simulations of cylindrical density currents. J. Fluid Mech., 590:437–469. Cantero, M., Lee, J., Balachandar, S., and Garcia, M. (2007b). On the front velocity of gravity currents. J. Fluid Mech., 586:1–39. Cantero, M. I., Balachandar, S., Garcia, M. H., and Bock, D. (2008). Turbulent structures in planar gravity currents and their influence on the flow dynamics. J. Geophys. Res., 113:C08018. Dai, A. (2013). Experiments on gravity currents propagating on different bottom slopes. J. Fluid Mech., 731:117–141. Dai, A. (2014). Non-Boussinesq gravity currents propagating on different bottom slopes. J. Fluid Mech., 741:658–680. Dai, A. (2015). High-resolution simulations of downslope gravity currents in the acceleration phase. Phys. Fluids, 27:076602. Dai, A. and Huang, Y.-L. (2016). High-resolution simulations of non-Boussinesq downslope gravity currents in the acceleration phase. Phys. Fluids, 28:026602.68 Dai, A. and Huang, Y.-L. (2020). Experiments on gravity currents propagating on unbounded uniform slopes. Environmental Fluid Mechanics, 20(6):1637–1662. Dai, A. and Huang, Y.-L. (2021). Boussinesq and non-boussinesq gravity currents propagating on unbounded uniform slopes in the deceleration phase. Journal of Fluid Mechanics, 917. Dai, A. and Wu, C.-S. (2016). High-resolution simulations of cylindrical gravity currents in a rotating system. J. Fluid Mech., 806:71–101. Daly, B. J. and Pracht, W. E. (1968). Numerical study of densitycurrent surges. Phys. Fluids, 11:15–30. Ellison, T. H. and Turner, J. S. (1959). Turbulent entrainment in stratified flows. J. Fluid Mech., 6:423–448. Hartel, C., Meiburg, E., and Necker, F. (2000). Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech., 418:189–212. Hoult, D. P. (1972). Oil spreading on the sea. Annu. Rev. Fluid Mech., 4:341–368. Huppert, H. E. and Simpson, J. (1980). The slumping of gravity currents. J. Fluid Mech., 99:785–799. Jones, C. S., Cenedese, C., Chassignet, E. P., Linden, P. F., and Sutherland, B. R. (2014). Gravity current propagation up a valley. J. Fluid Mech., 762:417–434. Korotkin, A. I. (2008). Added Masses of Ship Structures. Springer, 1st edition. La Rocca, M., Adduce, C., Lombardi, V., Sciortino, G., and Hinkermann, R. (2012a). Developement of a lattice Boltzmann method for two-layered shallow-water flow. Int. J. Numer. Methods Fluids, 70(8):1048–1072. La Rocca, M., Adduce, C., Sciortino, G., Bateman, P. A., and Boniforti, M. A. (2012b). A two-layer shallow water model for 3D gravity currents. J. Hydraul. Res., 50(2):208–217. La Rocca, M., Adduce, C., Sciortino, G., and Pinzon, A. B. (2008). Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom. Phys. Fluids, 20(10):106603. Lombardi, V., Adduce, C., Sciortino, G., and La Rocca, M. (2015). Gravity currents flowing upslope: laboratory experiments and shallow-water simulations. Phys. Fluids, 27:016602. Marleau, L. J., Flynn, M. R., and Sutherland, B. R. (2014). Gravity currents propagating up a slope. Phys. Fluids, 26:046605. Maxworthy, T. (2010). Experiments on gravity currents propagating down slopes. Part 2. The evolution of a fixed volume of fluid released from closed locks into a long, open channel. J. Fluid Mech., 647:27–51. Maxworthy, T. and Nokes, R. I. (2007). Experiments on gravity currents propagating down slopes. Part 1. The release of a fixed volume of heavy fluid from an enclosed lock into an open channel. J. Fluid Mech., 584:433–453. Ottolenghi, L., Adduce, C., Inghilesi, R., Armenio, V., and Roman, F. (2016a). Entrainment and mixing in unsteady gravity currents. J. Hydraul. Res., 54(5):541–557. Ottolenghi, L., Adduce, C., Inghilesi, R., Roman, F., and Armenio, V. (2016b). Mixing in lock-release gravity currents propagating up a slope. Phys. Fluids, 28:056604. Rastello, M. and Hopfinger, E. J. (2004). Sediment-entraining suspension clouds: a model of powder-snow avalanches. J. Fluid Mech., 509:181–206. Ross, A. N., Linden, P. F., and Dalziel, S. B. (2002). A study of three-dimensional gravity currents on a uniform slope. J. Fluid Mech., 453:239–261. Shin, J., Dalziel, S., and Linden, P. F. (2004). Gravity currents produced by lock exchange. J. Fluid Mech., 521:1–34. Simpson, J. (1997). Gravity Currents. Cambridge University Press, second edition. Simpson, J. E. (1972). Effects of the lower boundary on the head of a gravity current. J. Fluid Mech., 53:759–768. Tickle, G. (1996). A model of the motion and dilution of a heavy gas cloud released on a uniform slope in calm conditions. J. Haz. Mat., 49:29–47. Ungarish, M. (2009). An Introduction to Gravity Currents and Intrusions. Chapman Hall/CRC Press. Webber, D., Jones, S., and Martin, D. (1993). A model of the motion of a heavy gas cloud released on a uniform slope. J. Haz. Mat., 33:101–122. Zgheib, N., Ooi, A., and Balachandar, S. (2016). Front dynamics and entrainment of finite circular gravity currents on an unbounded uniform slope. J. Fluid Mech., 801:322–352.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79509-
dc.description.abstract本研究利用理論模型、因次分析以及水槽實驗,觀察異重流於不同平面斜坡運動。水槽斜坡及異重流密度差異是影響異重流運動的主要關鍵,因此研究主要探討坡度及密度對於異重流的影響。其中實驗坡度介於0◦ ≤ θ ≤ 12◦,相對密度差ϵ = (ρ1 − ρ0)/ρ0 介於0.02 ≤ ϵ ≤ 0.15 ,當中ρ1 為重流體密度,ρ0 為環境流體密度。透過理論模型及實驗結果,可進一步的求得不同坡度及相對密度差的異重流增捲係數α (entrainment coefficient )。其中發現增捲係數會隨著相對密度變大而變小,原因是當相對密度差變大的時候,重流體比較不容易與環境流體混合。此外,由結果發現此理論模型在小角度案例中並不適用。由因次分析以及實驗結果可發現,異重流在減速運動中會有兩種不同的運動型態,分別是重力與慣性力平衡的慣性段,以及重力與黏滯力平衡的黏滯段。受斜坡的影響,異重流運動形貌上有明顯的差異性,這樣的差異可進一步將異重流分為高角度(12◦、9◦、6◦) 與低角度(3◦、0◦)兩類。由於形貌上的差異,會影響異重流在後減速黏滯段的運動中,邊界層間黏滯力的作用面積不同而有不同的因次關係。受密度差異影響,異重流也可分為高相對密度差(ϵ = 0.15、0.10、0.05) 及低相對密度差(ϵ = 0.02) 兩類。在後減速黏滯段,因為前面運動強烈的混合下,發現高密度差的異重流在黏滯段與低密度差異重流運動型態相似。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:02:15Z (GMT). No. of bitstreams: 1
U0001-0110202113492200.pdf: 16850918 bytes, checksum: 63fe7c6543388c0b4cfa8bbc6a6f90fc (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 研究內容. . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章理論模型及因次分析. . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 低相對密度差理論模型(Boussinesq case) . . . . . . . . 6 2.2 高相對密度差理論模型(non-Boussinesq case) . . . . . . 10 2.3 因次分析. . . . . . . . . . . . . . . . . . . . . . . . . . 12 第三章實驗設備及實驗流程. . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 實驗流程. . . . . . . . . . . . . . . . . . . . . . . . . . 14 第四章影像處理及數據分析. . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 影像處理. . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 數據分析. . . . . . . . . . . . . . . . . . . . . . . . . . 19 第五章低相對密度差異重流. . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 低密度差角度12◦ 之平面運動. . . . . . . . . . . . . . 22 5.1.1 定性分析. . . . . . . . . . . . . . . . . . . . . . 22 5.1.2 定量分析. . . . . . . . . . . . . . . . . . . . . . 23 5.2 低相對密度差於角度9◦ 及6◦ 運動. . . . . . . . . . . 27 5.3 低相對密度差於角度3◦ 之平面運動. . . . . . . . . . . 29 5.3.1 定性分析. . . . . . . . . . . . . . . . . . . . . . 29 5.3.2 定量分析. . . . . . . . . . . . . . . . . . . . . . 29 5.4 低相對密度差於角度0◦ 之平面運動. . . . . . . . . . . 31 第六章高相對密度差異重流. . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1 高相對密度差於角度12◦ 之平面運動. . . . . . . . . . 41 6.1.1 定性分析. . . . . . . . . . . . . . . . . . . . . . 41 6.1.2 定量分析. . . . . . . . . . . . . . . . . . . . . . 43 6.2 高相對密度差於角度9◦ 及6◦ 運動. . . . . . . . . . . 44 6.3 高相對密度差於角度3◦ 運動. . . . . . . . . . . . . . . 46 6.3.1 定性分析. . . . . . . . . . . . . . . . . . . . . . 46 6.3.2 定量分析. . . . . . . . . . . . . . . . . . . . . . 47 6.4 高相對密度差角度水平方向0◦ 運動. . . . . . . . . . . 49 第七章綜合比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 第八章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 符號對照表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
dc.language.isozh-TW
dc.title三維異重流於寬廣無渠道斜坡運動zh_TW
dc.titleThree dimensional gravity currents propagating on different unbounded slopesen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee丁肇隆(Hsin-Tsai Liu),蔡武廷(Chih-Yang Tseng),羅弘岳,蔡東霖,賴悅仁,李政賢
dc.subject.keyword異重流,密度流,斜坡,相對密度差,zh_TW
dc.subject.keywordgravity currents,density currents,unbounded slopes,density difference,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202103495
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
U0001-0110202113492200.pdf16.46 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved