請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79504完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭安妮(Annie On-Lei Kwok) | |
| dc.contributor.author | Wei-En Hsu | en |
| dc.contributor.author | 徐爲恩 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:02:05Z | - |
| dc.date.available | 2021-11-06 | |
| dc.date.available | 2022-11-23T09:02:05Z | - |
| dc.date.copyright | 2021-11-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-06 | |
| dc.identifier.citation | Biot, M. A. (1941). A mechanical analyzer for the prediction of earthquake stresses. Bulletin of Seismological Society of America, Vol.60, No.1, 29-61. Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bull. Seismol. Soc. Am., 60, 29–61. Borcherdt, R. D. (1994). Estimates of site-dependent response spectra for design (methodology and justification). Earthquake Spectra, 10, 617–653. Borcherdt, R. D. and Gibbs, J. F. (1976). Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake. Bulletin of the Seismological Society of America, 66 (2), 467-500. Breiman L. (2001). Random forests. Mach. Learn., 45, 5-32. Breiman L., Friedman J. H., Olshen R. A., and Stone C. J. (1984). Classification and Regression Trees. Chapman and Hall. 1-359. Chávez-García, F. J., Pedotti, G., Hatzfeld, D., and Bard, P.-Y (1990). An experimental study of site effects near Thessaloniki (Northern Greece). Bulletin of the Seismological Society of America, 80 (4), 784-806. Choi, Y. and Stewart, J. P. (2005). Nonlinear site amplification as function of 30m shear wave velocity. Earthquake Spectra 21, 1–30. Dobry, R., I. Oweis, and A. Urzua (1976). Simplified procedures for estimating the fundamental period of a soil profile. Bull. Seismol. Soc. Am., 66, 1293-1321. Erzin, Y., Gumaste, S. D., Gupta, A. K., and Singh, D. N. (2009). Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine-grained soils. Canadian Geotechnical Journal. 46 (8), 955-968. Goh, A. T. C. and Goh, S. H. (2007). Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data. Computers and Geotechnics, vol. 34, no. 5, 410–421. Ho T. K. (1995). Random decision forest. Proceedings of the 3rd International Conference on Document Analysis and Recognition. 278-282. Hopfield J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. PNAS, 79 (8), 2554-2558. Idriss, I. M. (1991). Earthquake Ground Motions at Soft Soil Sites. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 3. Kapil, A. R. (2018, June 17). K-FOLD CROSS-VALIDATION. Retrieved from https://www.datavedas.com/k-fold-cross-validation/ Khaled Taalab, Tao Cheng, and Yang Zhang (2018). Mapping landslide susceptibility and types using Random Forest. Big Earth Data, 2:2, 159-178 Kuo, C. H., K. L. Wen, H. H. Hsieh, C. M. Lin, T. M. Chang, and K. W. Kuo (2012). Site Classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT, Engineering Geology, 129-130, 68-75. Kuo, C. H., C. T. Chen, C. M. Lin, K. L. Wen, J. Y. Huang, and S. C. Chang (2016). S-Wave Velocity Structure and Site Effect Parameters Derived by Microtremor Arrays in the Western Plain of Taiwan, Journal of Asian Earth Sciences, 128, 27-41. Lee, S. J., Chen, H. W., Liu, Q., Komatitsch, D., Huang, B. S., and Tromp, J. (2008). Three-Dimensional Simulations of Seismic-Wave Propagation in the Taipei Basin with Realistic Topography Based upon the Spectral-Element Method. Bulletin of the Seismological Society of America, vol. 98, 1, 253-264. Liaw, A. and Wiener, M. (2002). Classification and Regression by random Forest. R News, 2(3), 18–22. Loh, C. H., Huang, J. W., and Shin, T. C. (1998). Observed variation of earthquake motion across a basin - Taipei City. Earthquake Spectra, Vol.14, No1, 115-133 Lin C. M., T. M. Chang, K. L. Wen, Y. C. Huang, H. J. Chiang, and C. H. Kuo (2009). Shallow S-wave Velocity Structures in the Western Coastal Plain of Taiwan, Terr. Atmos. Ocean Sci., 20, 2, 299-308. Lin, C. M., K. L. Wen, C. H. Kuo, and C. Y. Lin (2014). S-Wave Velocity Model of Taipei Basin, The 5th Asia Conference on Earthquake Engineering (5ACEE), Taipei, Taiwan, Oct. 16-18. Mayoral, J. M., Asimaki, D., Tepalcapa, S., Wood, C., Sancha, R. A., Hutchinson, T., Franke, K., and Montalva, G. (2019). Site effects in Mexico City basin: Past and present. Soil Dynamics and Earthquake Engineering, vol. 121, 369-382. Okawa, I., Kashima, T., and Kitagawa, Y. (1992). Site effect characterization using records of dense strong motion earthquake seismometer array in Sendai. Earthquake Engineering Tenth World Conference, Japan, 1009-1014. Seed, H. B. (1975). Design provision for assessing the effect of local geology and soil conditions on ground and building response during earthquakes. ASCE/SEAONC professional development committee. Seed, H. B., Ugas, C., and Lysmer, J. (1976). Site-Dependent Spectra for Earthquake-Resistant Design. Bulletin of the Seismological Society of America, Vol. 66, 1, 221-243. Shapley, L. S. (1956). Equilibrium Points in Games With Vector Payoffs, Rand Corporation Research Memorandum RM-1818, 1-7. Shin, T. C., C. H. Chang, H. C. Pu, H. W. Lin, and P. L. Leu (2013). The Geophysical Database Management System in Taiwan. Terr. Atmos. Ocean. Sci., 24, 11-18. Steidl, J. H., Tumarkin, A. G., and Archuleta, R. J. (1996). What is a reference site? Bulletin of the Seismological Society of America, 86 (6), 1733-1748. Song, S. R., T. F. Yang, Y. H. Yeh, S. Tsao, H. J. Lo (2000). The Tatun Volcano Group is active or extinct? J. Geol. Soc. China,43, 521-543. Somerville, P., Collins, N., Graves, R., and Pitarka, A. (2004). An Engineering Ground Motion Model for Basin Generated Surface Waves. 13th World Conference on Earthquake Engineering, 515, 1-14. Teng, L. S., Lee, C. T., Peng, C. H., Chen, W. F., and Chu, C. J. (2001). Origin and geological evolution of the Taipei basin, northern Taiwan. Western Pacific Earth Sciences, 1 (2), 115-142. Theodulidis, N., Bard, P. Y., Archuleta, R., and Bouchon, M. (1996). Horizontal-to-vertical spectral ratio and geological conditions: The case of Garner Valley Downhole Array in southern California. Bulletin of the Seismological Society of America, 86 (2), 306-319. Wang, C. Y. (2004). Subsurface Structures and P- and S- wave Velocities of the Taipei Basin, Taiwan. Seismic Hazard Assessment in the Taipei Basin, 3. Wang, J. P., Yun, X., H, K. C., and Wu Y. M. (2008). CAV site-effect assessment: A case study of Taipei Basin. Soil Dynamics and Earthquake Engineering, vol. 108, 142-149. Yeh, Y. H., H. Chen, and T. L. Teng (1988). Study on focusing of seismic wave energy in Taipei basin: I. A dynamic ray‐tracing approach. Proc. CCNAA‐AIT Joint Seminar on Research and Application for Multiple Hazards Mitigation, Taipei, 107–120. 丹桂之助,1939。臺北盆地之地質學考察,矢部教授還曆紀念論文集,1:371-380。 吳福泰,1965。台北盆地新莊構造之地下地質。臺灣石油地質第四號,第271~281頁。 王執明、鄭穎敏、王源,1978。臺北盆地之地質與沉積物研究。臺灣礦業,第30卷,第4期,第350~380頁。 亞新工程顧問公司,1989。台北盆地各土壤之物理特性,工程學刊,第10期。 王千翠,1991。羅東地區加速度反應譜特性,國立中央大學地球物理研究所碩士論文。 陳立言,1994。台北盆地土層放大效應之研究,博士論文,國立臺灣大學土木工程研究所,臺北。 林朝宗,2001。台北都會區地質環境。經濟部中央地質調查所,共19頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79504 | - |
| dc.description.abstract | 隨機森林(random forest)模型是由Breiman和Culter在2001年提出之機器學習演算法。通過在森林中建構一棵棵各自獨立之決策樹(分類樹或迴歸樹),並以投票方式(眾數或平均數)決定最終結果,以此提高模型之預測精度。該建模方式之優點包含運轉速度快、處理大量數據時表現優異、可提供特徵參數之重要性以及便於計算特徵參數之非線性作用,並提供特徵參數間之交互作用。 綜觀歷年地盤放大係數之研究,多數研究者於不同地區提供之迴歸方程式中所使用之參數不乏用以表示線性區間之VS30以及非線性區間之PGAr。由於難以有效將其餘對地盤放大係數產生影響之因子進行量化,致使該作法對於特殊地形或不規則地下岩盤之特定區域無法順利奏效。此外,由於研究區域乃半地塹之構造盆地,在特定入射方向上之震波可能會引致盆地中彈性波之建設性干涉而產生表面波,使得盆地內部分地點之主頻與震幅發生變化。有鑑於此,本研究將基岩深度與地表地形納入考量,透過自由場測站之加速度資料求得譜加速度,並使用TAP071測站作為參考測站以計算臺北盆地之地盤放大係數。接續彙整各項場址參數及地盤放大係數,分別作為數據庫之特徵參數與預測值,並使用Python作為建模環境以建立隨機森林模型。利用傅立葉分析觀察不同地震下之各測站頻域,比較傳統迴歸分析與隨機森林演算法之地盤放大係數預估值。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:02:05Z (GMT). No. of bitstreams: 1 U0001-0210202117344700.pdf: 24842433 bytes, checksum: ef843f26f4627a41f3f8a2c5f598ce33 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | CONTENTS 誌謝 I 摘要 II ABSTRACT III CONTENTS V LIST OF FIGURES VII LIST OF TABLES XIX Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Method 3 1.3 Thesis Organization 4 Chapter 2 Literature Review 5 2.1 Local Site effect 6 2.1.1 Phenomenon 6 2.1.2 Empirical Methods 14 2.1.3 One-Dimensional Ground Response Analysis 18 2.2 Taipei Basin 21 2.2.1 Geology 21 2.2.2 Formations 23 2.2.3 Faults 28 2.2.4 Quaternary Tectonic Evolution 30 2.2.5 Ground Motion 31 2.3 Machine Learning (ML) Application for Geotechnical Engineering 36 2.3.1 Liquefaction 36 2.3.2 Landslide Susceptibility 37 2.3.3 Hydraulic Conductivity 38 2.3.4 Summary 38 Chapter 3 Random Forest 40 3.1 Bagging 40 3.2 CART 41 3.2.1 Structure 42 3.2.2 Splitting Decision 42 3.2.3 Example 44 3.3 Algorithm 51 3.4 Model Explainability 53 3.4.1 Variable Importance 54 3.4.2 Partial Dependence Plot 55 3.4.3 Shapley Value 55 Chapter 4 Data Collection and Analysis Methods 58 4.1 Data Collection and Processing 58 4.2 Statistical Distribution 69 4.3 Model Development 82 4.3.1 Preliminary Model 82 4.3.2 Observation of Surface Wave 90 4.3.3 Revised Model 165 4.3.4 Summary 177 4.4 Model Prediction 178 Chapter 5 Discussion on The Explainability of Amp Model Based on RF 184 5.1 Discussion on Variable Importance 185 5.2 Discussion on Partial Dependence Plots 191 5.3 Discussion on SHAP Summary Plots 204 Chapter 6 Conclusions and Recommendation 211 6.1 Conclusions 211 6.2 Recommendation 213 References 215 | |
| dc.language.iso | en | |
| dc.title | 以隨機森林方式建立臺北盆地之地盤放大係數模型 | zh_TW |
| dc.title | Development of Ground Motion Amplification Model for Taipei Basin Using Random Forest Technique | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭俊翔(Hsin-Tsai Liu),許尚逸(Chih-Yang Tseng) | |
| dc.subject.keyword | 場址效應,臺北盆地,反應譜,地盤放大係數,隨機森林, | zh_TW |
| dc.subject.keyword | Basin effect,Taipei Basin,amplification factor,random forest, | en |
| dc.relation.page | 219 | |
| dc.identifier.doi | 10.6342/NTU202103510 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0210202117344700.pdf | 24.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
