請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79493完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林信甫(Hsin-Fu Lin) | |
| dc.contributor.author | Chien-Hung Chou | en |
| dc.contributor.author | 周建宏 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:01:49Z | - |
| dc.date.available | 2021-11-06 | |
| dc.date.available | 2022-11-23T09:01:49Z | - |
| dc.date.copyright | 2021-11-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-14 | |
| dc.identifier.citation | 1. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, and Group LPASW. Global physical activity levels: surveillance progress, pitfalls, and prospects. The Lancet 380: 247-257, 2012. 2. Lee I-M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, and Group LPASW. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. The Lancet 380: 219-229, 2012. 3. World Health Organization. World health statistics 2015. World Health Organization, 2015. 4. Fujiwara Y, Shinkai S, Kumagai S, Amano H, Yoshida Y, Yoshida H, Kim H, Suzuki T, Ishizaki T, and Haga H. Longitudinal changes in higher-level functional capacity of an older population living in a Japanese urban community. Archives of Gerontology and Geriatrics 36: 141-153, 2003. 5. da Silva ME, da Rosa Orssatto LB, de Souza Bezerra E, Silva DAS, de Moura BM, Diefenthaeler F, and de la Rocha Freitas C. Reducing measurement errors during functional capacity tests in elders. Aging Clinical and Experimental Research 30: 595-603, 2018. 6. Öztürk A, Şimşek TT, Yümin ET, Sertel M, and Yümin M. The relationship between physical, functional capacity and quality of life (QoL) among elderly people with a chronic disease. Archives of Gerontology and Geriatrics 53: 278-283, 2011. 7. Tzankoff SP, and Norris AH. Longitudinal changes in basal metabolism in man. Journal of Applied Physiology 45: 536-539, 1978. 8. Hurley BF, and Hagberg JM. 3 Optimizing Health in Older Persons: Aerobic or Strength Training? Exercise and Sport Sciences Reviews 26: 61-90, 1998. 9. Dawson-Hughes B, Tosteson A, Melton Lr, Baim S, Favus M, Khosla S, and Lindsay R. Implications of absolute fracture risk assessment for osteoporosis practice guidelines in the USA. Osteoporosis International 19: 449-458, 2008. 10. Cheng P-T, Liaw M-Y, Wong M-K, Tang F-T, Lee M-Y, and Lin P-S. The sit-to-stand movement in stroke patients and its correlation with falling. Archives of Physical Medicine and Rehabilitation 79: 1043-1046, 1998. 11. Luukinen H, Koski K, Laippala P, and Kivelä S-L. Predictors for recurrent falls among the home-dwelling elderly. Scandinavian Journal of Primary Health Care 13: 294-299, 1995. 12. Gehlsen GM, and Whaley MH. Falls in the elderly: Part II, Balance, strength, and flexibility. Archives of Physical Medicine and Rehabilitation 71: 739-741, 1990. 13. Brentano MA, Cadore EL, Da Silva EM, Ambrosini AB, Coertjens M, Petkowicz R, Viero I, and Kruel LF. Physiological adaptations to strength and circuit training in postmenopausal women with bone loss. The Journal of Strength Conditioning Research 22: 1816-1825, 2008. 14. Valenzuela T. Efficacy of progressive resistance training interventions in older adults in nursing homes: a systematic review. Journal of the American Medical Directors Association 13: 418-428, 2012. 15. Pierce DR, Doma K, and Leicht AS. Acute Effects of Exercise Mode on Arterial Stiffness and Wave Reflection in Healthy Young Adults: A Systematic Review and Meta-Analysis. Front Physiol 9: 73, 2018. 16. Kingsley JD, Tai YL, Mayo X, Glasgow A, and Marshall E. Free-weight resistance exercise on pulse wave reflection and arterial stiffness between sexes in young, resistance-trained adults. European Journal of Sport Science 17: 1056-1064, 2017. 17. Schillaci G, De Socio GV, Pirro M, Savarese G, Mannarino MR, Baldelli F, Stagni G, and Mannarino E. Impact of treatment with protease inhibitors on aortic stiffness in adult patients with human immunodeficiency virus infection. Arteriosclerosis, Thrombosis, and Vascular Biology 25: 2381-2385, 2005. 18. Holbrook T, Grazier K, Kelsey J, and Stauffer R. The frequency and occurrence, impact and cost of selected musculoskeletal conditions in the United States. Chicago: American Academy of Orthopedic Surgeons, 1984. Raisz LG. Local and systemic factors in the pathogenesis of osteoporosis. N Engl J Med 318: 818-828, 1988. 19. Steib S, Schoene D, and Pfeifer K. Dose-response relationship of resistance training in older adults: a meta-analysis. Med Sci Sports Exerc 42: 902-914, 2010. 20. Borde R, Hortobágyi T, and Granacher U. Dose–response relationships of resistance training in healthy old adults: a systematic review and meta-analysis. Sports Medicine 45: 1693-1720, 2015. 21. Peterson MD, Rhea MR, Sen A, and Gordon PM. Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Research Reviews 9: 226-237, 2010. 22. Macaluso A, and De Vito G. Muscle strength, power and adaptations to resistance training in older people. European Journal of Applied Physiology 91: 450-472, 2004. 23. Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, and Ryan ED. Resistance training for older adults: position statement from the national strength and conditioning association. The Journal of Strength Conditioning Research 33: 2019. 24. Byrne C, Faure C, Keene DJ, and Lamb SE. Ageing, muscle power and physical function: a systematic review and implications for pragmatic training interventions. Sports Medicine 46: 1311-1332, 2016. 25. da Rosa Orssatto LB, Cadore EL, Andersen LL, and Diefenthaeler F. Why fast velocity resistance training should be prioritized for elderly people. Strength Conditioning Journal 41: 105-114, 2019. 26. Carpenter DM, and Nelson BW. Low back strengthening for the prevention and treatment of low back pain. Medicine and Science in Sports and Exercise 31: 18-24, 1999. 27. Kerr D, Morton A, Dick I, and Prince R. Exercise effects on bone mass in postmenopausal women are site‐specific and load‐dependent. Journal of Bone and Mineral Research 11: 218-225, 1996. 28. Winett RA, and Carpinelli RN. Potential health-related benefits of resistance training. Preventive Medicine 33: 503-513, 2001. 29. Liu Cj, and Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database of Systematic Reviews 2009. 30. Shimizu I, and Minamino T. Physiological and pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology 97: 245-262, 2016. 31. Haykowsky MJ, Dressendorfer R, Taylor D, Mandic S, and Humen D. Resistance Training and Cardiac Hypertrophy. Sports Medicine 32: 837-849, 2002. 32. Interventional ASo, Neuroradiology T, Angiography SfC, Interventions, Medicine SfV, Biology, Radiology SoI, Bates ER, Babb JD, Casey DE, Cates CU, Duckwiler GR, and Feldman TE. ACCF/SCAI/SVMB/SIR/ASITN 2007 clinical expert consensus document on carotid stenting: a report of the American College of Cardiology foundation task force on clinical expert consensus documents (ACCF/SCAI/SVMB/SIR/ASITN clinical expert consensus document committee on carotid stenting). Journal of the American College of Cardiology 49: 126-170, 2007. 33. Mitchell GF. Arterial stiffness and wave reflection in hypertension: pathophysiologic and therapeutic implications. Current Hypertension Reports 6: 436-441, 2004. 34. Chemla D, Nitenberg A, Teboul JL, Richard C, Monnet X, Le Clesiau H, Valensi P, and Brahimi M. Subendocardial viability ratio estimated by arterial tonometry: a critical evaluation in elderly hypertensive patients with increased aortic stiffness. Clinical and Experimental Pharmacology and Physiology 35: 909-915, 2008. 35. Frimodt-Møller M, Nielsen AH, Kamper A-L, and Strandgaard S. Reproducibility of pulse-wave analysis and pulse-wave velocity determination in chronic kidney disease. Nephrology Dialysis Transplantation 23: 594-600, 2008. 36. Murakami T, Takei K, Ueno M, Takeda A, Yakuwa S, and Nakazawa M. Aortic reservoir function after arterial switch operation in elementary school-aged children. Circulation Journal 72: 1291-1295, 2008. 37. Brooks B, Molyneaux L, and Yue D. Augmentation of central arterial pressure in Type 2 diabetes. Diabetic Medicine 18: 374-380, 2001. 38. Choi Y-H, Chung JH, Bae SW, Lee W-H, Jeong E-M, Kang MG, Kim BJ, Kim K-W, and Park JE. Severe coronary artery spasm can be associated with hyperthyroidism. Coronary Artery Disease 16: 135-139, 2005. 39. Bodlaj G, Berg J, and Biesenbach G. Diurnal variation of arterial stiffness and subendocardial perfusion noninvasively assessed using applanation tonometry in healthy young men. Wiener klinische Wochenschrift 117: 348-352, 2005. 40. Knez WL, Sharman JE, Jenkins DG, and Coombes JS. Central hemodynamics in ultra-endurance athletes. Journal of Science and Medicine in Sport 11: 390-395, 2008. 41. Chemla D, Nitenberg A, Teboul JL, Richard C, Monnet X, le Clesiau H, Valensi P, and Brahimi M. Subendocardial viability ratio estimated by arterial tonometry: a critical evaluation in elderly hypertensive patients with increased aortic stiffness. Clin Exp Pharmacol Physiol 35: 909-915, 2008. 42. Kalapotharakos VI, Smilios I, Parlavatzas A, and Tokmakidis SP. The effect of moderate resistance strength training and detraining on muscle strength and power in older men. Journal of Geriatric Physical Therapy 30: 109-113, 2007. 43. Lovell DI, Cuneo R, and Gass GC. The effect of strength training and short-term detraining on maximum force and the rate of force development of older men. European Journal of Applied Physiology 109: 429-435, 2010. 44. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, Studenski S, Berkman LF, and Wallace RB. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 55: M221-M231, 2000. 45. Vikberg S, Sörlén N, Brandén L, Johansson J, Nordström A, Hult A, and Nordström P. Effects of Resistance Training on Functional Strength and Muscle Mass in 70-Year-Old Individuals With Pre-sarcopenia: A Randomized Controlled Trial. J Am Med Dir Assoc 20: 28-34, 2019. 46. Baum JI, Kim I-Y, and Wolfe RR. Protein consumption and the elderly: what is the optimal level of intake? Nutrients 8: 359, 2016. 47. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, and Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. American Journal of Physiology-Endocrinology and Metabolism 291: E381-E387, 2006. 48. Arnal M-A, Mosoni L, Boirie Y, Houlier M-L, Morin L, Verdier E, Ritz P, Antoine J-M, Prugnaud J, and Beaufrère B. Protein pulse feeding improves protein retention in elderly women. The American Journal of Clinical Nutrition 69: 1202-1208, 1999. 49. Bouchard C, Blair SN, and Haskell WL. Physical activity and health. Human Kinetics, 2012. 50. McCartney N, Hicks AL, Martin J, and Webber CE. Long-term resistance training in the elderly: effects on dynamic strength, exercise capacity, muscle, and bone. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 50: B97-B104, 1995. 51. Wolff I, van Croonenborg JJ, Kemper HCG, Kostense PJ, and Twisk JWR. The Effect of Exercise Training Programs on Bone Mass: A Meta-analysis of Published Controlled Trials in Pre- and Postmenopausal Women. Osteoporosis International 9: 1-12, 1999. 52. Going SB, and Laudermilk M. Osteoporosis and Strength Training. American Journal of Lifestyle Medicine 3: 310-319, 2009. 53. Henwood TR, and Taaffe DR. Detraining and retraining in older adults following long-term muscle power or muscle strength specific training. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 63: 751-758, 2008. 54. Mujika I, and Padilla S. Detraining: loss of training-induced physiological and performance adaptations. Part I. Sports Medicine 30: 79-87, 2000. 55. Carli F, and Zavorsky GS. Optimizing functional exercise capacity in the elderly surgical population. Current Opinion in Clinical Nutrition Metabolic Care 8: 23-32, 2005. 56. Doonan RJ, Mutter A, Egiziano G, Gomez YH, and Daskalopoulou SS. Differences in arterial stiffness at rest and after acute exercise between young men and women. Hypertens Res 36: 226-231, 2013. 57. Parks JC, Marshall EM, Tai YL, and Kingsley JD. Free-weight versus weight machine resistance exercise on pulse wave reflection and aortic stiffness in resistance-trained individuals. Eur J Sport Sci 1-9, 2019. 58. Kingsley JD, Tai YL, Mayo X, Glasgow A, and Marshall E. Free-weight resistance exercise on pulse wave reflection and arterial stiffness between sexes in young, resistance-trained adults. Eur J Sport Sci 17: 1056-1064, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79493 | - |
| dc.description.abstract | 背景: 許多涉及老年人的研究指出,阻力訓練可以促進最大肌力與功能能力的提升,但是究竟較長時間的阻力訓練,對心肌內膜下活力率 ( SEVR ) 的影響,目前仍不清楚。若SEVR下降,代表會導致心血管風險增加,對於阻力訓練促進健康效益而言,為重要之研究議題。目的: 探討八週全身高強度阻力訓練對中老年人最大肌力、功能能力指標與SEVR的影響。方法: 受試者為28位55至75歲的健康中老年人 (阻力訓練組的平均年齡為66.0±5.1 years、平均BMI為23.2±2.9 kg/m2;控制組的平均年齡為62.1±6.0 years、平均BMI為24.2±2.8 kg/m2 ),所有受試者並依隨機分派方式分為阻力訓練介入組與控制組。阻力訓練組以器械方式進行為期八週,每週3次之高強度全身阻力訓練,每次訓練強度為80%1RM,共6個動作,各3組。控制組則維持正常生活作息,不進行任何介入。並檢測八週訓練前、八週訓練後、四週不訓練後,共三個時間點之最大肌力、功能能力指標與SEVR。結果:阻力訓練組在八週高強度阻力訓練後最大肌力顯著高於訓練前(RT-pre: 231±105 kg,post: 324±150 kg)。功能能力測驗中的椅子坐站秒數顯著低於訓練前(RT-pre: 10.4±2.2 s,post: 8.3±1.4 s)。功能能力測驗中的步態速度秒數顯著低於訓練前(RT-pre: 3.0±0.4 s,post: 2.7±0.5 s)。四週停止訓練後最大肌力仍然顯著高於訓練前但與訓練後相比顯著下降(RT-pre: 231±105 kg,post: 324±150 kg,detraining: 295±124 kg);而功能能力測驗中的椅子坐站秒數與訓練後相比無顯著差異且顯著低於訓練前(RT-pre: 10.4±2.2 s,post: 8.3±1.4 s,detraining: 8.2±1.3 s),功能能力測驗中的步態速度秒數與訓練後相比無顯著差異且顯著低於訓練前(RT-pre: 3.0±0.4 s,post: 2.7±0.5 s,detraining: 2.8±0.4 s)。兩組別在在八週高強度阻力訓練與四週停止訓練後SEVR皆無顯著變化(RT- pre:153±23%,post:155±34%,detraining :148±26%;CON-pre:142±18%,post:154±27%,detraining :148±26%)。結論:八週高強度阻力訓練後能顯著增加最大肌力與功能能力,且在四週停止訓練後仍能維持阻力訓練效果。八週高強度阻力對於SEVR沒有影響,可能不具降低心肌血流灌注的風險。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:01:49Z (GMT). No. of bitstreams: 1 U0001-0510202118301300.pdf: 1379481 bytes, checksum: 55e254bf7dda2bd0c65c5e66b5046650 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 摘要 ii Abstract iv 圖目錄 viii 表目錄 ix 第壹章 緒論 - 1 - 第一節 問題背景 - 1 - 第二節 研究目的 - 3 - 第三節 研究假設 - 3 - 第四節 名詞操作型定義 - 3 - 第五節 研究範圍及限制 - 4 - 第六節 研究重要性 - 4 - 第貳章 文獻探討 - 5 - 第一節 高強度阻力訓練與最大肌力和肌肉質量 - 5 - 第二節 阻力訓練與功能能力 - 6 - 第三節 阻力訓練對左心室形態學與收縮功能的影響 - 7 - 第四節 心肌內膜下活力率臨床意義 - 8 - 第五節 停止訓練(Detraining) - 12 - 第六節 本章總結 - 13 - 第參章 研究方法 - 14 - 第一節 研究受試者 - 14 - 第二節 實驗時間與地點 - 14 - 第三節 實驗流程 - 14 - 第四節 實驗測量方法 - 17 - 第五節 資料處理與統計分析 - 19 - 第肆章 研究結果 - 20 - 第一節 受試者基本資料 - 20 - 第二節 不同組別身體組成測量結果 - 21 - 第三節 不同組別最大肌力與功能能力指標測量結果 - 26 - 第四節 不同組別SEVR的測量結果 - 30 - 第伍章 討論 - 32 - 第一節 八週高強度阻力訓練與四週停止訓練對於身體組成之影響 - 32 - 第二節 八週高強度阻力訓練與四週停止訓練對於最大肌力與功能能力表現之影響 - 34 - 第三節 八週高強度阻力訓練與四週停止訓練對於SEVR之影響 - 36 - 第四節 結論與建議 - 37 - 參考文獻 - 38 - | |
| dc.language.iso | zh-TW | |
| dc.title | 全身高強度阻力訓練與停止訓練介入對於中老年人功能能力與心肌內膜下心活力率的影響 | zh_TW |
| dc.title | Effect of Whole Body High-Intensity Resistance Training and Detraining on the Functional Capacity and Subendocardial Viability Ratio in Middle-Aged to Older Adults | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖翊宏(Hsin-Tsai Liu),王順正(Chih-Yang Tseng) | |
| dc.subject.keyword | 最大肌力,步態速度,心臟功能, | zh_TW |
| dc.subject.keyword | maximal muscle strength,gait speed,cardiac function, | en |
| dc.relation.page | 42 | |
| dc.identifier.doi | 10.6342/NTU202103561 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-14 | |
| dc.contributor.author-dept | 共同教育中心 | zh_TW |
| dc.contributor.author-dept | 運動設施與健康管理碩士學位學程 | zh_TW |
| 顯示於系所單位: | 運動設施與健康管理碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0510202118301300.pdf | 1.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
