請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79483完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳宇(Bing-Yu Chen) | |
| dc.contributor.author | Chi-Jung Lee | en |
| dc.contributor.author | 李其蓉 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:01:37Z | - |
| dc.date.available | 2026-10-07 | |
| dc.date.available | 2022-11-23T09:01:37Z | - |
| dc.date.copyright | 2021-11-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-08 | |
| dc.identifier.citation | [1] P. Abtahi and S. Follmer. Visuo-haptic illusions for improving the perceived performance of shape displays. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–13, New York, NY, USA, 2018. Association for Computing Machinery. [2] P. Abtahi, B. Landry, J. J. Yang, M. Pavone, S. Follmer, and J. A. Landay. Beyond the force: Using quadcopters to appropriate objects and the environment for haptics in virtual reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–13, New York, NY, USA, 2019. Association for Computing Machinery. [3] M. Achibet, A. Girard, A. Talvas, M. Marchal, and A. Lécuyer. Elastic-arm: Human scale passive haptic feedback for augmenting interaction and perception in virtual environments. In 2015 IEEE Virtual Reality (VR), pages 63–68. IEEE, 2015. [4] M. Achibet, B. Le Gouis, M. Marchal, P.A. Leziart, F. Argelaguet, A. Girard, A. Lécuyer, and H. Kajimoto. Flexifingers: Multi-finger interaction in vr combining passive haptics and pseudo-haptics. In 2017 IEEE Symposium on 3D User Interfaces (3DUI), pages 103–106. IEEE, 2017. [5] B. Araujo, R. Jota, V. Perumal, J. X. Yao, K. Singh, and D. Wigdor. Snake charmer: Physically enabling virtual objects. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’16, page 218–226, New York, NY, USA, 2016. Association for Computing Machinery. [6] Y. Ban, T. Kajinami, T. Narumi, T. Tanikawa, and M. Hirose. Modifying an identified curved surface shape using pseudo-haptic effect. In 2012 IEEE Haptics Symposium (HAPTICS), pages 211–216. IEEE, 2012. [7] Y. Ban, T. Narumi, T. Tanikawa, and M. Hirose. Controlling perceived stiffness of pinched objects using visual feedback of hand deformation. In 2014 IEEE Haptics Symposium (HAPTICS), pages 557–562. IEEE, 2014. [8] O. Bau, I. Poupyrev, A. Israr, and C. Harrison. Teslatouch: Electrovibration for touch surfaces. In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, UIST ’10, page 283–292, New York, NY, USA, 2010. Association for Computing Machinery. [9] H. Benko, C. Holz, M. Sinclair, and E. Ofek. Normaltouch and texturetouch: High fidelity 3d haptic shape rendering on handheld virtual reality controllers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, page 717–728, New York, NY, USA, 2016. Association for Computing Machinery. [10] G. Binsted, R. Chua, W. Helsen, and D. Elliott. Eye–hand coordination in goal directed aiming. Human movement science, 20(45):563–585, 2001. [11] S. Cai, P. Ke, T. Narumi, and K. Zhu. Thermairglove: A pneumatic glove for thermal perception and material identification in virtual reality. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 248–257. IEEE, 2020. [12] L.P. Cheng, E. Ofek, C. Holz, H. Benko, and A. D. Wilson. Sparse haptic proxy: Touch feedback in virtual environments using a general passive prop. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, page 3718–3728, New York, NY, USA, 2017. Association for Computing Machinery. [13] F. Chinello, C. Pacchierotti, M. Malvezzi, and D. Prattichizzo. A three revolute revolute-spherical wearable fingertip cutaneous device for stiffness rendering. IEEE Transactions on Haptics, 11(1):39–50, 2017. [14] Y. Cho, A. Bianchi, N. Marquardt, and N. Bianchi-Berthouze. Realpen: Providing realism in handwriting tasks on touch surfaces using auditory-tactile feedback. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, page 195–205, New York, NY, USA, 2016. Association for Computing Machinery. [15] I. Choi, E. Ofek, H. Benko, M. Sinclair, and C. Holz. Claw: A multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–13, New York, NY, USA, 2018. Association for Computing Machinery. [16] D. Degraen, A. Zenner, and A. Krüger. Enhancing texture perception in virtual reality using 3dprinted hair structures. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–12, New York, NY, USA, 2019. Association for Computing Machinery. [17] S. Ding, Y. Pan, M. Tong, and X. Zhao. Tactile perception of roughness and hardness to discriminate materials by friction-induced vibration. Sensors, 17(12):2748, 2017. [18] S. Follmer, D. Leithinger, A. Olwal, A. Hogge, and H. Ishii. Inform: Dynamic physical affordances and constraints through shape and object actuation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, page 417–426, New York, NY, USA, 2013. Association for Computing Machinery. [19] E. J. Gonzalez, P. Abtahi, and S. Follmer. Reach+: Extending the reachability of encountered-type haptics devices through dynamic redirection in vr. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, UIST ’20, page 236–248, New York, NY, USA, 2020. Association for Computing Machinery. [20] V. Hayward and M. Cruz-Hernandez. Tactile display device using distributed lateral skin stretch. In Proceedings of the haptic interfaces for virtual environment and teleoperator systems symposium, volume 69, pages 1309–1314. Citeseer, 2000. [21] S. Heo, C. Chung, G. Lee, and D. Wigdor. Thor’s hammer: An ungrounded force feedback device utilizing propeller-induced propulsive force. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1– 11, New York, NY, USA, 2018. Association for Computing Machinery. [22] S. Heo, J. Lee, and D. Wigdor. Pseudobend: Producing haptic illusions of stretching, bending, and twisting using grain vibrations. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST ’19, page 803– 813, New York, NY, USA, 2019. Association for Computing Machinery. [23] D.Y. Huang, R. Guo, J. Gong, J. Wang, J. Graham, D.N. Yang, and X.D. Yang. Retroshape: Leveraging rear-surface shape displays for 2.5d interaction on smartwatches. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, page 539–551, New York, NY, USA, 2017. Association for Computing Machinery. [24] L. Kohli, M. C. Whitton, and F. P. Brooks. Redirected touching: Training and adaptation in warped virtual spaces. In 2013 IEEE Symposium on 3D User Interfaces (3DUI), pages 79–86. IEEE, 2013. [25] G. Laput, X. A. Chen, and C. Harrison. 3d printed hair: Fused deposition modeling of soft strands, fibers, and bristles. In Proceedings of the 28th Annual ACM Symposium on User Interface Software Technology, UIST ’15, page 593–597, New York, NY, USA, 2015. Association for Computing Machinery. [26] N. Li, H.J. Kim, L. Shen, F. Tian, T. Han, X.D. Yang, and T.J. Nam. Haplink age: Prototyping haptic proxies for virtual hand tools using linkage mechanism. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, UIST ’20, page 1261–1274, New York, NY, USA, 2020. Association for Computing Machinery. [27] J.Y. Lo, D.Y. Huang, C.K. Sun, C.E. Hou, and B.Y. Chen. Rollingstone: Using single slip taxel for enhancing active finger exploration with a virtual reality controller. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, page 839–851, New York, NY, USA, 2018. Association for Computing Machinery. [28] P. Lopes, S. You, L.P. Cheng, S. Marwecki, and P. Baudisch. Providing haptics to walls heavy objects in virtual reality by means of electrical muscle stimulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, page 1471–1482, New York, NY, USA, 2017. Association for Computing Machinery. [29] J. Mullenbach, D. Johnson, J. E. Colgate, and M. A. Peshkin. Activepad surface haptic device. In 2012 IEEE Haptics Symposium (HAPTICS), pages 407–414. IEEE, 2012. [30] J. Murayama, L. Bougrila, Y. Luo, K. Akahane, S. Hasegawa, B. Hirsbrunner, and M. Sato. Spidar g g: a twohanded haptic interface for bimanual vr interaction. In Proceedings of EuroHaptics, volume 2004, pages 138–146. Citeseer, 2004. [31] K. Nagai, S. Tanoue, K. Akahane, and M. Sato. Wearable 6dof wrist haptic device ”spidar-w”. In SIGGRAPH Asia 2015 Haptic Media And Contents Design, SA ’15, New York, NY, USA, 2015. Association for Computing Machinery. [32] K. Nakagaki, D. Fitzgerald, Z. J. Ma, L. Vink, D. Levine, and H. Ishii. Inforce: Bi directional ‘force’ shape display for haptic interaction. In Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’19, page 615–623, New York, NY, USA, 2019. Association for Computing Machinery. [33] K. Nakagaki, Y. R. Liu, C. Nelson-Arzuaga, and H. Ishii. Trans-dock: Expanding the interactivity of pin-based shape displays by docking mechanical transducers. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’20, page 131–142, New York, NY, USA, 2020. Association for Computing Machinery. [34] K. Nakagaki, L. Vink, J. Counts, D. Windham, D. Leithinger, S. Follmer, and H. Ishii. Materiable: Rendering dynamic material properties in response to direct physical touch with shape changing interfaces. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, page 2764–2772, New York, NY, USA, 2016. Association for Computing Machinery. [35] J. Ou, G. Dublon, C.Y. Cheng, F. Heibeck, K. Willis, and H. Ishii. Cilllia: 3d printed micropillar structures for surface texture, actuation and sensing. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, page 5753–5764, New York, NY, USA, 2016. Association for Computing Machinery. [36] S. B. Schorr and A. M. Okamura. Fingertip tactile devices for virtual object manipulation and exploration. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, page 3115–3119, New York, NY, USA, 2017. Association for Computing Machinery. [37] A. F. Siu, E. J. Gonzalez, S. Yuan, J. B. Ginsberg, and S. Follmer. ShapeShift: 2D Spatial Manipulation and Self-Actuation of Tabletop Shape Displays for Tangible and Haptic Interaction, page 1–13. Association for Computing Machinery, New York, NY, USA, 2018. [38] E. Strasnick, C. Holz, E. Ofek, M. Sinclair, and H. Benko. Haptic links: Bimanual haptics for virtual reality using variable stiffness actuation. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1– 12, New York, NY, USA, 2018. Association for Computing Machinery. [39] Y. Sun, S. Yoshida, T. Narumi, and M. Hirose. Pacapa: A handheld vr device for rendering size, shape, and stiffness of virtual objects in tool-based interactions. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–12, New York, NY, USA, 2019. Association for Computing Machinery. [40] R. Suzuki, J. Yamaoka, D. Leithinger, T. Yeh, M. D. Gross, Y. Kawahara, and Y. Kakehi. Dynablock: Dynamic 3d printing for instant and reconstructable shape formation. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, page 99–111, New York, NY, USA, 2018. Association for Computing Machinery. [41] H.R. Tsai, C.W. Hung, T.C. Wu, and B.Y. Chen. Elastoscillation: 3d multilevel force feedback for damped oscillation on vr controllers. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, page 1–12, New York, NY, USA, 2020. Association for Computing Machinery. [42] H.R. Tsai, J. Rekimoto, and B.Y. Chen. Elasticvr: Providing multilevel continuously-changing resistive force and instant impact using elasticity for vr. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–10, New York, NY, USA, 2019. Association for Computing Machinery. [43] D. Tsetserukou, K. Sato, and S. Tachi. Exointerfaces: Novel exosceleton haptic interfaces for virtual reality, augmented sport and rehabilitation. In Proceedings of the 1st Augmented Human International Conference, AH ’10, New York, NY, USA, 2010. Association for Computing Machinery. [44] Q. Wang, X. Ren, S. Sarcar, and X. Sun. Ev-pen: Leveraging electrovibration haptic feedback in pen interaction. In Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces, ISS ’16, page 57–66, New York, NY, USA, 2016. Association for Computing Machinery. [45] T.Y. Wei, H.R. Tsai, Y.S. Liao, C. Tsai, Y.S. Chen, C. Wang, and B.Y. Chen. Elastilinks: Force feedback between vr controllers with dynamic points of application of force. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, UIST ’20, page 1023–1034, New York, NY, USA, 2020. Association for Computing Machinery. [46] E. Whitmire, H. Benko, C. Holz, E. Ofek, and M. Sinclair. Haptic revolver: Touch, shear, texture, and shape rendering on a reconfigurable virtual reality controller. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–12, New York, NY, USA, 2018. Association for Computing Machinery. [47] L. Winfield, J. Glassmire, J. E. Colgate, and M. Peshkin. T-pad: Tactile pattern display through variable friction reduction. In Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07), pages 421–426. IEEE, 2007. [48] S. Yoshida, Y. Sun, and H. Kuzuoka. Pocopo: Handheld pin-based shape display for haptic rendering in virtual reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, page 1–13, New York, NY, USA, 2020. Association for Computing Machinery. [49] A. Zenner and A. Krüger. Drag:on: A virtual reality controller providing haptic feedback based on drag and weight shift. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–12, New York, NY, USA, 2019. Association for Computing Machinery. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79483 | - |
| dc.description.abstract | 一直以來,觸覺回饋被廣泛應用於促進虛擬實境體驗的真實度。在觸摸物品時,軟硬和粗糙程度是人們最容易感受到的質感。而當觸碰材質更複雜的物品表面時,人們所感受的不只是軟硬和粗糙程度的差異,更會去感受文理所造成的高度差。為了在虛擬實境裡同時呈現這些觸感,我們提出了一個參考釘板設計的手持式裝置—HairTouch—以提供軟硬、粗糙與紋理高度的差異,以及他們的組合。HairTouch包含了兩根「釘子」,並且分別給予食指的前兩個指節觸覺回饋。藉由改變「釘子」裡化妝刷毛的長度和傾斜角度進而改變刷毛的彈性和毛尖方向,這些「釘子」即可分別產生不同的軟硬和粗糙程度。藉由進一步分別控制兩根「釘子」裡的化妝刷毛和和「釘子」的高度,則可以呈現不同軟硬、粗糙與文理高度的差異組合。我們進行了一個知覺實驗以洞察使用者兩個食指指節對於軟硬和粗糙程度的辨識度。根據實驗的結果,我們進行了一個虛擬實境體驗實驗來證實HairTouch所提供的觸覺回饋可以提升虛擬實境的真實度。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:01:37Z (GMT). No. of bitstreams: 1 U0001-0710202118360400.pdf: 4757433 bytes, checksum: c7f34b5d4aa5b920d5176446868a3fdb (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Denotation xv Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Tactile Devices for Stiffness Feedback . . . . . . . . . . . . . . . . . 5 2.2 Tactile Devices for Roughness Feedback . . . . . . . . . . . . . . . 7 2.3 Pin-Based Structure Devices . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 3 HairTouch 11 3.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 4 Perception Study 23 4.1 Apparatus and Participants . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 5 VR Experience Study 31 5.1 Apparatus and Participants . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Task and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3 Virtual Pet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.4 Virtual Shopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter 6 Limitations and Future Work 39 Chapter 7 Conclusion 43 References 45 | |
| dc.language.iso | en | |
| dc.title | HairTouch:利用刷毛在VR控制器上提供軟硬、粗糙和高度差的觸覺回饋 | zh_TW |
| dc.title | "HairTouch: Providing Stiffness, Roughness and Surface Height Differences Using Reconfigurable Brush Hairs on a VR Controller" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹力韋(Hsin-Tsai Liu),余能豪(Chih-Yang Tseng),鄭龍磻,蔡欣叡 | |
| dc.subject.keyword | 觸覺,軟硬,粗糙,手持式裝置,刷毛,虛擬實境, | zh_TW |
| dc.subject.keyword | Haptic,Tactile,Stiffness,Roughness,Handheld Device,Hair,Virtual Reality, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU202103611 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-10-07 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0710202118360400.pdf 此日期後於網路公開 2026-10-07 | 4.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
