Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79396
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙福杉(Fu-Shan Jaw)
dc.contributor.authorChih-Chao Hsuen
dc.contributor.author許智超zh_TW
dc.date.accessioned2022-11-23T08:59:36Z-
dc.date.available2022-03-07
dc.date.available2022-11-23T08:59:36Z-
dc.date.copyright2022-03-07
dc.date.issued2022
dc.date.submitted2022-02-11
dc.identifier.citation1. Hsu CC, Huang YK, Kang JH, Ko YF, Liu CW, Jaw FS, et al. Novel design for a dynamic ankle foot orthosis with motion feedback used for training in patients with hemiplegic gait: a pilot study. J Neuroeng Rehabil. 2020;17(1):112. 2. Moore KL, Dalley AF, Agur AMR. Clinically oriented anatomy / Keith L. Moore, M.Sc., Ph.D., D.Sc. (Hon.), F.I.A.C. , F.R.S.M., F.A.A.A., Arthur F. Dalley II, Ph.D., Anne M.R. Agur, B.Sc. (OT), M.Sc., Ph.D. Seventh Edition. ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams Wilkins; 2014. 3. Kirtley C. Clinical gait analysis : theory and practice. Edinburgh ; New York: Elsevier; 2006. 4. Perry J. Gait Analysis : Normal and Pathological Function, Second Edition : Normal and Pathological Function, Second Edition. Thorofare, UNITED STATES: SLACK, Incorporated; 2010. 5. Fish DJ, Crussemeyer JA, Kosta CS. Lower extremity orthoses and applications for rehabilitation populations. Foot and ankle clinics. 2001;6(2):341-69. 6. Standardization IOf. ISO 8549-3:1989 - Prosthetics and orthotics -- Vocabulary -- Part 3: Terms relating to external orthoses. 1989:5. 7. Fatone S, Stine R, SA. G. Randomized Cross-over Study of AFO Ankle Components in Adults with Post-Stroke Hemiplegia. 13th ISPO World Congress. 2010:59. 8. Whiteside SR, Allen MJ, Bick JA. Practice analysis of certified practitioners in the disciplines of orthotics and prosthetics. Alexandria, VA: American Board for Certification in Orthotics and Prosthetics, Inc; 2007. 9. 衛生福利部社會及家庭署. 103 年身心障礙者輔具服務彙整分析報告. 2014. 10. National_Collaborating_Centre_for_Chronic_Conditions_(Great_Britain). Stroke: national clinical guideline for diagnosis and initial management of acute stroke and transient ischaemic attack (TIA). Royal College of Physicians. 2008. 11. Lin H-C, Lin Y-J, Liu T-C, Chen C-S, Chiu W-T. Urbanization and stroke prevalence in Taiwan: analysis of a nationwide survey. Journal of urban health. 2007;84(4):604-14. 12. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update. Circulation. 2016;133(4):e38-e360. 13. Jones PS, Pomeroy VM, Wang J, Schlaug G, Tulasi Marrapu S, Geva S, et al. Does stroke location predict walk speed response to gait rehabilitation? Human brain mapping. 2016;37(2):689-703. 14. Sackley CM, Hill HJ, Pound K, Foxall A. The intra-rater reliability of the balance performance monitor when measuring sitting symmetry and weight-shift activity after stroke in a community setting. Clinical rehabilitation. 2005;19(7):746-50. 15. Michael KM, Allen JK, Macko RF. Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Archives of physical medicine and rehabilitation. 2005;86(8):1552-6. 16. Tyson SF, Kent RM. Effects of an ankle-foot orthosis on balance and walking after stroke: a systematic review and pooled meta-analysis. Archives of physical medicine and rehabilitation. 2013;94(7):1377-85. 17. Momosaki R, Abo M, Watanabe S, Kakuda W, Yamada N, Kinoshita S. effects of ankle°Vfoot orthoses on functional recovery after stroke: a propensity score analysis based on Japan rehabilitation database. PloS one. 2015;10(4):e0122688. 18. Burdett RG, Borello-France D, Blatchly C, Potter C. Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup® brace. Physical Therapy. 1988;68(8):1197-203. 19. Hale S. Carbon Fiber Articulated AFO-An Alternative Design. JPO: Journal of Prosthetics and Orthotics. 1989;1(4):191-8. 20. Radtka SA, Skinner SR, Johanson ME. A comparison of gait with solid and hinged ankle-foot orthoses in children with spastic diplegic cerebral palsy. Gait posture. 2005;21(3):303-10. 21. Wong M, Wong A, Wong D. A review of ankle foot orthotic interventions for patients with stroke. The Internet Journal of Rehabilitation. 2010;1(1):1-7. 22. Romkes J, Brunner R. Comparison of a dynamic and a hinged ankle–foot orthosis by gait analysis in patients with hemiplegic cerebral palsy. Gait posture. 2002;15(1):18-24. 23. Wolf SI, Alimusaj M, Rettig O, Döderlein L. Dynamic assist by carbon fiber spring AFOs for patients with myelomeningocele. Gait posture. 2008;28(1):175-7. 24. Alam M, Choudhury IA, Mamat AB. Mechanism and design analysis of articulated ankle foot orthoses for drop-foot. The Scientific World Journal. 2014;2014. 25. Yamamoto S, Hagiwara A, Mizobe T, Yokoyama O, Yasui T. Development of an ankle–foot orthosis with an oil damper. Prosthetics and orthotics international. 2005;29(3):209-19. 26. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what's the evidence? Clinical rehabilitation. 2004;18(8):833-62. 27. Kobayashi T, Singer ML, Orendurff MS, Gao F, Daly WK, Foreman KB. The effect of changing plantarflexion resistive moment of an articulated ankle–foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke. Clinical Biomechanics. 2015;30(8):775-80. 28. Yokoyama O, Sashika H, Hagiwara A, Yamamoto S, Yasui T. Kinematic effects on gait of a newly designed ankle-foot orthosis with oil damper resistance: a case series of 2 patients with hemiplegia. Archives of physical medicine and rehabilitation. 2005;86(1):162-6. 29. Jin Y, He Y, Shih A. Process planning for the fuse deposition modeling of ankle-foot-othoses. Procedia CIRP. 2016;42:760-5. 30. Tursi A, Mincolelli G. Design for People Affected by Duchenne Muscular Dystrophy. Proposal of a New Type of Ankle Foot Orthosis [AFO] Based on 3D Indirect Survey and 3D Printing. Advances in Design for Inclusion: Springer; 2016. p. 81-6. 31. Occipital I. Structure sensor-3d scanning, augmented reality, and more for mobile devices. 2016. 32. Alam M, Choudhury IA, MAMAT AB, Hussain S. Computer aided design and fabrication of a custom articulated ankle foot orthosis. Journal of Mechanics in Medicine and Biology. 2015;15(04):1550058. 33. Beckerman H, Becher J, Lankhorst GJ, Verbeek AM. Walking ability of stroke patients: efficacy of tibial nerve blocking and a polypropylene ankle-foot orthosis. Archives of physical medicine and rehabilitation. 1996;77(11):1144-51. 34. Pavlik AJ. The effect of long-term ankle-foot orthosis use on gait in the poststroke population. JPO: Journal of Prosthetics and Orthotics. 2008;20(2):49-52. 35. Franceschini M, Massucci M, Ferrari L, Agosti M, Orsi M, Paroli C. Gait with custom-made orthosis in hemiplegic patients: preliminary data. Gait Posture. 2001;13:139-40. 36. Weiss W. Rigid AFO impairs walking ability in individuals with hemiparesis from CVA. Gait Posture. 2002;16(1):S2. 37. Corcoran P. Effects of plastic and metal leg braces on speed and energy cost of hemiparetic ambulation. Arch Phys Rehabil. 1970;51:69-77. 38. Lehmann JF, Condon SM, Price R, DeLateur B. Gait abnormalities in hemiplegia: their correction by ankle-foot orthoses. Archives of physical medicine and rehabilitation. 1987;68(11):763-71. 39. Beach J, Davis L, Whittle M, Hood K. A comparative analysis of polypropylene and thermoplastic elastomer ankle-foot orthoses in a hemiparetic patient. Arch Phys Med Rehabil. 1999;80:978-9. 40. Mueller K, Cornwall M, McPoil T, Mueller D, Barnwell J. Effect of a Tone-Inhibiting Dynamic Ankle-Foot Orthosis on the Foot-Loading Pattern of a Hemiplegie Adult: A Preliminary Study. JPO: Journal of Prosthetics and Orthotics. 1992;4(2):86-92. 41. Diamond MF, Ottenbacher KJ. Effect of a tone-inhibiting dynamic ankle-foot orthosis on stride characteristics of an adult with hemiparesis. Physical Therapy. 1990;70(7):423-30. 42. Dieli J, Ayyappa E, Hornbeak S. Effect of Dynamic AFOs on Three Hemiplegic Adults. JPO: Journal of Prosthetics and Orthotics. 1997;9(2):82-9. 43. Hesse S, Luecke D, Jahnke M, Mauritz K. Gait function in spastic hemiparetic patients walking barefoot, with firm shoes, and with ankle-foot orthosis. International Journal of Rehabilitation Research. 1996;19(2):133-42. 44. Eberly V, Weiss W, Mulroy S, Gronley J, Perry J. Effect of AFO design on walking in individuals with hemiplegia and plantar flexion contractures from CVA. Gait Posture. 2003;18(Suppl 2):1-79. 45. Yamamoto S, Ebina M, Kubo S, Hayashi T, Akita Y, Hayakawa Y. Development of an Ankle-Foot Orthosis with Dorsiflexion Assist, Part 2: Structure and Evaluation. JPO: Journal of Prosthetics and Orthotics. 1999;11(2):24-8. 46. Tyson S, Thornton H, Downes A. The effect of a hinged ankle-foot orthosis on hemiplegic gait: four single case studies. Physiotherapy Theory and Practice. 1998;14(2):75-85. 47. Tyson S, Thornton H. The effect of a hinged ankle foot orthosis on hemiplegic gait: objective measures and users' opinions. Clinical Rehabilitation. 2001;15(1):53-8. 48. Bleyenheuft C, Caty G, Lejeune T, Detrembleur C, editors. Assessment of the Chignon® dynamic ankle–foot orthosis using instrumented gait analysis in hemiparetic adults. Annales de réadaptation et de médecine physique; 2008: Elsevier. 49. Danielsson A, Sunnerhagen KS. Energy expenditure in stroke subjects walking with a carbon composite ankle foot orthosis. Journal of rehabilitation medicine. 2004;36(4):165-8. 50. de Wit DC, Buurke J, Nijlant JM, IJzerman MJ, Hermens HJ. The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: a randomized controlled trial. Clinical rehabilitation. 2004;18(5):550-7. 51. Franceschini M, Massucci M, Ferrari L, Agosti M, Paroli C. Effects of an ankle-foot orthosis on spatiotemporal parameters and energy cost of hemiparetic gait. Clinical Rehabilitation. 2003;17(4):368-72. 52. Gök H, Küçükdeveci A, Altinkaynak H, Yavuzer G, Ergin S. Effects of ankle-foot orthoses on hemiparetic gait. Clinical rehabilitation. 2003;17(2):137-9. 53. Ying-hui L. Effect of ankle-foot orthosis on walking ability of hemiparetic stroke patients. Journal of Clinical Rehabilitative Tissue Engineering Research. 2007;11(13):2525-7. 54. Ofluoǧlu D, Saygi EK, Belli BG, Berker N. Assesment of gait disturbances in hemiparetic patients with and without AFO by pedobarographic measurements. Journal of Rheumatology and Medical Rehabilitation. 2005;16(1):36-41. 55. Rao N, Aruin A, Chaudhuri G, Hasso D, D’Souza K, Carlson C. Effect of Nonarticulated Ankle-Foot Orthosis on Gait Pattern in Hemiplegic Subjects: A Randomized Crossover Study. Archives of Physical Medicine and Rehabilitation. 2006;87(11):e44. 56. Roehrig S, Yates DA. Case report: effects of a new orthosis and physical therapy on gait in a subject with longstanding hemiplegia. Journal of Geriatric Physical Therapy. 2008;31(1):38-46. 57. Oshawa S, Ikeda S, Tanaka S. A new model of plastic ankle-foot orthosis (FAFO (II)). Prosthetics and Orthotics International. 1992;16:104-8. 58. MOJICA JAP, NAKAMURA R, KOBAYASHI T, HANDA T, MOROHASHI I, WATANABE S. Effect of ankle-foot orthosis (AFO) on body sway and walking capacity of hemiparetic stroke patients. The Tohoku journal of experimental medicine. 1988;156(4):395-401. 59. Zancan A, Beretta MV, Schmid M, Schieppati M. A new hip-knee-ankle-foot sling: kinematic comparison with a traditional ankle-foot orthosis. Journal of Rehabilitation Research Development. 2004;41(5). 60. Fatone S, Hansen AH. Effect of ankle-foot orthosis on roll-over shape in adults with hemiplegia. Journal of rehabilitation research and development. 2007;44(1):11. 61. Pohl M, Mehrholz J. Immediate effects of an individually designed functional ankle-foot orthosis on stance and gait in hemiparetic patients. Clinical Rehabilitation. 2006;20(4):324-30. 62. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding? European journal of neuroscience. 2005;22(5):1248-56. 63. Bowers R, Meadows B. Use of an ankle-foot orthosis to optimize hip and knee biomechanics following stroke, in The Academy Today. 2007. 64. Chen C-L, Yeung K-T, Wang C-H, Chu H-T, Yeh C-Y. Anterior ankle-foot orthosis effects on postural stability in hemiplegic patients. Archives of physical medicine and rehabilitation. 1999;80(12):1587-92. 65. Wang R-Y, Yen L-L, Lee C-C, Lin P-Y, Wang M-F, Yang Y-R. Effects of an ankle-foot orthosis on balance performance in patients with hemiparesis of different durations. Clinical rehabilitation. 2005;19(1):37-44. 66. Aggett T. An investigation into the effects and use of the Air-Stirrup Brace with subjects following stroke. Neurorehabilitation and Neural Repair. 1999;13(1):38. 67. Hesse S, Werner C, Matthias K, Stephen K, Berteanu M. Non–velocity-related effects of a rigid double-stopped ankle-foot orthosis on gait and lower limb muscle activity of hemiparetic subjects with an equinovarus deformity. Stroke. 1999;30(9):1855-61. 68. Williams G. Functional ambulation classification. Encyclopedia of Clinical Neuropsychology: Springer; 2011. p. 1105-6. 69. Mehrholz J, Wagner K, Rutte K, Meiβner D, Pohl M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Archives of physical medicine and rehabilitation. 2007;88(10):1314-9. 70. Mendell JR, Florence J. Manual muscle testing. Muscle nerve. 1990;13(S1). 71. Charalambous CP. Interrater reliability of a modified Ashworth scale of muscle spasticity. Classic Papers in Orthopaedics: Springer; 2014. p. 415-7. 72. Blum L, Korner-Bitensky N. Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Physical therapy. 2008;88(5):559-66. 73. Schwesig R, Neumann S, Richter D, Kauert R, Becker S, Esperer H, et al. Impact of therapeutic riding on gait and posture regulation. Sportverletzung Sportschaden: Organ der Gesellschaft fur Orthopadisch-Traumatologische Sportmedizin. 2009;23(2):84-94. 74. Schwesig R, Kauert R, Wust S, Becker S, Leuchte S. Reliabilitätsstudie zum Ganganalysesystem RehaWatch/Reliability of the novel gait analysis system RehaWatch. Biomedizinische Technik/Biomedical Engineering. 2010;55(2):109-15. 75. Abel MF, Juhl GA, Vaughan CL, Damiano DL. Gait assessment of fixed ankle-foot orthoses in children with spastic diplegia. Archives of physical medicine and rehabilitation. 1998;79(2):126-33. 76. Burnfield M. Gait analysis: normal and pathological function. Journal of Sports Science and Medicine. 2010;9(2):353. 77. Ohata K, Yasui T, Tsuboyama T, Ichihashi N. Effects of an ankle-foot orthosis with oil damper on muscle activity in adults after stroke. Gait posture. 2011;33(1):102-7. 78. Bohannon RW. Muscle strength and muscle training after stroke. Journal of rehabilitation Medicine. 2007;39(1):14-20. 79. Ryan AS, Dobrovolny CL, Smith GV, Silver KH, Macko RF. Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Archives of physical medicine and rehabilitation. 2002;83(12):1703-7. 80. Kim YJ, Lenke LG, Bridwell KH, Kim J, Cho SK, Cheh G, et al. Proximal junctional kyphosis in adolescent idiopathic scoliosis after 3 different types of posterior segmental spinal instrumentation and fusions: incidence and risk factor analysis of 410 cases. Spine. 2007;32(24):2731-8. 81. Cooper A, Alghamdi GA, Alghamdi MA, Altowaijri A, Richardson S. The relationship of lower limb muscle strength and knee joint hyperextension during the stance phase of gait in hemiparetic stroke patients. Physiotherapy Research International. 2012;17(3):150-6. 82. Wada Y, Otaka Y, Mukaino M, Tsujimoto Y, Shiroshita A, Kawate N, et al. The effect of ankle-foot orthosis on ankle kinematics in individuals after stroke: A systematic review and meta-analysis. PM R. 2021. 83. Negard N-O. Controlled FES-assisted gait training for hemiplegic stroke patients based on inertial sensors. 2009. 84. Nolan KJ, Yarossi M. Weight transfer analysis in adults with hemiplegia using ankle foot orthosis. Prosthet Orthot Int. 2011;35(1):45-53. 85. Hesse S, Werner C, Matthias K, Stephen K, Berteanu M. Non-velocity-related effects of a rigid double-stopped ankle-foot orthosis on gait and lower limb muscle activity of hemiparetic subjects with an equinovarus deformity. Stroke. 1999;30(9):1855-61. 86. Yamamoto S, Hagiwara A, Mizobe T, Yokoyama O, Yasui T. Gait improvement of hemiplegic patients using an ankle-foot orthosis with assistance of heel rocker function. Prosthet Orthot Int. 2009;33(4):307-23. 87. Perry J, Davids JR. Gait analysis: normal and pathological function. Journal of Pediatric Orthopaedics. 1992;12(6):815.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79396-
dc.description.abstract"背景:我們設計了一種新型足踝輔具 (Ankle Foot Orthosis, AFO),即理想訓練 AFO (IT-AFO),通過對偏癱下肢的運動反饋來改善中風相關偏癱患者的行走能力。因此,我們試圖比較有和沒有動態控制的 IT-AFO 與傳統前型 AFO 或無 AFO 之間的步態運動學參數。方法:使用 RehaWatch® 系統測量 7 名偏癱患者(平均 51.14 年)的步態參數。這些參數在四種情況下進行了比較:無 AFO、傳統前部 AFO、無動態控制的 IT-AFO 和具有動態控制的 IT-AFO,每種情況進行 3 次 10 米步行測試。結果:佩戴IT-AFO後,擺動期背屈角增大,動態控制後背屈角變大。這些數據可以確認落腳的改善;然而,在擺動階段,有和沒有 AFO 控制條件的參數之間的差異並不顯著。與傳統 AFO 或無 AFO 相比,有或沒有動態控制的 IT-AFO 在更大程度上增強了偏癱和未受影響下肢之間的負荷響應。與使用傳統 AFO 相比,使用 IT-AFO 和不使用動態控制時,偏癱下肢站立階段的持續時間也更長,從而改善了不對稱性。與其他條件相比,IT-AFO 的用戶舒適度和滿意度更高。結論:具有動態控制的 IT-AFO 改善了步態模式和重心轉移到偏癱下肢,減少了步態不對稱。有無動態控制IT-AFO的差異無統計學意義,受樣本量限制。然而,這項研究顯示了 IT-AFO 在步態訓練中應用正運動反饋的潛力"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:59:36Z (GMT). No. of bitstreams: 1
U0001-1002202205001500.pdf: 7737210 bytes, checksum: 7b05fc61ed1f72da215d79cd7d462e87 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents"口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 引言 1 第一節 研究動機 1 第二節 步態週期 1 第三節 足踝輔具(AFO) 4 第二章 動態足踝輔具設計 6 第一節 動態套件足踝代償阻力文獻參考 6 第二節 針對步態控制設計動態套件 10 第三節 針對步態訓練設計動態套件機制 13 第四節 IT-AFO實作與應用機轉 16 第五節 IT-AFO製作 20 第三章 臨床試驗 24 第一節 實驗設計 24 第二節 實驗成果 26 第四章 討論 33 第一節 動態套件應用於步態訓練的原理 33 第二節 實驗結果分析 34 第五章 總結 37 第六章 參考文獻 38 第七章 附錄 48 附錄一. 人體試驗同意函 49 附錄二. 手肌力評估量表(Manual muscle testing, MMT) 51 附錄三. 個案評估報告表(Case report form) 52 圖目錄 圖 1. 步態週期,各時期名稱以及作用肌群對照表。(2) 2 圖 2. 於不同Stance phase時期肌肉作用與力矩,紫色箭頭為力的向量,紫色肌肉為作用中的肌群。(4) 3 圖 3. 於不同Swing phase時期肌肉作用與力矩,紫色箭頭為力的向量,紫色肌肉為作用中的肌群。(4) 4 圖 4. Toshiki Kobayashi, 2015年於研究使用彈簧當阻力的AFO對腳踝關節變化的影響S1至S4代表透過彈簧提供的阻力由小至大(27) 6 圖 5. Toshiki Kobayashi, 2015年於研究使用彈簧S1至S4阻力的AFO對膝關節變化的影響(27) 7 圖 6. S. YAMAMOTO, 2005年於研究調節不同阻尼係數阻力的AFO對踝關節與膝關節變化的影響,1至4代表透過阻尼的阻力由強至弱。(25) 8 圖 7. Yokoyama, 2005年於研究表的gait solution 包含阻尼套件(1)、金屬板(2)和環部(3)。液壓缸 (4) 用作油阻尼器。調節螺釘 (5) 通過改變孔的直徑來控製油流量。彈簧 (6) 有助於背屈。附有桿帽(7)用於設置踝關節的初始角度。(28) 9 圖 8. S. YAMAMOTO, 2005年於研究發表的油壓阻尼AFO(gait solution) 9 圖 9. Yokoyama, 2005年於研究發表的gait solution與蹠曲限制AFO對踝、膝、髖關節變化的影響的圖片。A:Gait solution, B:posterior plantarflexion stop AFO.在步態週期中initial contact以及late stance時A組增加了蹠曲○1,並降低了膝蓋彎曲○2○3,同時在Middle stance時期沒有出現過度的膝蓋伸直(hyperextension)○4, 在swing phase亦沒有過度的蹠曲○5,同時髖關節彎曲的最大角度在A組增加而B組減少了○6。(28) 10 圖 10. 設計代償型AFO需要考量到的相關參數,藍字為機構,橘字為個時期主要影響腳踝的力,白字為腳踝矢狀面角度的變化以及原因。 12 圖 11. IT-AFO外型與綁帶控制力方向,A為綁帶固定於IT-AFO小腿處的位置,B為綁帶固定於IT-AFO腳底處的位置,O為IT-AFO關節處,FOA與FBO將合成合力FBA控制腳踝,對側亦然。 13 圖 12. IT-AFO Dynamic device的設計相關參數與機轉,橘框內為Dynamic device的主要集購與作用阻力方向(綠色箭頭),橘字為個時期主要影響腳踝的力,白字為腳踝矢狀面角度的變化以及原因,藍字為步態過程中IT-AFO的作用機制。 15 圖 13. 正常行走足底受力的曲線與體重之相關性,紅色箭頭為地面反作用力方向。(3) 16 圖 14. 腳部質心位置以及腳部控制力矩計算,左表為個身體部位之長度與重量對應身高與體重的比例。(3) 17 圖 15. 腳部質心位置以及腳部控制力矩計算,左表為個身體部位之長度與重量對應身高與體重的比例。(3) 18 圖 16. IT-AFO示意圖,(A)結構和動態套件,(B)在擺動期提供蹠屈阻力,(C)在站立期當重心充分轉移到患側時機構恢復,(D)在站立期當重心轉移到患側不足時,動態套件未恢復。(圖片下方的顏色標記,對應不同步態時期,腳踝角度與機構的相對關係。(1) 19 圖 17. 腳部骨骼名稱與相對位置,以及動作軸線(紅線處)(3) 20 圖 18. 腳部骨性標記與IT-AFO結構對應位置。 21 圖 19. 掃描完成後OBJ腳膜 22 圖 20. 本研究所開發3D輔具客製化生成軟體介面。 22 圖 21. MMT與MAS分數轉換圖表 27 圖 22. Rehawatch定義的腳踝最大(maximum angle)與最小角度(minimum angle) 27 圖 23. Rehawatch數據分析結果(A) Affect minimum angle, (B) Affect Maximum angle, (C)Affect loading response, and (D)Loading score. 29 圖 24. Rehawatch測得10公尺平均行走速度. 30 圖 25. Rehawatch測得患側A. 站立期比例與B. 站立期兩腳相差值 31 圖 26. 舒適度與輔助性能問卷分數統計 32 表目錄 表 1. Deanna J. Fish, 2001年於文獻中提出的中腦血管意外相關步態特徵,與輔具使用考量。(5) 5 表 2. Toshiki Kobayashi, 2015年於研究時採用Gao於2011年發表的AFO彈簧S1至S4於不同蹠曲(PF)角度時所產生的力矩平均數值(27) 7 表 3. Ultimaker 3D列印機列印集盛4611 Nylon 尼龍線材所設定之參數。 23 表 4. 受試者基本資料 26 "
dc.language.isozh-TW
dc.title針對步態訓練的三維列印動態足踝輔具- 設計與臨床試驗zh_TW
dc.titleDynamic 3D printing AFO for gait training- Design clinical trialen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.coadvisor陳適卿(Shih-Ching Chen)
dc.contributor.oralexamcommittee陳右穎(Te-Sheng Hsiao),康峻宏(Jia-Yush Yen),施博仁
dc.subject.keyword足踝輔具,偏癱,中風,步態訓練,三維列印,zh_TW
dc.subject.keywordAnkle foot orthosis,Hemiplegia,Stroke,Gait training,3D printing,en
dc.relation.page57
dc.identifier.doi10.6342/NTU202200503
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-02-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1002202205001500.pdf7.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved