請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79378完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟(Jaw-Lin Wang) | |
| dc.contributor.author | Hsiao-Hsin Tai | en |
| dc.contributor.author | 戴小芯 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:59:14Z | - |
| dc.date.available | 2021-08-17 | |
| dc.date.available | 2022-11-23T08:59:14Z | - |
| dc.date.copyright | 2021-08-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-10 | |
| dc.identifier.citation | Abbott, L. C., Nigussie, F. (2020). Adult neurogenesis in the mammalian dentate gyrus. Anatomia, histologia, embryologia, 49(1), 3-16. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ahe.12496?download=true Akopian, A. N., Chen, C.-C., Ding, Y., Cesare, P., Wood, J. N. (2000). A new member of the acid-sensing ion channel family. Neuroreport, 11(10), 2217-2222. Alcaino, C., Farrugia, G., Beyder, A. (2017). Mechanosensitive Piezo channels in the gastrointestinal tract. Current topics in membranes, 79, 219-244. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606247/pdf/nihms874127.pdf Armstrong, M. J., Okun, M. S. (2020). Diagnosis and treatment of Parkinson disease: a review. Jama, 323(6), 548-560. Arnold, S. J., Huang, G.-J., Cheung, A. F., Era, T., Nishikawa, S.-I., Bikoff, E. K., Molnár, Z., Robertson, E. J., Groszer, M. (2008). The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes development, 22(18), 2479-2484. Ayanlaja, A. A., Xiong, Y., Gao, Y., Ji, G., Tang, C., Abdikani Abdullah, Z., Gao, D. (2017). Distinct features of doublecortin as a marker of neuronal migration and its implications in cancer cell mobility. Frontiers in molecular neuroscience, 10, 199. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5487455/pdf/fnmol-10-00199.pdf Babaev, O., Chatain, C. P., Krueger-Burg, D. (2018). Inhibition in the amygdala anxiety circuitry. Experimental molecular medicine, 50(4), 1-16. Beisteiner, R., Matt, E., Fan, C., Baldysiak, H., Schönfeld, M., Philippi Novak, T., Amini, A., Aslan, T., Reinecke, R., Lehrner, J. (2020). Transcranial Pulse Stimulation with Ultrasound in Alzheimer's Disease—A New Navigated Focal Brain Therapy. Advanced Science, 7(3), 1902583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001626/pdf/ADVS-7-1902583.pdf Bidwell, J., Khuwatsamrit, T., Askew, B., Ehrenberg, J. A., Helmers, S. (2015). Seizure reporting technologies for epilepsy treatment: A review of clinical information needs and supporting technologies. Seizure, 32, 109-117. Bond, A. E., Shah, B. B., Huss, D. S., Dallapiazza, R. F., Warren, A., Harrison, M. B., Sperling, S. A., Wang, X.-Q., Gwinn, R., Witt, J. (2017). Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: a randomized clinical trial. JAMA neurology, 74(12), 1412-1418. https://jamanetwork.com/journals/jamaneurology/articlepdf/2659621/jamaneurology_bond_2017_oi_170079.pdf Bowary, P., Greenberg, B. D. (2018). Noninvasive focused ultrasound for neuromodulation: a review. Psychiatric Clinics, 41(3), 505-514. Chen, C. C., Wong, C. W. (2013). Neurosensory mechanotransduction through acid‐sensing ion channels. Journal of cellular and molecular medicine, 17(3), 337-349. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823015/pdf/jcmm0017-0337.pdf Cheng, Y.-R., Jiang, B.-Y., Chen, C.-C. (2018). Acid-sensing ion channels: dual function proteins for chemo-sensing and mechano-sensing. Journal of biomedical science, 25(1), 1-14. Chong, J. J., Forte, E., Harvey, R. P. (2014). Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells. Stem cell research, 13(3), 592-614. Chu, Y.-C., Lim, J., Lai, C.-H., Tseng, M.-C., Chu, Y.-S., Wang, J.-L. (2021). Elevation of Intra-Cellular Calcium in Nucleus Pulposus Cells with Micro-Pipette-Guided Ultrasound. Ultrasound in medicine biology, 47(7), 1775-1784. Coryell, M. W., Ziemann, A. E., Westmoreland, P. J., Haenfler, J. M., Kurjakovic, Z., Zha, X.-m., Price, M., Schnizler, M. K., Wemmie, J. A. (2007). Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit. Biological psychiatry, 62(10), 1140-1148. Cummings, J., Feldman, H. H., Scheltens, P. (2019). The “rights” of precision drug development for Alzheimer’s disease. Alzheimer's research therapy, 11(1), 1-14. di Biase, L., Falato, E., Di Lazzaro, V. (2019). Transcranial focused ultrasound (tFUS) and transcranial unfocused ultrasound (tUS) neuromodulation: from theoretical principles to stimulation practices. Frontiers in neurology, 10, 549. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579808/pdf/fneur-10-00549.pdf Diffley, J. M., Wu, M., Sohn, M., Song, W., Hammad, S. M., Lyons, T. J. (2009). Apoptosis induction by oxidized glycated LDL in human retinal capillary pericytes is independent of activation of MAPK signaling pathways. Molecular vision, 15, 135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628314/pdf/mv-v15-135.pdf Donier, E., Rugiero, F., Jacob, C., Wood, J. N. (2008). Regulation of ASIC activity by ASIC4–new insights into ASIC channel function revealed by a yeast two‐hybrid assay. European Journal of Neuroscience, 28(1), 74-86. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1460-9568.2008.06282.x?download=true Duncton, M. A. (2015). Small molecule agonists and antagonists of TRPV4. In TRP Channels as Therapeutic Targets (pp. 205-219). Elsevier. Eguchi, K., Shindo, T., Ito, K., Ogata, T., Kurosawa, R., Kagaya, Y., Monma, Y., Ichijo, S., Kasukabe, S., Miyata, S. (2018). Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia-Crucial roles of endothelial nitric oxide synthase. Brain stimulation, 11(5), 959-973. El Arfani, A., Parthoens, J., Demuyser, T., Servaes, S., De Coninck, M., De Deyn, P. P., Van Dam, D., Wyckhuys, T., Baeken, C., Smolders, I., Staelens, S. (2017). Accelerated high-frequency repetitive transcranial magnetic stimulation enhances motor activity in rats. Neuroscience, 347, 103-110. https://doi.org/10.1016/j.neuroscience.2017.01.045 Elias, W. J., Lipsman, N., Ondo, W. G., Ghanouni, P., Kim, Y. G., Lee, W., Schwartz, M., Hynynen, K., Lozano, A. M., Shah, B. B. (2016). A randomized trial of focused ultrasound thalamotomy for essential tremor. New England Journal of Medicine, 375(8), 730-739. https://www.nejm.org/doi/pdf/10.1056/NEJMoa1600159?articleTools=true Fini, M., Tyler, W. J. (2017). Transcranial focused ultrasound: a new tool for non-invasive neuromodulation. International Review of Psychiatry, 29(2), 168-177. https://www.tandfonline.com/doi/pdf/10.1080/09540261.2017.1302924?needAccess=true Fiore, R., Bayer, V., Pelech, S., Posada, J., Cooper, J., Baraban, J. (1993). p42 mitogen-activated protein kinase in brain: prominent localization in neuronal cell bodies and dendrites. Neuroscience, 55(2), 463-472. Fomenko, A., Neudorfer, C., Dallapiazza, R. F., Kalia, S. K., Lozano, A. M. (2018). Low-intensity ultrasound neuromodulation: An overview of mechanisms and emerging human applications. Brain stimulation, 11(6), 1209-1217. Friedrich, M. J. (2017). Depression is the leading cause of disability around the world. Jama, 317(15), 1517-1517. Gerstenmayer, M., Fellah, B., Magnin, R., Selingue, E., Larrat, B. (2018). Acoustic transmission factor through the rat skull as a function of body mass, frequency and position. Ultrasound in medicine biology, 44(11), 2336-2344. Ghosh, H. S. (2019). Adult neurogenesis and the promise of adult neural stem cells. Journal of experimental neuroscience, 13, 1179069519856876. https://journals.sagepub.com/doi/pdf/10.1177/1179069519856876 Gibson, B. C., Sanguinetti, J. L., Badran, B. W., Yu, A. B., Klein, E. P., Abbott, C. C., Hansberger, J. T., Clark, V. P. (2018). Increased excitability induced in the primary motor cortex by transcranial ultrasound stimulation. Frontiers in neurology, 9, 1007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280333/pdf/fneur-09-01007.pdf Golyala, A., Kwan, P. (2017). Drug development for refractory epilepsy: the past 25 years and beyond. Seizure, 44, 147-156. Guo, H., Baker, G., Hartle, K., Fujiwara, E., Wang, J., Zhang, Y., Xing, J., Lyu, H., Li, X.-M., Chen, J. (2021). Exploratory study on neurochemical effects of low-intensity pulsed ultrasound in brains of mice. Medical Biological Engineering Computing, 59(5), 1099-1110. Hetman, M., Kanning, K., Cavanaugh, J. E., Xia, Z. (1999). Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. Journal of Biological Chemistry, 274(32), 22569-22580. Hodge, R. D., Nelson, B. R., Kahoud, R. J., Yang, R., Mussar, K. E., Reiner, S. L., Hevner, R. F. (2012). Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. Journal of Neuroscience, 32(18), 6275-6287. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366485/pdf/zns6275.pdf Hsu, P.-H., Wei, K.-C., Huang, C.-Y., Wen, C.-J., Yen, T.-C., Liu, C.-L., Lin, Y.-T., Chen, J.-C., Shen, C.-R., Liu, H.-L. (2013). Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound. PloS one, 8(2), e57682. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584045/pdf/pone.0057682.pdf Huang, X., Lin, Z., Wang, K., Liu, X., Zhou, W., Meng, L., Huang, J., Yuan, K., Niu, L., Zheng, H. (2019). Transcranial low-intensity pulsed ultrasound modulates structural and functional synaptic plasticity in rat hippocampus. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 66(5), 930-938. https://ieeexplore.ieee.org/document/8663459/ Huang, Y., Jiang, N., Li, J., Ji, Y.-H., Xiong, Z.-G., Zha, X.-m. (2015). Two aspects of ASIC function: Synaptic plasticity and neuronal injury. Neuropharmacology, 94, 42-48. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458418/pdf/nihms-655009.pdf Ichijo, S., Shindo, T., Eguchi, K., Monma, Y., Nakata, T., Morisue, Y., Kanai, H., Osumi, N., Yasuda, S., Shimokawa, H. (2021). Low-intensity pulsed ultrasound therapy promotes recovery from stroke by enhancing angio-neurogenesis in mice in vivo. Scientific reports, 11(1), 1-11. Igaz, L. M., Winograd, M., Cammarota, M., Izquierdo, L. A., Alonso, M., Izquierdo, I., Medina, J. H. (2006). Early activation of extracellular signal-regulated kinase signaling pathway in the hippocampus is required for short-term memory formation of a fear-motivated learning. Cellular and molecular neurobiology, 26(4-6), 987-1000. J.A., D., HealthJade Team. (2021). Neurogenesis. https://healthjade.net/neurogenesis/ Jin, K., Wang, X., Xie, L., Mao, X. O., Greenberg, D. A. (2010). Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proceedings of the National Academy of Sciences, 107(17), 7993-7998. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867852/pdf/pnas.201000154.pdf Jobst, B. C., Cascino, G. D. (2015). Resective epilepsy surgery for drug-resistant focal epilepsy: a review. Jama, 313(3), 285-293. Kim, E. K., Choi, E.-J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1802(4), 396-405. King, R. L., Brown, J. R., Newsome, W. T., Pauly, K. B. (2013). Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound in medicine biology, 39(2), 312-331. Koizumi, H., Higginbotham, H., Poon, T., Tanaka, T., Brinkman, B. C., Gleeson, J. G. (2006). Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nature neuroscience, 9(6), 779-786. https://escholarship.org/content/qt5fb820mv/qt5fb820mv.pdf?t=lnq2c9 Kong, T., Liu, M., Ji, B., Bai, B., Cheng, B., Wang, C. (2019). Role of the extracellular signal-regulated kinase 1/2 signaling pathway in ischemia-reperfusion injury. Frontiers in physiology, 10, 1038. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702336/pdf/fphys-10-01038.pdf Krack, P., Martinez‐Fernandez, R., Del Alamo, M., Obeso, J. A. (2017). Current applications and limitations of surgical treatments for movement disorders. Movement Disorders, 32(1), 36-52. Krishna, V., Sammartino, F., Rezai, A. (2018). A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology Advances in Diagnosis and Treatment. Jama Neurology, 75(2), 246-254. https://doi.org/10.1001/jamaneurol.2017.3129 Kubanek, J. (2018). Neuromodulation with transcranial focused ultrasound. Neurosurgical focus, 44(2), E14. https://thejns.org/downloadpdf/journals/neurosurg-focus/44/2/article-pE14.pdf Landhuis, E. (2017). Ultrasound for the brain. Nature, 551(7679), 257-259. Legon, W., Sato, T. F., Opitz, A., Mueller, J., Barbour, A., Williams, A., Tyler, W. J. (2014). Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nature neuroscience, 17(2), 322-329. https://www.nature.com/articles/nn.3620.pdf Leinenga, G., Langton, C., Nisbet, R., Götz, J. (2016). Ultrasound treatment of neurological diseases—current and emerging applications. Nature Reviews Neurology, 12(3), 161. Lim, J., Chu, Y.-C., Hao, C.-M., Liao, W.-H., Lin, S.-S., Hsu, S., Tai, H.-H., Chien, Y.-C., Lai, D.-M., Chen, W.-S. (2020). ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. bioRxiv. Lin, S.-H., Sun, W.-H., Chen, C.-C. (2015). Genetic exploration of the role of acid-sensing ion channels. Neuropharmacology, 94, 99-118. Lin, S. H., Chien, Y. C., Chiang, W. W., Liu, Y. Z., Lien, C. C., Chen, C. C. (2015). Genetic mapping of ASIC 4 and contrasting phenotype to ASIC 1a in modulating innate fear and anxiety. European Journal of Neuroscience, 41(12), 1553-1568. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ejn.12905?download=true Mahajan, U. V., Ravikumar, V. K., Kumar, K. K., Ku, S., Ojukwu, D. I., Kilbane, C., Ghanouni, P., Rosenow, J. M., Stein, S. C., Halpern, C. H. (2021). Bilateral deep brain stimulation is the procedure to beat for advanced Parkinson disease: a meta-analytic, cost-effective threshold analysis for focused ultrasound. Neurosurgery, 88(3), 487-496. Manuel, T. J., Kusunose, J., Zhan, X., Lv, X., Kang, E., Yang, A., Xiang, Z., Caskey, C. F. (2020). Ultrasound neuromodulation depends on pulse repetition frequency and can modulate inhibitory effects of TTX. Scientific reports, 10(1), 1-10. Mascagni, F., Muly, E. C., Rainnie, D. G., McDonald, A. J. (2009). Immunohistochemical characterization of parvalbumin-containing interneurons in the monkey basolateral amygdala. Neuroscience, 158(4), 1541-1550. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674383/pdf/nihms98948.pdf Mirich, J. M., Illig, K. R., Brunjes, P. C. (2004). Experience‐dependent activation of extracellular signal‐related kinase (ERK) in the olfactory bulb. Journal of comparative Neurology, 479(2), 234-241. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cne.20325?download=true Moroni, M., Servin-Vences, M. R., Fleischer, R., Sánchez-Carranza, O., Lewin, G. R. (2018). Voltage gating of mechanosensitive PIEZO channels. Nature communications, 9(1), 1-15. Nelson, T. R., Fowlkes, J. B., Abramowicz, J. S., Church, C. C. (2009). Ultrasound biosafety considerations for the practicing sonographer and sonologist. Noonan, M. A., Bulin, S. E., Fuller, D. C., Eisch, A. J. (2010). Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. Journal of Neuroscience, 30(1), 304-315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844797/pdf/zns304.pdf Pereira, L. S., Müller, V. T., da Mota Gomes, M., Rotenberg, A., Fregni, F. (2016). Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: a systematic review. Epilepsy behavior, 57, 167-176. Price, M. P., Gong, H., Parsons, M. G., Kundert, J. R., Reznikov, L. R., Bernardinelli, L., Chaloner, K., Buchanan, G. F., Wemmie, J. A., Richerson, G. B. (2014). Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. Genes, Brain and Behavior, 13(2), 179-194. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gbb.12108?download=true Qiu, Z., Guo, J., Kala, S., Zhu, J., Xian, Q., Qiu, W., Li, G., Zhu, T., Meng, L., Zhang, R. (2019). The mechanosensitive ion channel Piezo1 significantly mediates in vitro ultrasonic stimulation of neurons. IScience, 21, 448-457. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849147/pdf/main.pdf Rezayat, E., Toostani, I. G. (2016). A review on brain stimulation using low intensity focused ultrasound. Basic and clinical neuroscience, 7(3), 187. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981830/pdf/BCN-7-187.pdf Roberts, R. E. (2012). The extracellular signal-regulated kinase (ERK) pathway: a potential therapeutic target in hypertension. Journal of experimental pharmacology, 4, 77. https://www.dovepress.com/getfile.php?fileID=13512 Sahay, A., Hen, R. (2007). Adult hippocampal neurogenesis in depression. Nature neuroscience, 10(9), 1110-1115. https://www.nature.com/articles/nn1969.pdf Schreglmann, S. R., Krauss, J. K., Chang, J. W., Bhatia, K. P., Kägi, G. (2018). Functional lesional neurosurgery for tremor: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery Psychiatry, 89(7), 717-726. Schwartz, V., Friedrich, K., Polleichtner, G., Gründer, S. (2015). Acid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression. Scientific reports, 5(1), 1-14. Sun, J., Nan, G. (2017). The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target. International Journal of Molecular Medicine, 39(6), 1338-1346. https://www.spandidos-publications.com/10.3892/ijmm.2017.2962/download Thomas, R. M., Peterson, D. A. (2007). Even neural stem cells get the blues: evidence for a molecular link between modulation of adult neurogenesis and depression. Gene Expression The Journal of Liver Research, 14(3), 183-193. Tufail, Y., Matyushov, A., Baldwin, N., Tauchmann, M. L., Georges, J., Yoshihiro, A., Tillery, S. I. H., Tyler, W. J. (2010). Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron, 66(5), 681-694. Tyler, W. J., Lani, S. W., Hwang, G. M. (2018). Ultrasonic modulation of neural circuit activity. Current opinion in neurobiology, 50, 222-231. van Dyck, C. H. (2018). Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biological psychiatry, 83(4), 311-319. Varidaki, A., Mohammad, H., Coffey, E. T. (2016). Molecular mechanisms of depression. In Systems Neuroscience in Depression (pp. 143-178). Elsevier. Wahab, R. A., Choi, M., Liu, Y., Krauthamer, V., Zderic, V., Myers, M. R. (2012). Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model. Med Phys, 39(7), 4274-4283. https://doi.org/10.1118/1.4729712 Wang, C., Liu, F., Liu, Y.-Y., Zhao, C.-H., You, Y., Wang, L., Zhang, J., Wei, B., Ma, T., Zhang, Q. (2011). Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell research, 21(11), 1534-1550. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365638/pdf/cr201183a.pdf Wang, P., Zhang, J., Yu, J., Smith, C., Feng, W. (2019). Brain modulatory effects by low-intensity transcranial ultrasound stimulation (TUS): a systematic review on both animal and human studies. Frontiers in neuroscience, 13, 696. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667677/pdf/fnins-13-00696.pdf Wemmie, J. A., Taugher, R. J., Kreple, C. J. (2013). Acid-sensing ion channels in pain and disease. Nature Reviews Neuroscience, 14(7), 461-471. https://www.nature.com/articles/nrn3529.pdf Ye, J., Tang, S., Meng, L., Li, X., Wen, X., Chen, S., Niu, L., Li, X., Qiu, W., Hu, H. (2018). Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL. Nano letters, 18(7), 4148-4155. Yu, T., Wang, X., Li, Y., Zhang, G., Worrell, G., Chauvel, P., Ni, D., Qiao, L., Liu, C., Li, L. (2018). High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain, 141(9), 2631-2643. Yue, P., Gao, L., Wang, X., Ding, X., Teng, J. (2017). Ultrasound-triggered effects of the microbubbles coupled to GDNF- and Nurr1-loaded PEGylated liposomes in a rat model of Parkinson's disease. J Cell Biochem. https://doi.org/10.1002/jcb.26608 Yulug, B., Hanoglu, L., Kilic, E. (2017). The neuroprotective effect of focused ultrasound: New perspectives on an old tool. Brain research bulletin, 131, 199-206. Zha, X.-m. (2013). Acid-sensing ion channels: trafficking and synaptic function. Molecular brain, 6(1), 1-13. Zhang, J., Zhou, H., Yang, J., Jia, J., Niu, L., Sun, Z., Shi, D., Meng, L., Qiu, W., Wang, X. (2021). Low‐intensity pulsed ultrasound ameliorates depression‐like behaviors in a rat model of chronic unpredictable stress. CNS Neuroscience Therapeutics, 27(2), 233-243. Zhang, Y., Zeng, F., Han, X., Weng, J., Gao, Y. (2020). Lineage tracing: technology tool for exploring the development, regeneration, and disease of the digestive system. Stem Cell Research Therapy, 11(1), 1-16. Zhao, J., Yuan, X., Frödin, M., Grummt, I. (2003). ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Molecular cell, 11(2), 405-413. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79378 | - |
| dc.description.abstract | 隨著社會中老年人比例的增加,因退化出現的腦內疾病治療需求日益攀升,而各種精神疾病的治療需求也漸漸受到重視。目前臨床上針對不同腦內疾病的治療雖有相對應的藥物進行控制,但效果並不顯著。近年來,低強度超音波刺激發展迅速,其具有更高的空間分辨率和更大的穿透深度等優點,已成為神經調節的新型無創治療方式。超音波引起的神經刺激與調節能力受到越來越多的關注,但對於影響神經活動的機制與引起反應的參數和刺激方法所知甚少。目前幾乎還沒有研究報導關於腦細胞對低能量超音波刺激的基礎生物反應,導致對於腦部超音波治療該如何定義有效且安全的劑量完全沒有依據。故本研究針對於腦神經細胞在低能量超音波(LIPUS)刺激的劑量上進行基礎研究,由微觀的細胞實驗到巨觀的動物實驗,去了解超音波刺激對腦部的影響。 我們在研究中證明了神經元對於超音波刺激的暴露時間與超音波所設定的佔空比參數相當敏銳,而在極低能量刺激下(3mW/cm2)就能造成神經元中p-ERK的上調,而此模式可應用在活體刺激小鼠顱內CNS神經元,有效反應強度遠低於典型的治療用超音波 (>30 mW/cm2)。本研究展示了經顱超音波調控小鼠海馬迴組織中神經元的路徑同時包含能量直接刺激與經由聽覺的間接訊號傳遞,而神經元對超音波的反應機制之一是透過ASIC1a通道。超音波刺激所造成的ASIC1a通道的活化可讓外鈣進入細胞,這至少部分解釋了微能量超音波調節神經的分子基礎。此外,我們還呈現了在微能量超音波刺激下促使神經新生的證據。穿顱超音波能夠有效使Tbr2細胞增加,表明潛在的治療機轉。 藉由本研究對於有效刺激能量的下探,也讓我們對超音波刺激運用在腦疾病的治療上抱持謹慎的態度。能量過低,細胞或組織都不會因超音波刺激而有任何變化,累積能量過高則可能對腦細胞或組織造成損害。總體而言,我們提供了微能量超音波能夠對神經元產生影響的極限條件參數,同時表明了 LIPUS 刺激存在著治療神經疾病的潛能。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:59:14Z (GMT). No. of bitstreams: 1 U0001-0908202116175000.pdf: 5811054 bytes, checksum: b4053daa687dce8ae7f7bad18500a723 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 I 致謝 II 中文摘要 IV Abstract V 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 腦內疾病的治療現況 1 1.2 超音波在神經疾病治療上的研究 2 1.3 研究目的與重要性 3 1.4 超音波參數定義 3 1.5 神經細胞與新生週期 5 1.6 研究中所檢測的蛋白與蛋白通道 7 1.6.1 細胞外訊號調節蛋白酶 (Extracellular signal-related kinase) 7 1.6.2 雙皮脂蛋白(Doublecortin, DCX) 8 1.6.3 酸敏感通道蛋白 (Acid-sensing ion channels) 9 第二章 材料與方法 11 2.1研究方法介紹 11 2.2 初代培養小鼠腦神經細胞實驗 12 2.2.1 細胞培養 12 2.2.2 超音波刺激系統 13 2.2.3 刺激系統接收端參數校正 14 2.2.4 生物檢測法 -免疫螢光染色法(Immunofluorescence assay) 17 2.3 幼鼠海馬迴組織實驗 19 2.3.1 蛋白質樣本製備 20 2.3.2 超音波刺激系統 20 2.3.3 刺激系統接收端參數校正 20 2.3.4 生物檢測法 -西方墨點法(Western blot) 21 2.4 成鼠活體內刺激實驗 24 2.4.1 成鼠腦組織切片樣本製備 25 2.4.2 超音波刺激系統 25 2.4.3 刺激系統接收端參數校正 27 2.4.4 生物檢測法1 -免疫組織化學染色法(Immunohistochemistry) 30 2.4.5 生物檢測法2 -譜系追蹤(Lineage tracing) 31 2.4.6 生物檢測法3 -免疫螢光染色法(Immunofluorescence assay) 33 第三章 實驗結果 35 3.1 初代培養小鼠腦神經細胞實驗結果 35 3.1.1 不同刺激時間之比較 35 3.1.2 神經細胞p-ERK去磷酸化速率探討 36 3.1.3 輸入電壓敏感度測試 37 3.1.4 佔空比敏感度測試 38 3.1.5 不同佔空比組成之測試 39 3.1.6 抑制細胞外鈣離子之測試 40 3.2 幼鼠海馬迴組織實驗結果 41 3.2.1 不同刺激時間之比較 41 3.2.2 輸入電壓敏感度測試 42 3.2.3 佔空比敏感度測試 42 3.2.4 抑制細胞外鈣離子之測試 43 3.2.5 抑制細胞膜上機械受器之測試 44 3.2.6 抑制酸敏感通道1a (ASIC1a)之測試 45 3.3 成鼠活體內刺激實驗結果 46 3.3.1 短期效應實驗 46 3.3.2 長期效應實驗(一) Asic4 CreERT2 Lineage tracing 52 3.3.3 長期效應實驗(二) Gli1 CreERT Lineage tracing 55 3.3.4 長期效應實驗(三) Doublecortin/SOX2/Tbr2/NeuroD1 螢光染色 56 第四章 討論 60 第五章 結論與未來展望 65 5.1結論 65 5.2未來展望 65 第六章 參考文獻 66 " | |
| dc.language.iso | zh-TW | |
| dc.title | 腦神經細胞對微能量超音波刺激之反應 | zh_TW |
| dc.title | The response of neuron to the low intensity ultrasound stimulation | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳志成(Hsin-Tsai Liu),林頌然(Chih-Yang Tseng) | |
| dc.subject.keyword | 微能量超音波,腦神經細胞,海馬迴,p-ERK,ASIC1a,DCX,Tbr2, | zh_TW |
| dc.subject.keyword | LIPUS,Neurons,Hippocampus,p-ERK,ASIC1a,DCX,Tbr2, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202102214 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202116175000.pdf | 5.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
