請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79373完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃念祖(Nien-Tsu Huang) | |
| dc.contributor.author | Shang-Jyun Lin | en |
| dc.contributor.author | 林上竣 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:59:08Z | - |
| dc.date.available | 2022-11-01 | |
| dc.date.available | 2022-11-23T08:59:08Z | - |
| dc.date.copyright | 2021-11-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-26 | |
| dc.identifier.citation | 1. Huerta, L.E. and T.W. Rice, Pathologic Difference between Sepsis and Bloodstream Infections. J Appl Lab Med, 2019. 3(4): p. 654-663. 2. Kumar, A., et al., Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med, 2006. 34(6): p. 1589-96. 3. Ferrer, R., et al., Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med, 2014. 42(8): p. 1749-55. 4. Rudd, K.E., et al., Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet, 2020. 395(10219): p. 200-211. 5. Centers for Disease Control and Prevention. Sepsis. 2020 [cited 2021 August, 11]; Available from: https://www.cdc.gov/sepsis/clinicaltools/index.html. 6. 中華民國統計資訊網. 主要死亡原因. 2021 [cited 2021 August, 11]; Available from: https://statdb.dgbas.gov.tw/pxweb/Dialog/viewplus.asp?ma=HS0101A2A ti=%A5D%ADn%A6%BA%A4%60%AD%EC%A6%5D%20-%A6~ path=../PXfile/Health/ lang=9 strList=L. 7. Leekha, S., C.L. Terrell, and R.S. Edson. General principles of antimicrobial therapy. in Mayo Clinic Proceedings. 2011. Elsevier. 8. Citron, D.M., et al., Evaluation of the E test for susceptibility testing of anaerobic bacteria. Journal of Clinical Microbiology, 1991. 29(10): p. 2197-2203. 9. Garcia-Garrote, F., E. Cercenado, and E. Bouza, Evaluation of a new system, VITEK 2, for identification and antimicrobial susceptibility testing of enterococci. Journal of clinical microbiology, 2000. 38(6): p. 2108-2111. 10. Ling, T.K., et al., Evaluation of VITEK 2 rapid identification and susceptibility testing system against gram-negative clinical isolates. Journal of clinical microbiology, 2001. 39(8): p. 2964-2966. 11. Ligozzi, M., et al., Evaluation of the VITEK 2 system for identification and antimicrobial susceptibility testing of medically relevant gram-positive cocci. Journal of clinical microbiology, 2002. 40(5): p. 1681-1686. 12. Stefaniuk, E., et al., Evaluation of the BD Phoenix automated identification and susceptibility testing system in clinical microbiology laboratory practice. European Journal of Clinical Microbiology and Infectious Diseases, 2003. 22(8): p. 479-485. 13. Carroll, K.C., et al., Evaluation of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of Enterobacteriaceae. Journal of clinical microbiology, 2006. 44(10): p. 3506-3509. 14. Carroll, K.C., et al., Evaluation of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of staphylococci and enterococci. Journal of clinical microbiology, 2006. 44(6): p. 2072-2077. 15. McGregor, A., et al., The MicroScan WalkAway diagnostic microbiology system—an evaluation. Pathology, 1995. 27(2): p. 172-176. 16. van Belkum, A., et al., Innovative and rapid antimicrobial susceptibility testing systems. Nature Reviews Microbiology, 2020. 18(5): p. 299-311. 17. Tréguier, J., et al., Chitosan films for microfluidic studies of single bacteria and perspectives for antibiotic susceptibility testing. Mbio, 2019. 10(4): p. e01375-19. 18. Sun, P., et al., High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Biosens Bioelectron, 2011. 26(5): p. 1993-9. 19. Tenover, F.C., Antibiotic Susceptibility Testing, in Encyclopedia of Microbiology (Third Edition), M. Schaechter, Editor. 2009, Academic Press: Oxford. p. 67-77. 20. Spencer, D.C., et al., A fast impedance-based antimicrobial susceptibility test. Nat Commun, 2020. 11(1): p. 5328. 21. Idelevich, E. and K. Becker, How to accelerate antimicrobial susceptibility testing. Clinical Microbiology and Infection, 2019. 25(11): p. 1347-1355. 22. Garcia-Ochoa, F. and E. Gomez, Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv, 2009. 27(2): p. 153-76. 23. Tang, Y., et al., Fast screening of bacterial suspension culture conditions on chips. Lab Chip, 2014. 14(6): p. 1162-7. 24. Chen, C.H., et al., Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels. Analytical chemistry, 2010. 82(3): p. 1012-1019. 25. Zhang, P., et al., Microalgae in Microwell Arrays Exhibit Differences with Those in Flasks: Evidence from Growth Rate, Cellular Carotenoid, and Oxygen Production. Front Plant Sci, 2017. 8: p. 2251. 26. Takagi, R., et al., A microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics. Analyst, 2013. 138(4): p. 1000-3. 27. Jalali, F., F. Ellett, and D. Irimia, Rapid antibiotic sensitivity testing in microwell arrays. Technology (Singap World Sci), 2017. 5(2): p. 107-114. 28. Yi, Q., et al., Direct antimicrobial susceptibility testing of bloodstream infection on SlipChip. Biosens Bioelectron, 2019. 135: p. 200-207. 29. Kalashnikov, M., et al., Rapid phenotypic stress-based microfluidic antibiotic susceptibility testing of Gram-negative clinical isolates. Sci Rep, 2017. 7(1): p. 8031. 30. Kadlec, M.W., et al., A Cell Phone-Based Microphotometric System for Rapid Antimicrobial Susceptibility Testing. J Lab Autom, 2014. 19(3): p. 258-66. 31. Matsumoto, Y., et al., A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa. PLoS One, 2016. 11(2): p. e0148797. 32. Baltekin, Ö., et al., Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proceedings of the National Academy of Sciences, 2017. 114(34): p. 9170-9175. 33. Li, H., et al., Adaptable microfluidic system for single-cell pathogen classification and antimicrobial susceptibility testing. Proceedings of the National Academy of Sciences, 2019. 116(21): p. 10270-10279. 34. Choi, J., et al., A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Science translational medicine, 2014. 6(267): p. 267ra174-267ra174. 35. Onishi, K., et al., Electrochemical microdevices for rapid and on-site determination of the minimum inhibitory concentration of antibiotics. Analyst, 2018. 143(2): p. 396-399. 36. Safavieh, M., et al., Rapid Real-Time Antimicrobial Susceptibility Testing with Electrical Sensing on Plastic Microchips with Printed Electrodes. ACS Appl Mater Interfaces, 2017. 9(14): p. 12832-12840. 37. Lee, K.S., et al., Electrical antimicrobial susceptibility testing based on aptamer-functionalized capacitance sensor array for clinical isolates. Sci Rep, 2020. 10(1): p. 13709. 38. Hannah, S., et al., Rapid antibiotic susceptibility testing using low-cost, commercially available screen-printed electrodes. Biosens Bioelectron, 2019. 145: p. 111696. 39. Yang, Y., K. Gupta, and K.L. Ekinci, All-electrical monitoring of bacterial antibiotic susceptibility in a microfluidic device. Proc Natl Acad Sci U S A, 2020. 117(20): p. 10639-10644. 40. Sánchez-Clemente, R., et al., Study of pH Changes in Media during Bacterial Growth of Several Environmental Strains. Proceedings, 2018. 2(20): p. 1297. 41. Jiang, Y., et al., A high-sensitivity potentiometric 65-nm CMOS ISFET sensor for rapid E. coli screening. IEEE transactions on biomedical circuits and systems, 2018. 12(2): p. 402-415. 42. Cira, N.J., et al., A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab Chip, 2012. 12(6): p. 1052-9. 43. Lee, W.B., et al., A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method. Biosens Bioelectron, 2017. 87: p. 669-678. 44. Rampersad, S.N., Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors, 2012. 12(9): p. 12347-12360. 45. Créach, V., et al., Direct estimate of active bacteria: CTC use and limitations. Journal of microbiological methods, 2003. 52(1): p. 19-28. 46. Azizi, M., et al., Nanoliter-Sized Microchamber/Microarray Microfluidic Platform for Antibiotic Susceptibility Testing. Anal Chem, 2018. 90(24): p. 14137-14144. 47. Azizi, M., et al., Gradient-Based Microfluidic Platform for One Single Rapid Antimicrobial Susceptibility Testing. ACS Sens, 2021. 6(4): p. 1560-1571. 48. Nguyen, A.V., et al., Diffusion-Convection Hybrid Microfluidic Platform for Rapid Antibiotic Susceptibility Testing. Anal Chem, 2021. 93(14): p. 5789-5796. 49. Azizi, M., et al., Biological small-molecule assays using gradient-based microfluidics. Biosens Bioelectron, 2021. 178: p. 113038. 50. Azizi, M., et al., Antimicrobial Susceptibility Testing in a Rapid Single Test via an Egg-like Multivolume Microchamber-Based Microfluidic Platform. ACS Appl Mater Interfaces, 2021. 13(17): p. 19581-19592. 51. Avesar, J., et al., Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays. Proc Natl Acad Sci U S A, 2017. 114(29): p. E5787-E5795. 52. Hsieh, K., et al. Rapid, accurate, and general single-cell antibiotic susceptibility test in digital bacteria picoarray. in The 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS. 2016. 53. Chen, F.E., et al., Toward Decentralizing Antibiotic Susceptibility Testing via Ready-to-Use Microwell Array and Resazurin-Aided Colorimetric Readout. Anal Chem, 2021. 93(3): p. 1260-1265. 54. Osaid, M., et al., A multiplexed nanoliter array-based microfluidic platform for quick, automatic antimicrobial susceptibility testing. Lab Chip, 2021. 21(11): p. 2223-2231. 55. Liu, C.Y., et al., Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci Rep, 2016. 6: p. 23375. 56. Cui, L., et al., Perspective on surface-enhanced Raman spectroscopic investigation of microbial world. Analytical chemistry, 2019. 91(24): p. 15345-15354. 57. Wang, K., et al., Detection and characterization of antibiotic-resistant bacteria using surface-enhanced Raman spectroscopy. Nanomaterials, 2018. 8(10): p. 762. 58. Chang, K.W., et al., Antibiotic Susceptibility Test with Surface-Enhanced Raman Scattering in a Microfluidic System. Anal Chem, 2019. 91(17): p. 10988-10995. 59. Huang, H.K., et al., Bacteria encapsulation and rapid antibiotic susceptibility test using a microfluidic microwell device integrating surface-enhanced Raman scattering. Lab Chip, 2020. 20(14): p. 2520-2528. 60. Liao, C.C., et al., A microfluidic microwell device operated by the automated microfluidic control system for surface-enhanced Raman scattering-based antimicrobial susceptibility testing. Biosens Bioelectron, 2021. 191: p. 113483. 61. Sun, H., et al., Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test. Lab Chip, 2019. 19(17): p. 2915-2924. 62. Kim, S.C., et al., Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing. Antibiotics (Basel), 2015. 4(4): p. 455-66. 63. Deng, J., et al., Adaptive Evolution of Escherichia coli to Ciprofloxacin in Controlled Stress Environments: Contrasting Patterns of Resistance in Spatially Varying versus Uniformly Mixed Concentration Conditions. Environ Sci Technol, 2019. 53(14): p. 7996-8005. 64. Kim, S., et al., On-chip phenotypic investigation of combinatory antibiotic effects by generating orthogonal concentration gradients. Lab Chip, 2019. 19(6): p. 959-973. 65. Kim, S., et al., Microfluidic-based observation of local bacterial density under antimicrobial concentration gradient for rapid antibiotic susceptibility testing. Biomicrofluidics, 2019. 13(1): p. 014108. 66. Butler, M.T., Q. Wang, and R.M. Harshey, Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci U S A, 2010. 107(8): p. 3776-81. 67. Kim, K.P., et al., In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device. Lab Chip, 2010. 10(23): p. 3296-9. 68. Wolfram, C.J., G.W. Rubloff, and X. Luo, Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis. Biomicrofluidics, 2016. 10(6): p. 061301. 69. Somaweera, H., A. Ibragimov, and D. Pappas, Generation of a chemical gradient across an array of 256 cell cultures in a single chip. Analyst, 2013. 138(19): p. 5566-71. 70. Somaweera, H., et al., On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation. Analyst, 2015. 140(15): p. 5029-38. 71. O'brien, J., et al., Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European journal of biochemistry, 2000. 267(17): p. 5421-5426. 72. Dwyer, D.J., et al., Antibiotics induce redox-related physiological alterations as part of their lethality. Proceedings of the National Academy of Sciences, 2014. 111(20): p. E2100-E2109. 73. Shenoy, N., et al., Drugs with anti-oxidant properties can interfere with cell viability measurements by assays that rely on the reducing property of viable cells. Lab Invest, 2017. 74. Raman, C.V. and K.S. Krishnan, A new type of secondary radiation. Nature, 1928. 121(3048): p. 501-502. 75. Morris, M.D., Modern Raman Spectroscopy: A Practical Approach. 2006, ACS Publications. 76. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters, 1974. 26(2): p. 163-166. 77. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry, 1977. 84(1): p. 1-20. 78. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217. 79. Pilot, R., et al., A review on surface-enhanced Raman scattering. Biosensors, 2019. 9(2): p. 57. 80. Zeiri, L., et al., Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Applied Spectroscopy, 2004. 58(1): p. 33-40. 81. Jarvis, R.M. and R. Goodacre, Discrimination of bacteria using surface-enhanced Raman spectroscopy. Analytical chemistry, 2004. 76(1): p. 40-47. 82. Kahraman, M., K. Keseroğlu, and M. Çulha, On sample preparation for surface-enhanced Raman scattering (SERS) of bacteria and the source of spectral features of the spectra. Applied spectroscopy, 2011. 65(5): p. 500-506. 83. Zhou, H., et al., SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Analytical chemistry, 2014. 86(3): p. 1525-1533. 84. Premasiri, W.R., et al., The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Analytical and bioanalytical chemistry, 2016. 408(17): p. 4631-4647. 85. Chiu, S.W.-Y., et al., Quantification of biomolecules responsible for biomarkers in the surface-enhanced Raman spectra of bacteria using liquid chromatography-mass spectrometry. Physical Chemistry Chemical Physics, 2018. 20(12): p. 8032-8041. 86. Weiss, R., et al., Surface-enhanced Raman spectroscopy of microorganisms: limitations and applicability on the single-cell level. Analyst, 2019. 144(3): p. 943-953. 87. Kubryk, P., R. Niessner, and N.P. Ivleva, The origin of the band at around 730 cm− 1 in the SERS spectra of bacteria: a stable isotope approach. Analyst, 2016. 141(10): p. 2874-2878. 88. Nishikawa, Y., et al., Silver island films for surface-enhanced infrared absorption spectroscopy: effect of island morphology on the absorption enhancement. Vibrational Spectroscopy, 1993. 6(1): p. 43-53. 89. Morháč, M. and V. Matoušek, Peak clipping algorithms for background estimation in spectroscopic data. Applied spectroscopy, 2008. 62(1): p. 91-106. 90. Abràmoff, M.D., P.J. Magalhães, and S.J. Ram, Image processing with ImageJ. Biophotonics international, 2004. 11(7): p. 36-42. 91. Collins, T.J., ImageJ for microscopy. Biotechniques, 2007. 43(S1): p. S25-S30. 92. Wąsik, S., et al., Laser interferometry analysis of ciprofloxacin and ampicillin diffusion from liposomal solutions to water phase. European Biophysics Journal, 2013. 42(7): p. 549-558. 93. Stebbing, A., Hormesis—the stimulation of growth by low levels of inhibitors. Science of the total environment, 1982. 22(3): p. 213-234. 94. Iavicoli, I., et al., Hormetic dose responses induced by antibiotics in bacteria: A phantom menace to be thoroughly evaluated to address the environmental risk and tackle the antibiotic resistance phenomenon. Science of The Total Environment, 2021: p. 149255. 95. Davies, J., G.B. Spiegelman, and G. Yim, The world of subinhibitory antibiotic concentrations. Current opinion in microbiology, 2006. 9(5): p. 445-453. 96. Mathieu, A., et al., Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics. Cell reports, 2016. 17(1): p. 46-57. 97. Kaplan, J.B., et al., Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. MBio, 2012. 3(4): p. e00198-12. 98. Ohlsson, P., et al., Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics. Analytical chemistry, 2016. 88(19): p. 9403-9411. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79373 | - |
| dc.description.abstract | 為了提供適當的抗生素治療,臨床應用上的標準做法是將從病人檢體分離出來的菌株進行抗藥性檢測(antimicrobial susceptibility test,AST),來選擇合適的抗生素種類和劑量,同時也可以避免抗生素的濫用。然而,目前的AST方法仍有耗時、耗力、低準確性等缺點。為了提高準確性,具有高專一性和免標定等優點的表面增強拉曼散射(surface-enhanced Raman spectroscopy,SERS)開始被應用在細菌檢測和抗藥性檢測上。在本論文中,我們設計了一個微流道裝置,具有可用來建立抗生素濃度梯度的側流道(side channel),及在液體流動時,可將細菌保留在其中的微流井(microwell)。透過使用針筒幫浦同時注入細菌培養液與抗生素溶液,此裝置可以自動建立2、4、8、16、32、64 μg/mL等六個抗生素濃度。在螢光珠模擬細菌的實驗中,得知微流井可保留80%以上的螢光珠避免被沖走。接著,當細菌在建立好的各個抗生素濃度下培養三個小時後,即可整合SERS檢測技術進行AST(SERS-AST)。本論文研究共針對兩株細菌進行AST,分別為氨苄青黴素(ampicillin)非抗藥性與抗藥性的大腸桿菌(Escherichia coli)。所有微流井的SERS訊號皆會被量測,經分析即可測得最小抑菌濃度(minimum inhibitory concentration,MIC),且該結果與標準AST作法的結果一致。此SERS-AST方法不僅只需要少量(20 μL)細菌溶液與單一微流道裝置與即可測得MIC,更是將整個AST過程從一天大幅縮短至5小時,如此一來可以幫助醫生及早修正施用的抗生素種類和劑量,進一步提高病患存活率並減少抗生素的濫用。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:59:08Z (GMT). No. of bitstreams: 1 U0001-2510202115043100.pdf: 5758413 bytes, checksum: adf53e714ef0acf03d6b0c618c08301f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 摘要 III Abstract IV Chapter 1 Introduction 1 1.1 Research Background 1 1.1.1 Antimicrobial resistance and AST 1 1.1.2 Clinical AST methods 2 1.1.3 Microfluidic AST 3 1.2 Literature Review 4 1.2.1 Bacteria incubation in the microfluidic chip 4 1.2.2 Bacteria quantification methods in microfluidic AST 5 1.2.3 Antibiotic concentration gradient generation in microfluidic AST 12 1.3 Research Motivation 17 Chapter 2 SERS Theory 18 2.1 Introduction of Raman Scattering 18 2.2 Surface-Enhanced Raman Scattering 19 2.3 Bacteria SERS signal source 20 Chapter 3 Materials and Methods 22 3.1 Bacteria Preparation 22 3.2 Device Design and Fabrication 22 3.2.1 Microfluidic device design 23 3.2.2 Microfluidic device fabrication 24 3.2.3 SERS-active substrate fabrication 28 3.3 The Bright-field and Fluorescent Optical Setup 28 3.4 SERS Measurement and Spectral Processing 29 3.5 On-chip MIC Measurement Protocol 29 3.6 Image Analysis 30 3.6.1 Fluorescent molecule quantification 31 3.6.2 Beads number quantification 31 3.6.3 SERS imaging 32 Chapter 4 Results and Discussion 33 4.1 Channel Design 33 4.1.1 260-side-channel-design 33 4.1.2 64-side-channel-design 35 4.2 COMSOL Simulation 38 4.2.1 Flow rate effect 38 4.2.2 Balancing time 41 4.3 Concentration of Gradient Generation 42 4.3.1 Flow rate optimization 42 4.3.2 Channel isolation optimization 44 4.3.3 Microwell isolation optimization 48 4.4 Beads Encapsulation with Microwell Array 51 4.4.1 Trapping efficacy of the side channel 51 4.4.2 Washing efficiency 53 4.5 Bacteria Incubation 55 4.5.1 The bacterial growth evaluation in the PDMS microfluidic chip 55 4.5.2 Evaporation and Rehydration 56 4.6 SERS-AST 59 4.6.1 Alignment 59 4.6.2 SERS-AST without antibiotic gradient 62 4.6.3 SERS-AST with antibiotic gradient 63 Chapter 5 Conclusion 68 Chapter 6 Future Work 69 References 72 Appendix 80 A. Python and ImageJ code 80 A.1 Python 80 A.2 ImageJ 81 | |
| dc.language.iso | en | |
| dc.title | 微流道抗生素濃度梯度產生器整合於表面增強拉曼散射平行進行細菌抗藥性檢測 | zh_TW |
| dc.title | A Microfluidic Antibiotic Concentration Gradient Generator Integrating Surface enhanced Raman Spectroscopy for Multiparallel Antimicrobial Susceptibility Testing | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王玉麟(Hsin-Tsai Liu),王俊凱(Chih-Yang Tseng),韓吟宜,張祐嘉 | |
| dc.subject.keyword | 微流道,濃度梯度,細菌,抗藥性檢測,表面增強拉曼散射, | zh_TW |
| dc.subject.keyword | microfluidic,concentration gradient,bacteria,antimicrobial susceptibility test,surface-enhanced Raman spectroscopy, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU202104148 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2510202115043100.pdf | 5.62 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
