請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79368完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃念祖(Nien-Tsu Huang) | |
| dc.contributor.author | Chia-Yu Hsieh | en |
| dc.contributor.author | 謝佳諭 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:59:02Z | - |
| dc.date.available | 2022-11-01 | |
| dc.date.available | 2022-11-23T08:59:02Z | - |
| dc.date.copyright | 2021-11-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-27 | |
| dc.identifier.citation | 1. Brogan, D.M. and E. Mossialos, A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Globalization and Health, 2016. 12(1): p. 8. 2. Opota, O., et al., Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect, 2015. 21(4): p. 313-22. 3. Reller, L.B., et al., Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clinical Infectious Diseases, 2009. 49(11): p. 1749-1755. 4. Chen, C. and W. Hong, Recent Development of Rapid Antimicrobial Susceptibility Testing Methods through Metabolic Profiling of Bacteria. 2021. 10(3): p. 311. 5. Leekha, S., C.L. Terrell, and R.S. Edson, General principles of antimicrobial therapy. Mayo Clinic proceedings, 2011. 86(2): p. 156-167. 6. Reardon, S., WHO warns against 'post-antibiotic' era. Nature, 2014. 7. van Belkum, A., et al., Innovative and rapid antimicrobial susceptibility testing systems. Nature Reviews Microbiology, 2020. 18(5): p. 299-311. 8. Choi, J., et al., Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis. Scientific Reports, 2017. 7(1): p. 1148. 9. Zhang, F., et al., Rapid Antimicrobial Susceptibility Testing on Clinical Urine Samples by Video-Based Object Scattering Intensity Detection. Analytical Chemistry, 2021. 93(18): p. 7011-7021. 10. Kaushik, A.M., et al., Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosensors and Bioelectronics, 2017. 97: p. 260-266. 11. Kim, S., F. Masum, and J.S. Jeon, Recent Developments of Chip-based Phenotypic Antibiotic Susceptibility Testing. BioChip Journal, 2019. 13(1): p. 43-52. 12. Choi, J., et al., A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci Transl Med, 2014. 6(267): p. 267ra174. 13. Rule Wigginton, K. and P.J. Vikesland, Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection. Analyst, 2010. 135(6): p. 1320-1326. 14. Samek, O., S. Bernatová, and F. Dohnal, The potential of SERS as an AST methodology in clinical settings. Nanophotonics, 2021. 15. Kirchhoff, J., et al., Simple Ciprofloxacin Resistance Test and Determination of Minimal Inhibitory Concentration within 2 h Using Raman Spectroscopy. Analytical Chemistry, 2018. 90(3): p. 1811-1818. 16. Huang, H.-K., et al., Bacteria encapsulation and rapid antibiotic susceptibility test using a microfluidic microwell device integrating surface-enhanced Raman scattering. Lab on a Chip, 2020. 20(14): p. 2520-2528. 17. Hayden, R.T., et al., Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology. Journal of clinical microbiology, 2016. 54(11): p. 2701-2706. 18. Hannah, S., et al., Rapid antibiotic susceptibility testing using low-cost, commercially available screen-printed electrodes. Biosens Bioelectron, 2019. 145: p. 111696. 19. Lee, K.-S., et al., Electrical antimicrobial susceptibility testing based on aptamer-functionalized capacitance sensor array for clinical isolates. Scientific Reports, 2020. 10(1): p. 13709. 20. Ebrahimi, A. and M.A. Alam, Droplet-based non-faradaic impedance sensors for assessment of susceptibility of Escherichia coli to ampicillin in 60 min. Biomed Microdevices, 2017. 19(2): p. 27. 21. Braff, W.A., et al., Dielectrophoresis-Based Discrimination of Bacteria at the Strain Level Based on Their Surface Properties. PLOS ONE, 2013. 8(10): p. e76751. 22. Bolotsky, A., et al., Organic redox-active crystalline layers for reagent-free electrochemical antibiotic susceptibility testing (ORACLE-AST). Biosensors and Bioelectronics, 2021. 172: p. 112615. 23. Spencer, D.C., et al., A fast impedance-based antimicrobial susceptibility test. Nat Commun, 2020. 11(1): p. 5328. 24. Cermak, N., et al., High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nature Biotechnology, 2016. 34(10): p. 1052-1059. 25. Sande, M.G., et al., New solutions to capture and enrich bacteria from complex samples. Med Microbiol Immunol, 2020. 209(3): p. 335-341. 26. Pitt, W.G., et al., Rapid separation of bacteria from blood-review and outlook. Biotechnology progress, 2016. 32(4): p. 823-839. 27. Johnson, W.L., et al., Sensing bacterial vibrations and early response to antibiotics with phase noise of a resonant crystal. Scientific Reports, 2017. 7(1): p. 12138. 28. Simonian, A.L., E.I. Rainina, and J.R. Wild, Microbial biosensors based on potentiometric detection, in Enzyme and Microbial Biosensors: Techniques and Protocols, A. Mulchandani and K.R. Rogers, Editors. 1998, Humana Press: Totowa, NJ. p. 237-248. 29. Bancalari, E., et al., Application of Impedance Microbiology for Evaluating Potential Acidifying Performances of Starter Lactic Acid Bacteria to Employ in Milk Transformation. Frontiers in microbiology, 2016. 7: p. 1628-1628. 30. Sánchez-Clemente, R., et al., Study of pH Changes in Media during Bacterial Growth of Several Environmental Strains. Proceedings, 2018. 2(20). 31. Ho, J.Y., et al., Rapid Identification of ESKAPE Bacterial Strains Using an Autonomous Microfluidic Device. PLOS ONE, 2012. 7(7): p. e41245. 32. Tang, Y., et al., Rapid antibiotic susceptibility testing in a microfluidic pH sensor. Anal Chem, 2013. 85(5): p. 2787-94. 33. Sánchez-Clemente, R., et al., Carbon Source Influence on Extracellular pH Changes along Bacterial Cell-Growth. Genes, 2020. 11(11): p. 1292. 34. Uria, N., et al., Miniaturized metal oxide pH sensors for bacteria detection. Talanta, 2016. 147: p. 364-369. 35. Krull, U.J. and M. Thompson, Analytical Chemistry, in Encyclopedia of Physical Science and Technology (Third Edition), R.A. Meyers, Editor. 2003, Academic Press: New York. p. 543-579. 36. Yuqing, M., C. Jianrong, and F. Keming, New technology for the detection of pH. Journal of Biochemical and Biophysical Methods, 2005. 63(1): p. 1-9. 37. Dewettinck, T., K. Van Hege, and W. Verstraete, Development of a rapid pH-based biosensor to monitor and control the hygienic quality of reclaimed domestic wastewater. Applied Microbiology and Biotechnology, 2001. 56(5): p. 809-815. 38. Nikkhoo, N., P.G. Gulak, and K. Maxwell, Rapid detection of E. coli bacteria using potassium-sensitive FETs in CMOS. IEEE Trans Biomed Circuits Syst, 2013. 7(5): p. 621-30. 39. Nikkhoo, N., et al., Rapid Bacterial Detection via an All-Electronic CMOS Biosensor. PLOS ONE, 2016. 11(9): p. e0162438. 40. Matsuura, K., et al., Detection of Micrococcus Luteus Biofilm Formation in Microfluidic Environments by pH Measurement Using an Ion-Sensitive Field-Effect Transistor. Sensors, 2013. 13(2). 41. Pourciel-Gouzy, M.L., et al., Development of pH-ISFET sensors for the detection of bacterial activity. Sensors and Actuators B: Chemical, 2004. 103(1-2): p. 247-251. 42. Mayanagi, G., et al., Evaluation of pH at the bacteria-dental cement interface. Journal of dental research, 2011. 90(12): p. 1446-1450. 43. Mayanagi, G., et al., Effect of fluoride-releasing restorative materials on bacteria-induced pH fall at the bacteria–material interface: An in vitro model study. Journal of Dentistry, 2014. 42(1): p. 15-20. 44. Bettaieb, F., et al., Immobilization of E. coli bacteria in three-dimensional matrices for ISFET biosensor design. Bioelectrochemistry, 2007. 71(2): p. 118-25. 45. Nikkhoo, N., P.G. Gulak, and K. Maxwell, A CMOS sensor for rapid testing of pathogen susceptibility to pore-forming antibiotics. Annu Int Conf IEEE Eng Med Biol Soc, 2015. 2015: p. 7534-7. 46. Pourciel-Gouzy, M.L., et al., pH-ChemFET-based analysis devices for the bacterial activity monitoring. Sensors and Actuators B: Chemical, 2008. 134(1): p. 339-344. 47. Ocaña, C., et al., Low-cost multichannel system with disposable pH sensors for monitoring bacteria metabolism and the response to antibiotics. Instrumentation Science Technology, 2021. Volume 49, 2021(3). 48. Chandra, A. and N. Singh, Bacterial growth sensing in microgels using pH-dependent fluorescence emission. Chemical Communications, 2018. 54(13): p. 1643-1646. 49. Zhao, M., et al., Sugar-metabolism-triggered pathogenic bacteria identification based on pH-sensitive fluorescent carbon dots. Sensors and Actuators B: Chemical, 2020. 316: p. 128063. 50. Cira, N.J., et al., A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab on a Chip, 2012. 12(6): p. 1052-1059. 51. Lee, W.-B., et al., A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method. Biosensors and Bioelectronics, 2017. 87: p. 669-678. 52. Bergveld, P., Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators B: Chemical, 2003. 88(1): p. 1-20. 53. Sin, M.L.Y., et al., Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert review of molecular diagnostics, 2014. 14(2): p. 225-244. 54. Zhang, P., et al., Facile syringe filter-enabled bacteria separation, enrichment, and buffer exchange for clinical isolation-free digital detection and characterization of bacterial pathogens in urine. Analyst, 2021. 146(8): p. 2475-2483. 55. Buchanan, C.M., et al., Rapid separation of very low concentrations of bacteria from blood. J Microbiol Methods, 2017. 139: p. 48-53. 56. Kim, J.H. and S.W. Oh, Optimization of Bacterial Concentration by Filtration for Rapid Detection of Foodborne Escherichia coli O157:H7 Using Real-Time PCR Without Microbial Culture Enrichment. J Food Sci, 2019. 84(11): p. 3241-3245. 57. Ryzhkov, V.V., et al., Cyclic on-chip bacteria separation and preconcentration. Scientific reports, 2020. 10(1): p. 21107-21107. 58. Zhang, Y., et al., An automated bacterial concentration and recovery system for pre-enrichment required in rapid Escherichia coli detection. Scientific Reports, 2018. 8(1): p. 17808. 59. Lewandowski, Z. and H. Beyenal, Fundamentals of Biofilm Research. 2007. 1-455. 60. Toumazou, C. and P. Georgiou, Piet Bergveld-40 years of ISFET technology: From neuronal sensing to DNA sequencing. Electronics Letters, 2011. 47: p. S7-S12. 61. Bergveld, P., Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Transactions on Biomedical Engineering, 1970. BME-17(1): p. 70-71. 62. Bergveld, P., R.E.G. van Hal, and J.C.T. Eijkel, The remarkable similarity between the acid-base properties of ISFETs and proteins and the consequences for the design of ISFET biosensors. Biosensors and Bioelectronics, 1995. 10(5): p. 405-414. 63. van Hal, R.E.G., J.C.T. Eijkel, and P. Bergveld, A general model to describe the electrostatic potential at electrolyte oxide interfaces. Advances in Colloid and Interface Science, 1996. 69(1): p. 31-62. 64. Heineman, W.R., Interfacial Electrochemistry: An Experimental Approach (Gileadi, E.; Kirowa-Eisner, E,; Penciner, J.). Journal of Chemical Education, 1977. 54(4): p. A245. 65. Waleed, S.M., D.M. Jamal, and D. Landheer, Study of the Electrolyte-Insulator-Semiconductor Field-Effect Transistor (EISFET) with Applications in Biosensor Design. Microelectronics and Reliability, 2007. 47(12): p. 2025-2057. 66. Baylav, M. Ion-sensitive field effect transistor (ISFET) for MEMS multisensory chips at RIT. 2010. 67. Ali, M., Manufacturing and Modeling of an Organic Thin Film Transistor. 2016. 68. Huang, Y.J., et al. High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC. in 2015 IEEE International Electron Devices Meeting (IEDM). 2015. 69. Moschou, E.A. and N.A. Chaniotakis, Ion-partitioning membrane-based electrochemical sensors. Anal Chem, 2000. 72(8): p. 1835-42. 70. Fakih, I., et al., Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nat Commun, 2020. 11(1): p. 3226. 71. Taryba, M.G. and S.V. Lamaka, Plasticizer-free solid-contact pH-selective microelectrode for visualization of local corrosion. Journal of Electroanalytical Chemistry, 2014. 725: p. 32-38. 72. Han, T., U. Mattinen, and J. Bobacka, Improving the Sensitivity of Solid-Contact Ion-Selective Electrodes by Using Coulometric Signal Transduction. ACS Sensors, 2019. 4(4): p. 900-906. 73. Lavielle, M., Using penalized contrasts for the change-point problem. Signal Processing, 2005. 85(8): p. 1501-1510. 74. Killick, R., P. Fearnhead, and I.A. Eckley, Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 2012. 107(500): p. 1590-1598. 75. Rusen, E., et al., Hydrophilic modification of polyvinyl chloride with polyacrylic acid using ATRP. RSC Advances, 2020. 10(59): p. 35692-35700. 76. Kim, H.S., Chapter 13 - Renal toxicology, in An Introduction to Interdisciplinary Toxicology, C.N. Pope and J. Liu, Editors. 2020, Academic Press. p. 163-178. 77. Sun, P., et al., High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Biosensors and Bioelectronics, 2011. 26(5): p. 1993-1999. 78. Wang, L., et al., Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci Rep, 2015. 5: p. 15159. 79. Zhang, H. and U. Werner, Characterization of surface change properties of synthetic microfiltration membranes by means of a streaming current method. Desalination, 1990. 79(2): p. 271-281. 80. Davenport, D.M., et al., Development of PVDF Membrane Nanocomposites via Various Functionalization Approaches for Environmental Applications. Polymers, 2016. 8(2): p. 32. 81. Blanco, A. and G. Blanco, Chapter 11 - Membranes, in Medical Biochemistry, A. Blanco and G. Blanco, Editors. 2017, Academic Press. p. 215-250. 82. Tan, X. and D. Rodrigue, A Review on Porous Polymeric Membrane Preparation. Part II: Production Techniques with Polyethylene, Polydimethylsiloxane, Polypropylene, Polyimide, and Polytetrafluoroethylene. 2019. 11(8): p. 1310. 83. Maksymiuk, K., E. Stelmach, and A. Michalska, Unintended Changes of Ion-Selective Membranes Composition—Origin and Effect on Analytical Performance. 2020. 10(10): p. 266. 84. Gibson, B., et al., The distribution of bacterial doubling times in the wild. Proceedings. Biological sciences, 2018. 285(1880): p. 20180789. 85. Shaibani, P.M., et al., The detection of Escherichia coli (E. coli) with the pH sensitive hydrogel nanofiber-light addressable potentiometric sensor (NF-LAPS). Sensors and Actuators B: Chemical, 2016. 226: p. 176-183. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79368 | - |
| dc.description.abstract | "細菌抗藥性檢測 (Antimicrobial susceptibility test, AST) 是目前評估血流感染 (Bloodstream infection, BSI) 用藥最常使用的方法之一。但目前使用的細菌抗藥性檢測技術需要繁瑣的樣品處理流程及複雜的檢測系統,使整個流程需要二至三天的時間,難以提供即時的藥物決策,錯失有效治療的黃金時期且亦可能會產生抗藥性菌株。為解決上述問題,我們藉由量測微生物的醣類代謝造成菌液的酸化程度來評估細菌的生長情況。本研究選擇表面由高介電常數的二氧化鉿 (HfO2) 組成之雙閘極離子敏感場效電晶體 (Dual-gate ion-sensitive field-effect transistor, DG-ISFET) 量測菌液酸化,因其高介電常數的氧化金屬和雙閘極的結構,能夠在測量的過程中防止漏電流的產生,減少電流飄移 (drifting effect) 所產生的訊號干擾。此外,我們將DG-ISFET結合質子選擇性膜 (Proton selective membrane, PSM) 提高對氫離子之選擇性以避免培養液中其他離子訊號的干擾。此外,我們使用多孔性濾膜來濃縮菌液,增加細菌濃度進而縮短檢測時間。為驗證上述構想,我們首先使用不同 pH 標準液來評估不同 PSM厚度下的DG-ISFET的解析度 (sensitivity) 及穩定性 (stability)。接著進行離子場效電晶體式細菌抗藥性檢測 (ISFET-AST)的測試,主要分為兩個階段進行。第一階段進行無流道細菌抗藥性測試 (Off-chip AST),目的為驗證PSM在實際細菌樣本中訊號改善的效果,在這個實驗中,直接將250微升 (µL) 的菌液滴在DG-ISFET進行測量。結果顯示此系統可在 30 分鐘內區分不具抗藥性和具抗藥性的大腸桿菌 (Escherichia coli) 菌株,達成執行快速AST的目標,PSM也能夠改善訊號干擾的情況,使用較少的抗生素便能測量出細菌的抗藥性。第二階段則結合0.22微米孔徑的濾膜流道,加入1000 µL的菌液進行菌液濃縮後執行ISFET-AST,結果顯示濃縮的菌液訊號約有兩至三倍的提升,和濃縮的體積成正比。期望未來能將這種可攜式的檢測系統設備用來進行即時和連續性的細菌抗藥性檢測,並將其應用於醫療資源有限或是定點照護的環境中。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:59:02Z (GMT). No. of bitstreams: 1 U0001-2510202118001300.pdf: 4461947 bytes, checksum: 45bd8a77e655d13957f600401435fbdd (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 II 誌謝…………………………………………………………………………………………………III 摘要…………………………………………………………………………………………………IV Abstract………………………………………………………………………………………………V Chapter 1. Introduction 1 1.1. Research background 1 1.2. Literature review 1 1.2.1. Rapid Antimicrobial Susceptibility Test (RAST) 1 1.2.2. Optical measurement 3 1.2.3. Electrical measurement 4 1.2.4. Mechanical measurement 5 1.2.5. pH/ion measurement 5 1.2.6. Summary for current RAST 11 1.3. Filter-based bacterial separation, purification, and enrichment 12 1.3.1. Bacterial separation 12 1.3.2. Concentration adjustment and enrichment: 13 1.3.3. Signal enhancement 13 1.4. Current challenges and limitations 14 Chapter 2. Experimental Design 16 2.1. The working principle of Ion Sensitive Field Effect Transistor (ISFET) 16 2.2. The working principle of dual-gate ion-sensitive field-effect transistor (DG-ISFET) 19 2.3. The principle of PSM-modified ISFETs 19 Chapter 3. Material and methods 23 3.1. Experimental setup 23 3.2. Device and instrument 24 3.3. Filter-integrated microchamber fabrication 25 3.4. Proton selective membrane (PSM) preparation 26 3.5. Solution preparation 26 3.6. Sample preparation 26 Chapter 4. Results and Discussion 28 4.1. DG-ISFET performance 28 4.1.1. Data acquisition 28 4.1.2. Drain-to-source voltage (Vds) optimization 28 4.1.3. pH sensing performance 29 4.1.4. Chip-to-chip variation evaluation 31 4.1.5. Single-chip repeatability test 32 4.1.6. Thickness optimization 33 4.1.7. PSM to PSM variation evaluation 36 4.2. Minimum inhibitory concentration (MIC) 36 4.3. Off-chip AST 37 4.4. Bacterial acidification rate 40 4.5. pH sensitivity with the channel and filter 42 4.6. Filter capture efficiency 44 4.7. Bacterial sample volume-based current difference 45 4.8. On-chip AST with filter-integrated microchamber 47 4.9. Bacterial growth rate in optical density 48 Chapter 5. Conclusion 50 Chapter 6. Future work 51 6.1. The filter-integrated microchamber 51 6.2. Standardize the PSM fabrication process 51 6.3. Bacterial diversity 52 6.4. Multiplex ion-sensing development 52 References…………………………………………………………………………………………54" | |
| dc.language.iso | en | |
| dc.title | 利用雙閘極敏感場效應電晶體結合氫離子選擇膜以及濾膜流道進行細菌濃縮與抗生素藥敏性檢測 | zh_TW |
| dc.title | A Proton Selective Membrane Deposited Dual-gate Ion-Sensitive Field-Effect Transistor (DG-ISFET) Integrating the Microchamber Embedded Filter Membrane for Bacteria Enrichment and Antimicrobial Susceptibility Test | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林乃君(Hsin-Tsai Liu),于昌平(Chih-Yang Tseng),林致廷 | |
| dc.subject.keyword | 雙閘極敏感場效應電晶體,氫離子選擇膜,細菌濃縮,抗生素藥敏性檢測, | zh_TW |
| dc.subject.keyword | Proton Selective Membrane,DG-ISFET,Bacteria Enrichment,Antimicrobial Susceptibility Test,ISFET, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU202104166 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2510202118001300.pdf | 4.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
