Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79340
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴桓青(Hwan-Ching Tai)
dc.contributor.authorHung-Chia Huangen
dc.contributor.author黃泓嘉zh_TW
dc.date.accessioned2022-11-23T08:58:27Z-
dc.date.available2021-11-03
dc.date.available2022-11-23T08:58:27Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-10-28
dc.identifier.citation1. Bar-On, Y. M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 6506-6511. 2. Mohan, D.; Pittman Jr, C. U.; Steele, P. H. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 2006, 20, 848-889. 3. Pettersen, R. C. The chemical composition of wood. ACS Publications, 1984. 4. Gil, A.; Neto, C. P. Solid-state NMR studies of wood and other lignocellulosic materials. Annu. Rep. NMR Spectrosc. 1999, 37, 75-117. 5. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941-3994. 6. Festucci-Buselli, R. A.; Otoni, W. C.; Joshi, C. P. Structure, organization, and functions of cellulose synthase complexes in higher plants. Brazilian J. Plant Physiol. 2007, 19, 1-13. 7. Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2002, 124, 9074-9082. 8. Kim, S. H.; Lee, C. M.; Kafle, K. Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng. 2013, 30, 2127-2141. 9. Nixon, B. T.; Mansouri, K.; Singh, A.; Du, J.; Davis, J. K.; Lee, J.-G.; Slabaugh, E.; Vandavasi, V. G.; O’Neill, H.; Roberts, E. M. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci. Rep. 2016, 6, 1-14. 10. Jarvis, M. C. Cellulose biosynthesis: counting the chains. Plant Physiol. 2013, 163, 1485-1486. 11. Fernandes, A. N.; Thomas, L. H.; Altaner, C. M.; Callow, P.; Forsyth, V. T.; Apperley, D. C.; Kennedy, C. J.; Jarvis, M. C. Nanostructure of cellulose microfibrils in spruce wood. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, E1195-E1203. 12. Thomas, L. H.; Forsyth, V. T.; Šturcová, A.; Kennedy, C. J.; May, R. P.; Altaner, C. M.; Apperley, D. C.; Wess, T. J.; Jarvis, M. C. Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol. 2013, 161, 465-476. 13. Newman, R. H.; Hill, S. J.; Harris, P. J., Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol. 2013, 163, 1558-1567. 14. Thomas, L. H.; Forsyth, V. T.; Martel, A.; Grillo, I.; Altaner, C. M.; Jarvis, M. C. Structure and spacing of cellulose microfibrils in woody cell walls of dicots. Cellulose 2014, 21, 3887-3895. 15. Thomas, L. H.; Forsyth, V. T.; Martel, A.; Grillo, I.; Altaner, C. M.; Jarvis, M. C. Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses. BMC Plant Biol. 2015, 15, 1-7. 16. Jarvis, M. C. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Phil. Trans. R. Soc. A 2018, 376, 20170045. 17. Martínez-Sanz, M.; Pettolino, F.; Flanagan, B.; Gidley, M. J.; Gilbert, E. P. Structure of cellulose microfibrils in mature cotton fibres. Carbohydr. Polym. 2017, 175, 450-463. 18. Gibson, L. J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749-2766. 19. Kránitz, K. Effect of natural aging on wood. Ph.D dissertation, ETH Zürich, Zürich, Switzerland, 2014. 20. Scheller, H. V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61. 21. Zhou, X.; Li, W.; Mabon, R.; Broadbelt, L. J. A critical review on hemicellulose pyrolysis. Energy Technol. 2017, 5, 52-79. 22. Reale, S.; Di Tullio, A.; Spreti, N.; De Angelis, F. Mass spectrometry in the biosynthetic and structural investigation of lignins. Mass Spectrom. Rev. 2004, 23, 87-126. 23. Pandey, M. P.; Kim, C. S. Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 2011, 34, 29-41. 24. McDonough, T. J., The chemistry of organosolv delignification, Institute of Paper Science and Technology: Atlanta, Georgia 1992. 25. Dorrestijn, E.; Laarhoven, L. J.; Arends, I. W.; Mulder, P. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J. Anal. Appl. Pyrolysis 2000, 54, 153-192. 26. Nilsson, T.; Rowell, R. Historical wood – structure and properties. J. Cult. Herit. 2012, 13, S5-S9. 27. Postek, M. T.; Vladár, A.; Dagata, J.; Farkas, N.; Ming, B.; Wagner, R.; Raman, A.; Moon, R. J.; Sabo, R.; Wegner, T. H. Development of the metrology and imaging of cellulose nanocrystals. Meas Sci. Technol. 2010, 22, 024005. 28. Lee, H.; Hamid, S. B. A.; Zain, S. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci. World J. 2014, 2014. 29. Andersson, S.; Serimaa, R.; Paakkari, T.; Saranpää, P.; Pesonen, E. Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 2003, 49, 531-537. 30. Agarwal, U. P.; Reiner, R. R.; Ralph, S. A. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. J. Agric. Food Chem. 2013, 61, 103-113. 31. Newman, R.; Hemmingson, J. Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung, 1990, 44, 351-355. 32. Andersson, S.; Wikberg, H.; Pesonen, E.; Maunu, S. L.; Serimaa, R. Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees 2004, 18, 346-353. 33. Wikberg, H.; Maunu, S. L. Characterisation of thermally modified hard-and softwoods by 13C CPMAS NMR. Carbohydr. Polym. 2004, 58, 461-466. 34. Thygesen, A.; Oddershede, J.; Lilholt, H.; Thomsen, A. B.; Ståhl, K. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 2005, 12, 563-576. 35. Rayirath, P.; Avramidis, S.; Mansfield, S. D. The effect of wood drying on crystallinity and microfibril angle in black spruce (Picea mariana). J. Wood Chem. Technol. 2008, 28, 167-179. 36. Mirahmadi, K.; Kabir, M. M.; Jeihanipour, A.; Karimi, K.; Taherzadeh, M. Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 2010, 5, 928-938. 37. Paredes, J. J.; Mills, R.; Shaler, S. M.; Gardner, D. J.; van Heiningen, A. Surface characterization of red maple strands after hot water extraction. Wood Fiber Sci. 2009, 41, 38-50. 38. Howell, C.; Hastrup, A. C. S.; Jara, R.; Larsen, F. H.; Goodell, B.; Jellison, J. Effects of hot water extraction and fungal decay on wood crystalline cellulose structure. Cellulose 2011, 18, 1179-1190. 39. Geffertová, J.; Geffert, A.; Vybohová, E. Chemical change of selected hardwood species in the process of thermal modification by saturated water steam. Chip and chipless wood working process, 2018, 11, 257-264 40. Brandt, A.; Gräsvik, J.; Hallett, J. P.; Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013, 15, 550-583. 41. Barnett, J. R.; Bonham, V. A. Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. 2004, 79, 461-472. 42. Fengel, D.; Stoll, M., Über die Veränderungen des Zellquerschnitts, der Dicke der Zellwand und der Wandschichten von Fichtenholz-Tracheiden innerhalb eines Jahrringes. Holzforschung 1973, 27, 1-7. 43. 莊偉綜; 鄭有舜; 蘇秋琿; 蘇群仁; 廖桂芬, 同步輻射小角度X光散射在化學材料之應用.化學 2009, 67, 253-263. 44. Pynn, R. Neutron scattering: a primer. Los Alamos Science 1990, 19, 1-31. 45. Feigin, L.; Svergun, D. I. Structure analysis by small-angle X-ray and neutron scattering. Plenum press: New York, 1987. 46. Roe, R.-J.; Roe, R. Methods of X-ray and neutron scattering in polymer science. Oxford University Press: New York, 2000. 47. Guinier, A.; Fournet, G.; Yudowitch, K. L. Small-angle scattering of X-rays. J.Wiley Sons: New York, 1955. 48. Jakob, H.; Fratzl, P.; Tschegg, S. Size and arrangement of elementary cellulose fibrils in wood cells: a small-angle X-ray scattering study of Picea abies. J. Struct. Biol. 1994, 113, 13-22. 49. Saxe, F.; Eder, M.; Benecke, G.; Aichmayer, B.; Fratzl, P.; Burgert, I.; Rüggeberg, M. Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering. Plant Methods 2014, 10, 1-8. 50. Leppänen, K.; Andersson, S.; Torkkeli, M.; Knaapila, M.; Kotelnikova, N.; Serimaa, R. Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 2009, 16, 999-1015. 51. Fengel, D.; Wegener, G. Wood: chemistry, ultrastructure. Reactions 1984, 613, 1960-1982. 52. Fry, S. C. The growing plant cell wall: chemical and metabolic analysis. The Blackburn Press: Caldwell, NJ, 2000 53. Paris, O.; Zollfrank, C.; Zickler, G. A. Decomposition and carbonisation of wood biopolymers — a microstructural study of softwood pyrolysis. Carbon 2005, 43, 53-66. 54. Smith, A.; MacDonald, M.; Ellis, L.; Obrovac, M.; Dahn, J. A small angle X-ray scattering and electrochemical study of the decomposition of wood during pyrolysis. Carbon 2012, 50, 3717-3723. 55. Jakob, H.; Tschegg, S.; Fratzl, P. Hydration dependence of the wood-cell wall structure in Picea abies. A small-angle X-ray scattering study. Macromolecules 1996, 29, 8435-8440. 56. Penttilä, P. A.; Rautkari, L.; Österberg, M.; Schweins, R. Small-angle scattering model for efficient characterization of wood nanostructure and moisture behaviour. J Appl. Crystallogr. 2019, 52, 369-377. 57. Penttilä, P. A.; Altgen, M.; Carl, N.; van der Linden, P.; Morfin, I.; Österberg, M.; Schweins, R.; Rautkari, L. Moisture-related changes in the nanostructure of woods studied with X-ray and neutron scattering. Cellulose 2020, 27, 71-87. 58. Jungnikl, K.; Paris, O.; Fratzl, P.; Burgert, I. The implication of chemical extraction treatments on the cell wall nanostructure of softwood. Cellulose 2008, 15, 407. 59. Fengel, D. Aging and fossilization of wood and its components. Wood Sci. Technol. 1991, 25, 153-177. 60. Kránitz, K.; Sonderegger, W.; Bues, C.-T.; Niemz, P., Effects of aging on wood: a literature review. Wood Sci. Technol. 2016, 50, 7-22. 61. Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. Bioresources 2009, 4, 370-404. 62. Kline, S. R. Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl. Crystallogr. 2006, 39, 895-900. 63. Engelund, E. T.; Thygesen, L. G.; Svensson, S.; Hill, C. A. A critical discussion of the physics of wood–water interactions. Wood Sci. Technol. 2013, 47, 141-161. 64. Hernández, R. E., Influence of moisture sorption history on the swelling of sugar maple wood and some tropical hardwoods. Wood Sci. Technol. 1993, 27, 337-345. 65. Jakob, H.; Fengel, D.; Tschegg, S.; Fratzl, P. The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 1995, 28, 8782-8787. 66. Andersson, S.; Serimaa, R.; Torkkeli, M.; Paakkari, T.; Saranpää, P.; Pesonen, E. Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparison of measuring techniques. J. Wood Sci. 2000, 46, 343-349. 67. Viljanen, M.; Ahvenainen, P.; Penttilä, P.; Svedström, K. Ultrastructural X-ray scattering studies of tropical and temperate hardwoods used as tonewoods. IAWA J 2020, 1, 1-19. 68. Nishiyama, Y.; Sugiyama, J.; Chanzy, H.; Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2003, 125, 14300-14306. 69. Wang, Z.; Winestrand, S.; Gillgren, T.; Jönsson, L. J. Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce. Biomass Bioenergy 2018, 109, 125-134. 70. Howell, C.; Hastrup, A.; Jellison, J. The use of X-ray diffraction for analyzing biomodification of crystalline cellulose by wood decay fungi. IRG/WP 2007, 07-10622. 71. Reza, M.; Ruokolainen, J.; Vuorinen, T. Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electron microscopy. Planta 2014, 240, 565-573. 72. Xu, P.; Donaldson, L. A.; Gergely, Z. R.; Staehelin, L. A. Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci. Technol. 2007, 41, 101. 73. Yuan, E. C.Y.; Huang, S.J.; Huang, H.C.; Sinkkonen, J.; Oss, A.; Org, M.L.; Samoson, A.; Tai, H.C.; Chan, J. C. C. Faster magic angle spinning reveals cellulose conformations in woods. ChemComm 2021, 57, 4110-4113. 74. Tai, H.C.; Li, G.C.; Huang, S.J.; Jhu, C.R.; Chung, J.H.; Wang, B. Y.; Hsu, C.S.; Brandmair, B.; Chung, D.T.; Chen, H. M. Chemical distinctions between Stradivari’s maple and modern tonewood. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 27-32. 75. Tseng, H.H. Investigating the wood properties of antique musical instruments using ID and solid-state NMR spectroscopy. Master dissertation, NTU, Taipei, Taiwan, 2020. 76. Chung, J.H. Chemical treatment of wood in Cremonese violins. Master dissertation, NTU, Taipei, Taiwan, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79340-
dc.description.abstract樹木的細胞壁不但儲存了生物圈中最多的碳,成為碳循環重要的一部份,同時木材也是人類自古以來應用最為廣泛的材料之一。而木材中的纖維素不但是木材中最主要的成分,也是提供木材機械強度最主要的來源,因此對纖維素結構的了解可以使我們更進一步了解木材的特性,然而受限於木材的複雜性,纖維素的奈米結構仍然未知,例如一條纖維素微纖維中所含有的纖維素鏈的條數,至今仍有許多爭議。 為了更透徹了解纖維素的結構,本篇研究利用了小角度X光散射(SAXS)和X光繞射(XRD)分析,來測量現代製琴用的雲杉(Picea spp.)和楓木(Acer spp.),並以此結果嘗試去建構纖維素微纖維的奈米結構。我們利用了圓柱模型的對小角度X光散射的全圖積分進行擬合分析,雲杉的結果為直徑2.43 nm的圓柱,而在楓木則是直徑為2.19 nm的圓柱,顯示了雲杉較楓木有更大的結晶度,並利用了橢圓柱和方柱模型確認兩者皆是接近正圓或是正方形的形狀。X光繞射分析則測量出了纖維素結晶的晶格面距和晶域大小,雲杉在(200)、(1-10)和(110)方向測得的晶域大小分別是2.95、3.02、2.91 nm,現代楓木則分別是2.93、2.73、2.89 nm,皆大於小角度X光散射的結果,因此我們認為纖維素微纖維是一核—殼模型,其中核區部分的纖維素具有較高電子密度且較為有序地排列,因此在小角度X光散射的觀測下能夠清楚地看出核區的範圍,此部分為纖維素的結晶區,而殼區的纖維素其電子密度較低且排列略有不規則,為纖維素的類結晶區,而整個纖維素的結晶區和類結晶區即是X光繞射分析測得的範圍。此外,雲杉的晶格面距在(200)、(1-10)和(110)方向分別是0.395、0.605、0.525 nm,在現代楓木分別是0.399、0.609、0.536 nm,和標準的纖維素Iα、Iβ晶格的數據接近,因此也證實了雲杉和楓木的纖維素近似於此兩種晶格的排列。 得知了纖維素微纖維是一核—殼的結構,再利用小角度X光散射所測得的結晶區所包含的纖維素條數,配合文獻中雲杉和楓木纖維素的結晶度,我們便可以此推測出一條纖維素微纖維所包含的纖維素條數,且合成纖維素微纖維的酵素是由6個次級單位組成,因此組成纖維素微纖維的纖維素條數應是6的倍數,由上述的結果我們認為雲杉和楓木的纖維素微纖維均包含了24條纖維素鏈。 此外,我們也利用了熱重分析法(TGA)和微差掃描熱量法(DSC)來測量在自然和人工老化下的木材其平衡含水量的變化以及木材中大分子間附著情形的改變。在自然老化的結果中,古老歐洲小提琴的楓木其平衡水分含量和現代楓木沒有差異,而古代建築和歐洲小提琴的雲杉則較現代略有減少,且有部分的琴可能經過鹼的處理,在微差掃描熱量法的結果中出現了三個放熱峰,相較於一般木材只有兩個,顯示其內部大分子的附著情形有所改變。然而我們透過對現代楓木進行加熱、照光、蒸氣加熱、泡鹼等人工老化的方法雖然可以減少木材的平衡水分含量,卻無法複製出三個放熱峰的結果,而此原因可能是因為人工老化的木材並未如小提琴有著長期演奏下的高頻振動,使其無法產生相同的結果。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:58:27Z (GMT). No. of bitstreams: 1
U0001-2710202102040200.pdf: 10003917 bytes, checksum: 4afe11b9dfcd610a7ebb43bb9d6d4786 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 i 中文摘要 ii ABSTRACT iv 目錄 vii 圖目錄 ix 表目錄 xiii 第 1 章 研究動機與目的 1 第 2 章 背景與文獻探討 3 2.1 木材細胞壁的化學組成 3 2.1.1 纖維素 4 2.1.2 半纖維素 9 2.1.3 木質素 11 2.2 木材結構 13 2.2.1 纖維素結晶度(crystallinity) 15 2.2.2 樹木細胞壁的分層 17 2.2.3 小角度X光散射和木材細胞壁的結構 19 2.3 木材老化 25 第 3 章 實驗材料及方法 27 3.1 實驗材料 27 3.1.1 實驗設備 27 3.1.2 實驗藥品 27 3.1.3 木材樣品 28 3.1.4 人工處理木材樣品 31 3.2 實驗方法 32 3.2.1 小角度X光散射和散射成像角度分析 32 3.2.2 模型擬合分析和修正式Guinier近似法 32 3.2.3 X光繞射分析 35 3.2.4 熱重分析法和微差掃描熱量法 35 第 4 章 雲杉和楓木纖維素微纖維的奈米結構 37 4.1 現代製琴級雲杉小角度X光散射分析 37 4.2 現代製琴級楓木小角度X光散射分析 54 4.3 現代雲杉和現代楓木中的纖維素結晶大小 66 4.4 現代雲杉和現代楓木的纖維素微纖維奈米結構 80 第 5 章 木材的老化 84 5.1 楓木的自然與人工老化 84 5.2 雲杉的自然老化 89 第 6 章 結論 92 附錄A 實驗結果圖 95 附錄B 熱分析法實驗步驟 107 參考文獻 108
dc.language.isozh-TW
dc.title以小角度X光散射與X光繞射探究纖維素微纖維的奈米結構zh_TW
dc.titleThe Nanostructure of Cellulose Microfibrils Investigated by SAXS and XRDen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳浩銘(Hsin-Tsai Liu),曹正熙(Chih-Yang Tseng)
dc.subject.keyword雲杉,楓木,纖維素,小角度X光散射,X光繞射分析,熱重分析法,微差掃描熱量法,zh_TW
dc.subject.keywordspruce,maple,cellulose,SAXS,XRD,TGA,DSC,en
dc.relation.page115
dc.identifier.doi10.6342/NTU202104286
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-2710202102040200.pdf9.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved