請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79332完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊宏(Chun-Hong Chen) | |
| dc.contributor.author | Yen-Wei Lai | en |
| dc.contributor.author | 賴彥瑋 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:58:18Z | - |
| dc.date.available | 2021-11-03 | |
| dc.date.available | 2022-11-23T08:58:18Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-27 | |
| dc.identifier.citation | Adnani, L., Han, S., Li, S., Mattar, P., and Schuurmans, C. (2018). Mechanisms of Cortical Differentiation. Int Rev Cell Mol Biol 336, 223-320. Al-Anzi, B., and Zinn, K. (2018). Identification and characterization of mushroom body neurons that regulate fat storage in Drosophila. Neural Dev 13, 18. Alyagor, I., Berkun, V., Keren-Shaul, H., Marmor-Kollet, N., David, E., Mayseless, O., Issman-Zecharya, N., Amit, I., and Schuldiner, O. (2018). Combining Developmental and Perturbation-Seq Uncovers Transcriptional Modules Orchestrating Neuronal Remodeling. Dev Cell 47, 38-52.e36. Apitz, H., and Salecker, I. (2015). A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system. Nat Neurosci 18, 46-55. Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.T., Dionne, H., Abbott, L.F., Axel, R., Tanimoto, H., et al. (2014). The neuronal architecture of the mushroom body provides a logic for associative learning. Elife 3, e04577. Aso, Y., Siwanowicz, I., Bräcker, L., Ito, K., Kitamoto, T., and Tanimoto, H. (2010). Specific dopaminergic neurons for the formation of labile aversive memory. Curr Biol 20, 1445-1451. Awasaki, T., Huang, Y., O'connor, M.B., and Lee, T. (2011). Glia instruct developmental neuronal remodeling through TGF-β signaling. Nature neuroscience 14, 821-823. Awasaki, T., and Ito, K. (2004). Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr Biol 14, 668-677. Awasaki, T., Tatsumi, R., Takahashi, K., Arai, K., Nakanishi, Y., Ueda, R., and Ito, K. (2006). Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50, 855-867. Bassett, A.R., Tibbit, C., Ponting, C.P., and Liu, J.L. (2013). Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4, 220-228. Bornstein, B., Zahavi, E.E., Gelley, S., Zoosman, M., Yaniv, S.P., Fuchs, O., Porat, Z., Perlson, E., and Schuldiner, O. (2015). Developmental Axon Pruning Requires Destabilization of Cell Adhesion by JNK Signaling. Neuron 88, 926-940. Boulanger, A., Clouet-Redt, C., Farge, M., Flandre, A., Guignard, T., Fernando, C., Juge, F., and Dura, J.-M. (2011). ftz-f1 and Hr39 opposing roles on EcR expression during Drosophila mushroom body neuron remodeling. Nature neuroscience 14, 37-44. Boulanger, A., and Dura, J.-M. (2015). Nuclear receptors and Drosophila neuronal remodeling. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1849, 187-195. Brummel, T., Abdollah, S., Haerry, T.E., Shimell, M.J., Merriam, J., Raftery, L., Wrana, J.L., and O'Connor, M.B. (1999). The Drosophila activin receptor baboon signals through dSmad2 and controls cell proliferation but not patterning during larval development. Genes Dev 13, 98-111. Cocchi, E., Drago, A., and Serretti, A. (2016). Hippocampal Pruning as a New Theory of Schizophrenia Etiopathogenesis. Mol Neurobiol 53, 2065-2081. Erclik, T., Li, X., Courgeon, M., Bertet, C., Chen, Z., Baumert, R., Ng, J., Koo, C., Arain, U., Behnia, R., et al. (2017). Integration of temporal and spatial patterning generates neural diversity. Nature 541, 365-370. Fahrbach, S.E. (2006). Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51, 209-232. Furusawa, K., and Emoto, K. (2021). Spatiotemporal regulation of developmental neurite pruning: Molecular and cellular insights from Drosophila models. Neurosci Res 167, 54-63. Glickman, M.H., and Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological reviews. Gratz, S.J., Ukken, F.P., Rubinstein, C.D., Thiede, G., Donohue, L.K., Cummings, A.M., and O'Connor-Giles, K.M. (2014). Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196, 961-971. Gunnar, E., Bivik, C., Starkenberg, A., and Thor, S. (2016). sequoia controls the type I>0 daughter proliferation switch in the developing Drosophila nervous system. Development 143, 3774-3784. Hakim, Y., Yaniv, S.P., and Schuldiner, O. (2014). Astrocytes play a key role in Drosophila mushroom body axon pruning. PLoS One 9, e86178. Han, C., Song, Y., Xiao, H., Wang, D., Franc, N.C., Jan, L.Y., and Jan, Y.-N. (2014). Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron 81, 544-560. Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nature Reviews Neuroscience 4, 266-275. Herzmann, S., Krumkamp, R., Rode, S., Kintrup, C., and Rumpf, S. (2017). PAR-1 promotes microtubule breakdown during dendrite pruning in Drosophila. Embo j 36, 1981-1991. Hu, S., Fambrough, D., Atashi, J.R., Goodman, C.S., and Crews, S.T. (1995). The Drosophila abrupt gene encodes a BTB-zinc finger regulatory protein that controls the specificity of neuromuscular connections. Genes Dev 9, 2936-2948. Issman-Zecharya, N., and Schuldiner, O. (2014). The PI3K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation. Dev Cell 31, 461-473. Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D. (1997). The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761-771. Jensen, P.A., Zheng, X., Lee, T., and O'Connor, M.B. (2009). The Drosophila Activin-like ligand Dawdle signals preferentially through one isoform of the Type-I receptor Baboon. Mech Dev 126, 950-957. Kanamori, T., Togashi, K., Koizumi, H., and Emoto, K. (2015a). Dendritic Remodeling: Lessons from Invertebrate Model Systems. Int Rev Cell Mol Biol 318, 1-25. Kanamori, T., Yoshino, J., Yasunaga, K., Dairyo, Y., and Emoto, K. (2015b). Local endocytosis triggers dendritic thinning and pruning in Drosophila sensory neurons. Nat Commun 6, 6515. Kandel, E., and Abel, T. (1995). Neuropeptides, adenylyl cyclase, and memory storage. Science 268, 825-826. Kirilly, D., Gu, Y., Huang, Y., Wu, Z., Bashirullah, A., Low, B.C., Kolodkin, A.L., Wang, H., and Yu, F. (2009). A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning. Nature neuroscience 12, 1497-1505. Kirilly, D., Wong, J.J.L., Lim, E.K.H., Wang, Y., Zhang, H., Wang, C., Liao, Q., Wang, H., Liou, Y.-C., and Wang, H. (2011). Intrinsic epigenetic factors cooperate with the steroid hormone ecdysone to govern dendrite pruning in Drosophila. Neuron 72, 86-100. Kohwi, M., and Doe, C.Q. (2013). Temporal fate specification and neural progenitor competence during development. Nat Rev Neurosci 14, 823-838. Kondo, S., and Ueda, R. (2013). Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195, 715-721. Kuo, C.T., Jan, L.Y., and Jan, Y.N. (2005). Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc Natl Acad Sci U S A 102, 15230-15235. Kuo, C.T., Zhu, S., Younger, S., Jan, L.Y., and Jan, Y.N. (2006). Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51, 283-290. Lai, Y.W., Chu, S.Y., Li, J.C., Chen, P.L., Chen, C.H., and Yu, H.H. (2020). Visualization of Endogenous Type I TGF-β Receptor Baboon in the Drosophila Brain. Sci Rep 10, 5132. Lai, Y.W., Chu, S.Y., Wei, J.Y., Cheng, C.Y., Li, J.C., Chen, P.L., Chen, C.H., and Yu, H.H. (2016). Drosophila microRNA-34 Impairs Axon Pruning of Mushroom Body γ Neurons by Downregulating the Expression of Ecdysone Receptor. Sci Rep 6, 39141. Latcheva, N.K., Viveiros, J.M., and Marenda, D.R. (2019). The Drosophila chromodomain protein Kismet activates steroid hormone receptor transcription to govern axon pruning and memory in vivo. Iscience 16, 79-93. Lee, H.H., Jan, L.Y., and Jan, Y.N. (2009). Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proc Natl Acad Sci U S A 106, 6363-6368. Lee, T., Lee, A., and Luo, L. (1999). Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065-4076. Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461. Lee, T., Marticke, S., Sung, C., Robinow, S., and Luo, L. (2000). Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. Neuron 28, 807-818. Li, X., Erclik, T., Bertet, C., Chen, Z., Voutev, R., Venkatesh, S., Morante, J., Celik, A., and Desplan, C. (2013). Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498, 456-462. Liu, L.Y., Long, X., Yang, C.P., Miyares, R.L., Sugino, K., Singer, R.H., and Lee, T. (2019). Mamo decodes hierarchical temporal gradients into terminal neuronal fate. Elife 8. Liu, N., Landreh, M., Cao, K., Abe, M., Hendriks, G.J., Kennerdell, J.R., Zhu, Y., Wang, L.S., and Bonini, N.M. (2012). The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482, 519-523. Liu, Z., Yang, C.P., Sugino, K., Fu, C.C., Liu, L.Y., Yao, X., Lee, L.P., and Lee, T. (2015). Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates. Science 350, 317-320. Loncle, N., Agromayor, M., Martin-Serrano, J., and Williams, D.W. (2015). An ESCRT module is required for neuron pruning. Sci Rep 5, 8461. Luo, L., and O'Leary, D.D. (2005). Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28, 127-156. Mao, Z., and Davis, R.L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits 3, 5. Marchetti, G., and Tavosanis, G. (2017). Steroid Hormone Ecdysone Signaling Specifies Mushroom Body Neuron Sequential Fate via Chinmo. Curr Biol 27, 3017-3024.e3014. Maurange, C., Cheng, L., and Gould, A.P. (2008). Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133, 891-902. Miyares, R.L., and Lee, T. (2019). Temporal control of Drosophila central nervous system development. Curr Opin Neurobiol 56, 24-32. Mukai, M., Hayashi, Y., Kitadate, Y., Shigenobu, S., Arita, K., and Kobayashi, S. (2007). MAMO, a maternal BTB/POZ-Zn-finger protein enriched in germline progenitors is required for the production of functional eggs in Drosophila. Mech Dev 124, 570-583. Narbonne-Reveau, K., Lanet, E., Dillard, C., Foppolo, S., Chen, C.H., Parrinello, H., Rialle, S., Sokol, N.S., and Maurange, C. (2016). Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila. Elife 5. Owald, D., and Waddell, S. (2015). Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila. Curr Opin Neurobiol 35, 178-184. Pauli, A., Althoff, F., Oliveira, R.A., Heidmann, S., Schuldiner, O., Lehner, C.F., Dickson, B.J., and Nasmyth, K. (2008). Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Developmental cell 14, 239-251. Pfeiffer, B.D., Ngo, T.T., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., and Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735-755. Rabinovich, D., Yaniv, S.P., Alyagor, I., and Schuldiner, O. (2016). Nitric Oxide as a Switching Mechanism between Axon Degeneration and Regrowth during Developmental Remodeling. Cell 164, 170-182. Ren, Q., Yang, C.P., Liu, Z., Sugino, K., Mok, K., He, Y., Ito, M., Nern, A., Otsuna, H., and Lee, T. (2017). Stem Cell-Intrinsic, Seven-up-Triggered Temporal Factor Gradients Diversify Intermediate Neural Progenitors. Curr Biol 27, 1303-1313. Riccomagno, M.M., and Kolodkin, A.L. (2015). Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol 31, 779-805. Rossi, A.M., and Desplan, C. (2020). Extrinsic activin signaling cooperates with an intrinsic temporal program to increase mushroom body neuronal diversity. Elife 9. Schuldiner, O., Berdnik, D., Levy, J.M., Wu, J.S., Luginbuhl, D., Gontang, A.C., and Luo, L. (2008). piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Developmental cell 14, 227-238. Schuldiner, O., and Yaron, A. (2015). Mechanisms of developmental neurite pruning. Cell Mol Life Sci 72, 101-119. Sekar, A., Bialas, A.R., De Rivera, H., Davis, A., Hammond, T.R., Kamitaki, N., Tooley, K., Presumey, J., Baum, M., and Van Doren, V. (2016). Schizophrenia risk from complex variation of complement component 4. Nature 530, 177-183. Shen, H.C., Chu, S.Y., Hsu, T.C., Wang, C.H., Lin, I.Y., and Yu, H.H. (2017). Semaphorin-1a prevents Drosophila olfactory projection neuron dendrites from mis-targeting into select antennal lobe regions. PLoS Genet 13, e1006751. Shih, M.M., Davis, F.P., Henry, G.L., and Dubnau, J. (2019). Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Drosophila Mushroom Bodies. G3 (Bethesda) 9, 81-94. Suzuki, T., Kaido, M., Takayama, R., and Sato, M. (2013). A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev Biol 380, 12-24. Syed, M.H., Mark, B., and Doe, C.Q. (2017). Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity. Elife 6. Tanaka, N.K., Awasaki, T., Shimada, T., and Ito, K. (2004). Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14, 449-457. Tanaka, N.K., Tanimoto, H., and Ito, K. (2008). Neuronal assemblies of the Drosophila mushroom body. J Comp Neurol 508, 711-755. Tang, G., Gudsnuk, K., Kuo, S.-H., Cotrina, M.L., Rosoklija, G., Sosunov, A., Sonders, M.S., Kanter, E., Castagna, C., and Yamamoto, A. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83, 1131-1143. Tasdemir-Yilmaz, O.E., and Freeman, M.R. (2014). Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes development 28, 20-33. Thomas, M.S., Davis, R., Karmiloff‐Smith, A., Knowland, V.C., and Charman, T. (2016). The over‐pruning hypothesis of autism. Developmental Science 19, 284-305. Ting, C.Y., McQueen, P.G., Pandya, N., Lin, T.Y., Yang, M., Reddy, O.V., O'Connor, M.B., McAuliffe, M., and Lee, C.H. (2014). Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron 81, 830-846. Upadhyay, A., Moss-Taylor, L., Kim, M.J., Ghosh, A.C., and O'Connor, M.B. (2017). TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 9. Waddell, S. (2013). Reinforcement signalling in Drosophila; dopamine does it all after all. Curr Opin Neurobiol 23, 324-329. Wang, Y.C., Yang, J.S., Johnston, R., Ren, Q., Lee, Y.J., Luan, H., Brody, T., Odenwald, W.F., and Lee, T. (2014). Drosophila intermediate neural progenitors produce lineage-dependent related series of diverse neurons. Development 141, 253-258. Watts, R.J., Hoopfer, E.D., and Luo, L. (2003). Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38, 871-885. Williams, D.W., Kondo, S., Krzyzanowska, A., Hiromi, Y., and Truman, J.W. (2006). Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 9, 1234-1236. Williams, D.W., and Truman, J.W. (2005). Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Wong, J.J.L., Li, S., Lim, E.K.H., Wang, Y., Wang, C., Zhang, H., Kirilly, D., Wu, C., Liou, Y.-C., and Wang, H. (2013). A Cullin1-based SCF E3 ubiquitin ligase targets the InR/PI3K/TOR pathway to regulate neuronal pruning. PLoS biology 11, e1001657. Xiong, X.P., Kurthkoti, K., Chang, K.Y., Li, J.L., Ren, X., Ni, J.Q., Rana, T.M., and Zhou, R. (2016). miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila. PLoS Pathog 12, e1006034. Yang, C.P., Samuels, T.J., Huang, Y., Yang, L., Ish-Horowicz, D., Davis, I., and Lee, T. (2017). Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells. Development 144, 3454-3464. Yaniv, S.P., and Schuldiner, O. (2016). A fly's view of neuronal remodeling. Wiley Interdiscip Rev Dev Biol 5, 618-635. Yu, X.M., Gutman, I., Mosca, T.J., Iram, T., Ozkan, E., Garcia, K.C., Luo, L., and Schuldiner, O. (2013). Plum, an immunoglobulin superfamily protein, regulates axon pruning by facilitating TGF-β signaling. Neuron 78, 456-468. Zhang, H., Wang, Y., Wong, J.J., Lim, K.L., Liou, Y.C., Wang, H., and Yu, F. (2014). Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila. Dev Cell 30, 463-478. Zhang, Y., Alexander, P.B., and Wang, X.F. (2017). TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb Perspect Biol 9. Zheng, X., Wang, J., Haerry, T.E., Wu, A.Y.-H., Martin, J., O'Connor, M.B., Lee, C.-H.J., and Lee, T. (2003). TGF-β signaling activates steroid hormone receptor expression during neuronal remodeling in the Drosophila brain. Cell 112, 303-315. Zhu, C.C., Boone, J.Q., Jensen, P.A., Hanna, S., Podemski, L., Locke, J., Doe, C.Q., and O'Connor, M.B. (2008). Drosophila Activin- and the Activin-like product Dawdle function redundantly to regulate proliferation in the larval brain. Development 135, 513-521. Zhu, S., Lin, S., Kao, C.F., Awasaki, T., Chiang, A.S., and Lee, T. (2006). Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell 127, 409-422. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79332 | - |
| dc.description.abstract | "神經幹細胞 (neural stem cells) 能產生出各種不同類型的神經元進而組成一個具有層次性的神經系統,隨後再依規律性的修改生成出神經迴路 (neural circuits),因而增加了神經的可塑性 (neural plasticity),所以有許多的研究會著重於神經元要如何生長及精確化而達到個體成年所需的神經元。果蠅的學習與記憶中樞-蘑菇體 (mushroom body) 包含了3種不同的神經元:γ神經元、α’/β’神經元和α/β神經元,並且作為模式系統去研究細胞命運特化 (cell fate specification) 和神經再塑性 (neural remodeling) 是如何發生的,TGF-β訊息 (transforming growth factor β (TGF-β) signaling)、蛻皮激素訊息 (Ecdysone signaling) 和Maternal gene required for meiosis (Mamo) 已被報導說同時參與在細胞命運決定和神經元神經突修剪 (neurite pruning) 的兩個過程中,因此當下仍不清楚外在訊息和內部訊息的真正功能是什麼。 此刻,我會證明帶有人類流感凝集素 (human influenza hemagglutinin, HA) 標籤的第一型TGF-β受體:Babo (TGF-β receptor, Babo) 在新生成的神經元中具有高表現量,並且持續表現在蘑菇體的γ神經元中,所以以上結果視為TGF-β訊息可能在神經元神經突的生長和γ神經元的軸突修剪 (axon pruning) 所必須的條件。另外,我描述了一個全新功能關於TGF-β訊息聯合蛻皮激素訊息如何編織γ神經元的成熟化 (neural maturation),在成蛹階段開啟表現並標示著亞型蘑菇體神經元之晚期標誌,當受到蛻皮激素受體 (Ecdysone receptor, EcR) 和Babo的RNA干擾 (RNA interference, RNAi) 處置時就不會啟動並表現在蘑菇體神經元中,也就意味著在成蟲階段的γ神經元可能還維持著幼蟲之不成熟狀態而不是成蟲之成熟狀態。最後,Mamo異構體 (Mamo isoforms) 被γ和α’/β’神經元所需要而去調控變態 (metamorphosis) 期間的細胞命運特化。MamoD~G異構體主要表現在於α’/β’神經元且主導著蘑菇體α’/β’專一性的細胞標誌。除了細胞標誌調控之外,α’/β’和α/β之間的背葉 (dorsal lobe) 排斥現象 (repulsion) 是在MamoD~G異構體驅使細胞表層分子Semaphorin 1a (Sema-1a) 的控制之下而成的;相較之下MamoH,I異構體主要存在於γ神經元且引導著蘑菇體γ專一性的細胞標誌。引人注目的是MamoH,I異構體的敲落 (knockdown) 造成修剪缺失,然而敲落所有Mamo異構體卻造成選擇性的修剪/不完全的修剪缺失 (select pruning/semi-pruning defect)。 總結,我讓內生性的TGF-β受體:Babo的表現圖樣顯現出來並詮釋了TGF-β訊息促使神經元藉由幼蟲至成蟲階段的轉變使得細胞本體的成熟化,再來專一性的Mamo異構物最終在後分裂時期之已分化的神經元中調控及維持細胞命運特化。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:58:18Z (GMT). No. of bitstreams: 1 U0001-2710202108424900.pdf: 6073232 bytes, checksum: e0b4ce32fd3bf872821bc270c77031f3 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 p.1 致謝 p.2 中文摘要 p.3 Abstract p.5 Table of Contents p.7 List of Tables p.10 List of Figures p.11 Abbreviations p.14 Chapter 1. Introductions p.17 1. Introduction of Drosophila mushroom body p.17 2. Cell fate specification in Drosophila p.19 3. Neural remodeling in Drosophila p.23 Chapter 2. Visualization of Endogenous Type I TGF-β Receptor Baboon in the Drosophila Brain p.29 Results p.31 1. Commercially available Babo antibodies fail to faithfully detect Babo expression p.31 2. Visualization of endogenous Babo expression using a baboHA knock-in fly p.32 3. Babo::HA is primarily expressed in neuropils and nerve fibers of the brain. p.33 4. Utilization of the baboHA fly to validate babo as a miR-34 target gene. p.35 Discussion p.37 Chapter 3. Drosophila hormones control transitional changes from the larval state to the adult matured state in differentiated neurons p.39 Results p.42 1. Mutations of chinmo, EcR and mamo display a similar morphological phenotype but not the marker expression in γ neurons p.42 2. TGF-β signaling associated with Ecdysone signaling erases the larval γ neuronal identity and confers the adult γ neuronal identity through mamo p.43 3. LOF of mamo but not TGF-β signaling and Ecdysone signaling fails to inhibit the α/β neuron-specific marker expression in γ neurons p.45 4. Overexpression of Mamo-F/G but not Mamo-H/I partially restores the γ and α’/β’ neuronal identity in the chinmo mutation p.46 Discussion p.48 Chapter 4. Mamo isoforms specialize terminal fate specification in late state of differentiated neurons p.51 Results p.54 1. The expression patterns of endogenous MamoD~G::HA and MamoH,I::HA in developmental MB neurons p.54 2. Specific Mamo isoforms determine different marker expression in MB subtype-specific neurons p.55 3. Mamo isoforms differentially regulate the morphology of MB neurons p.59 Discussion p.62 1. Spatial patterning of Mamo isoforms as terminal fate regulators in MB neurons p.62 2. The process of cell fate specification in neural development p.65 Materials and Methods p.67 References p.71 Tables p.81 Figures p.95" | |
| dc.language.iso | zh-TW | |
| dc.title | 果蠅TGF-β訊息傳遞和Mamo在已分化的蘑菇體神經元中調控神經元的成熟化和命運特化 | zh_TW |
| dc.title | Drosophila TGF-β signaling pathway and Mamo in neural maturation and fate specification of differentiated mushroom body neurons | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 游宏祥(Hung-Hsiang Yu) | |
| dc.contributor.oralexamcommittee | 溫進德(Hsin-Tsai Liu),高智飛(Chih-Yang Tseng),林書葦 | |
| dc.subject.keyword | 蘑菇體,細胞命運特化,神經元成熟化,TGF-β訊息,蛻皮激素訊息,Mamo異構體, | zh_TW |
| dc.subject.keyword | mushroom body,cell fate specification,neural maturation,TGF-β signaling,Ecdysone signaling,Mamo isoforms, | en |
| dc.relation.page | 136 | |
| dc.identifier.doi | 10.6342/NTU202104306 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2710202108424900.pdf | 5.93 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
