請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79321完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李岳聯(Yueh-Lien Lee) | |
| dc.contributor.author | Ying Chen | en |
| dc.contributor.author | 陳穎 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:58:04Z | - |
| dc.date.available | 2021-11-04 | |
| dc.date.available | 2022-11-23T08:58:04Z | - |
| dc.date.copyright | 2021-11-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-27 | |
| dc.identifier.citation | [1] NACE International impact study. http://impact.nace.org/economic-impact.aspx (accessed. [2] H. A. Videla and W. G. Characklis, 'Biofouling and microbially influenced corrosion,' International Biodeterioration Biodegradation, vol. 29, no. 3-4, pp. 195-212, 1992. [3] M. Schultz, J. Bendick, E. Holm, and W. Hertel, 'Economic impact of biofouling on a naval surface ship,' Biofouling, vol. 27, no. 1, pp. 87-98, 2011. [4] B. Little et al., 'Microbially influenced corrosion–any progress?,' Corrosion Science, p. 108641, 2020. [5] A. Kotrikla, 'Environmental management aspects for TBT antifouling wastes from the shipyards,' Journal of Environmental Management, vol. 90, pp. S77-S85, 2009. [6] K. A. Dafforn, J. A. Lewis, and E. L. Johnston, 'Antifouling strategies: history and regulation, ecological impacts and mitigation,' Marine Pollution Bulletin, vol. 62, no. 3, pp. 453-465, 2011. [7] Y.-J. Lee, S. Kim, S.-H. Park, H. Park, and Y.-D. Huh, 'Morphology-dependent antibacterial activities of Cu2O,' Materials Letters, vol. 65, no. 5, pp. 818-820, 2011. [8] G. McDonnell and A. D. Russell, 'Antiseptics and disinfectants: activity, action, and resistance,' Clinical microbiology reviews, vol. 12, no. 1, p. 147, 1999. [9] W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, 'Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli,' Applied and environmental microbiology, vol. 74, no. 7, p. 2171, 2008. [10] PubChem. 'Thymol toxicity.' https://pubchem.ncbi.nlm.nih.gov/compound/Thymol#section=Non-Human-Toxicity-Excerpts (accessed. [11] S. Shahidi, N. Aslan, M. Ghoranneviss, and M. Korachi, 'Effect of thymol on the antibacterial efficiency of plasma-treated cotton fabric,' Cellulose, vol. 21, no. 3, pp. 1933-1943, 2014. [12] K. Kachur and Z. Suntres, 'The antibacterial properties of phenolic isomers, carvacrol and thymol,' Critical reviews in food science and nutrition, vol. 60, no. 18, pp. 3042-3053, 2020. [13] E. Tomlinson, M. Brown, and S. Davis, 'Effect of colloidal association on the measured activity of alkylbenzyldimethylammonium chlorides against Pseudomonas aeruginosa,' Journal of medicinal chemistry, vol. 20, no. 10, pp. 1277-1282, 1977. [14] A. Bogler, S. Lin, and E. Bar-Zeev, 'Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: principles, impacts and future directions,' Journal of Membrane Science, vol. 542, pp. 378-398, 2017. [15] G. S. Lorite, C. M. Rodrigues, A. A. De Souza, C. Kranz, B. Mizaikoff, and M. A. Cotta, 'The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution,' Journal of Colloid and Interface Science, vol. 359, no. 1, pp. 289-295, 2011. [16] E. Bar-Zeev, I. Berman-Frank, O. Girshevitz, and T. Berman, 'Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles,' Proceedings of the National Academy of Sciences, vol. 109, no. 23, pp. 9119-9124, 2012. [17] I. Fitridge, T. Dempster, J. Guenther, and R. De Nys, 'The impact and control of biofouling in marine aquaculture: a review,' Biofouling, vol. 28, no. 7, pp. 649-669, 2012. [18] L. ENGELHARDT. 'KEEPING A CLEAN BOTTOM.' https://www.clubmarine.com.au/exploreboating/articles/32-3-Keeping-A-Clean-Bottom (accessed. [19] M. E. Callow and J. A. Callow, 'Marine biofouling: a sticky problem,' Biologist, vol. 49, no. 1, pp. 1-5, 2002. [20] M. Wahl, F. Goecke, A. Labes, S. Dobretsov, and F. Weinberger, 'The second skin: ecological role of epibiotic biofilms on marine organisms,' Frontiers in microbiology, vol. 3, p. 292, 2012. [21] T. Abee, Á. T. Kovács, O. P. Kuipers, and S. Van der Veen, 'Biofilm formation and dispersal in Gram-positive bacteria,' Current opinion in biotechnology, vol. 22, no. 2, pp. 172-179, 2011. [22] C. Song et al., 'Influences of graphene oxide on biofilm formation of gram-negative and gram-positive bacteria,' Environmental Science and Pollution Research, vol. 25, no. 3, pp. 2853-2860, 2018. [23] A. W. Larkum, S. Douglas, and J. A. Raven, Photosynthesis in algae. Springer Science Business Media, 2012. [24] B. Little et al., 'Microbially influenced corrosion—Any progress?,' Corrosion Science, vol. 170, p. 108641, 2020. [25] B. J. Little and J. S. Lee, 'Microbiologically influenced corrosion: an update,' International Materials Reviews, vol. 59, no. 7, pp. 384-393, 2014. [26] R. Jia, T. Unsal, D. Xu, Y. Lekbach, and T. Gu, 'Microbiologically influenced corrosion and current mitigation strategies: a state of the art review,' International Biodeterioration Biodegradation, vol. 137, pp. 42-58, 2019. [27] E. Hamzah, M. Hussain, Z. Ibrahim, and A. Abdolahi, 'Influence of Pseudomonas aeruginosa bacteria on corrosion resistance of 304 stainless steel,' Corrosion engineering, science and technology, vol. 48, no. 2, pp. 116-120, 2013. [28] P. Angell, J.-S. Luo, and D. White, 'Microbially sustained pitting corrosion of 304 stainless steel in anaerobic seawater,' Corrosion Science, vol. 37, no. 7, pp. 1085-1096, 1995. [29] M. J. Correia, X. R. Nóvoa, and M. Salta, Smart green structural and repair materials: TR 6.3 – Stainless steel rebars. 2012. [30] D. A. Jones, Principles and prevention of corrosion. Macmillan, 1992. [31] X. Sheng, Y.-P. Ting, and S. O. Pehkonen, 'The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316,' Corrosion Science, vol. 49, no. 5, pp. 2159-2176, 2007. [32] G. Muyzer and A. J. Stams, 'The ecology and biotechnology of sulphate-reducing bacteria,' Nature reviews microbiology, vol. 6, no. 6, pp. 441-454, 2008. [33] S. Yuan, B. Liang, Y. Zhao, and S. Pehkonen, 'Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria,' Corrosion Science, vol. 74, pp. 353-366, 2013. [34] B. H. Kim, S. S. Lim, W. R. W. Daud, G. M. Gadd, and I. S. Chang, 'The biocathode of microbial electrochemical systems and microbially-influenced corrosion,' Bioresource technology, vol. 190, pp. 395-401, 2015. [35] C. von Wolzogen Kühr and L. van der Vlugt, 'The graphitization of cast iron as an electrobiochemical process in anaerobic soil. Water 18: 147–165. promote iron dissolution. Direct consumption of electrons can oxidize the iron much faster. Thickness of arrows symbolizes speed. The net reaction is always 4Fe0+ SO4 2-+ 4H2O→ FeS+ 3Fe2++ 8HO,' ed: Fig, 1934. [36] W. P. Iverson, 'Direct evidence for the cathodic depolarization theory of bacterial corrosion,' Science, vol. 151, no. 3713, pp. 986-988, 1966. [37] R. B. Miller, K. Lawson, A. Sadek, C. N. Monty, and J. M. Senko, 'Uniform and pitting corrosion of carbon steel by Shewanella oneidensis MR-1 under nitrate-reducing conditions,' Applied and environmental microbiology, vol. 84, no. 12, 2018. [38] D. Xu, Y. Li, F. Song, and T. Gu, 'Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis,' Corrosion Science, vol. 77, pp. 385-390, 2013. [39] D. Xu, Y. Li, and T. Gu, 'Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria,' Bioelectrochemistry, vol. 110, pp. 52-58, 2016. [40] F. Tian, X. He, X. Bai, and C. Yuan, 'Electrochemical corrosion behaviors and mechanism of carbon steel in the presence of acid-producing bacterium Citrobacter farmeri in artificial seawater,' International Biodeterioration Biodegradation, vol. 147, p. 104872, 2020. [41] Y. Dong, B. Jiang, D. Xu, C. Jiang, Q. Li, and T. Gu, 'Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1,' Bioelectrochemistry, vol. 123, pp. 34-44, 2018. [42] J. Starosvetsky, D. Starosvetsky, B. Pokroy, T. Hilel, and R. Armon, 'Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling,' Corrosion Science, vol. 50, no. 2, pp. 540-547, 2008. [43] H. Liu et al., 'Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water,' Corrosion Science, vol. 100, pp. 484-495, 2015. [44] H. Makita, 'Iron-oxidizing bacteria in marine environments: recent progresses and future directions,' World Journal of Microbiology and Biotechnology, vol. 34, no. 8, p. 110, 2018. [45] R. B. Miller, K. Lawson, A. Sadek, C. N. Monty, and J. M. Senko, 'Uniform and pitting corrosion of carbon steel by Shewanella oneidensis MR-1 under nitrate-reducing conditions,' Applied and environmental microbiology, vol. 84, no. 12, pp. e00790-18, 2018. [46] A. Szöllősi, J. M. Rezessy-Szabó, Á. Hoschke, and Q. D. Nguyen, 'Novel method for screening microbes for application in microbial fuel cell,' Bioresource technology, vol. 179, pp. 123-127, 2015. [47] P. Kalnaowakul, D. Xu, and A. Rodchanarowan, 'Accelerated Corrosion of 316L Stainless Steel Caused by Shewanella algae Biofilms,' ACS Applied Bio Materials, vol. 3, no. 4, pp. 2185-2192, 2020. [48] W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, 'Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli,' Applied and environmental microbiology, vol. 74, no. 7, pp. 2171-2178, 2008. [49] M. C. Jennings, K. P. Minbiole, and W. M. Wuest, 'Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance,' ACS infectious diseases, vol. 1, no. 7, pp. 288-303, 2015. [50] 毒災防救管理資訊系統. 'TBT toxicity.' https://toxicdms.epa.gov.tw/Chm/ChmDetail/1184 (accessed. [51] E. González et al., 'Sol–gel coatings doped with encapsulated silver nanoparticles: inhibition of biocorrosion on 2024-T3 aluminum alloy promoted by Pseudomonas aeruginosa,' Journal of Materials Research and Technology, vol. 8, no. 2, pp. 1809-1818, 2019. [52] E. A. Elkhawass, M. E. Mohallal, and M. F. Soliman, 'Acute toxicity of different sizes of silver nanoparticles intraperitonally injected in Balb/C mice using two toxicological methods,' Int J Pharm Pharm Sci, vol. 7, no. 2, pp. 94-99, 2015. [53] J. O. Okeniyi and E. T. Akinlabi, 'Modeling Dialium guineense mediated Zn-nanoparticle growth inhibition on Gram-positive microbes inducing microbiologically-influenced-corrosion,' Materials Today: Proceedings, 2020. [54] R. Jia, D. Yang, H. H. Al-Mahamedh, and T. Gu, 'Electrochemical testing of biocide enhancement by a mixture of D-amino acids for the prevention of a corrosive biofilm consortium on carbon steel,' Industrial Engineering Chemistry Research, vol. 56, no. 27, pp. 7640-7649, 2017. [55] L. Wang, M. Fang, J. Liu, J. He, J. Li, and J. Lei, 'Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications,' ACS applied materials interfaces, vol. 7, no. 43, pp. 24082-24093, 2015. [56] T. Makhetha and R. Moutloali, 'Incorporation of a novel Ag–Cu@ ZIF-8@ GO nanocomposite into polyethersulfone membrane for fouling and bacterial resistance,' Journal of Membrane Science, vol. 618, p. 118733, 2021. [57] W. Zhuang et al., 'Highly potent bactericidal activity of porous metal‐organic frameworks,' Advanced healthcare materials, vol. 1, no. 2, pp. 225-238, 2012. [58] F. Ma, J. Li, Z. Zeng, and Y. Gao, 'Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel,' Journal of materials science technology, vol. 35, no. 3, pp. 448-459, 2019. [59] X. Zhai et al., 'Electrodeposition of capsaicin-induced ZnO/Zn nanopillar films for marine antifouling and antimicrobial corrosion,' Surface and Coatings Technology, p. 125959, 2020. [60] Y. Qi et al., 'Corrosion behavior and antifouling ability of Cu-Zn-Al/Zn-Al composite coating on Q235 steel,' Surface and Coatings Technology, p. 126614, 2020. [61] S. Sutton, 'Measurement of Microbial Cells by Optical Density.' [62] D. F. Swinehart, 'The beer-lambert law,' Journal of chemical education, vol. 39, no. 7, p. 333, 1962. [63] D. ASTM, '3623− 78a: Standard Test Method for Testing Antifouling Panels in Shallow Submergence,' ed: ASTM International: West Conshohocken, PA, 2004. [64] D. ASTM, '6990-05. Standard practice for evaluating biofouling resistance and physical performance of marine coating systems,' ed: American Society for Testing and Materials International West Conshohocken, PA, 2005. [65] D. ASTM. 'Standard Test Method for Erosion Testing of Antifouling Paints Using High Velocity Water.' http://www.astm.org/cgi-bin/resolver.cgi?D4938-89(2013) (accessed. [66] D. ASTM. 'Standard Test Method for Subjecting Marine Antifouling Coating to Biofouling and Fluid Shear Forces in Natural Seawater.' http://www.astm.org/cgi-bin/resolver.cgi?D4939-89(2020) (accessed. [67] J. R. Matias, J. Rabenhorst, A. Mary, and A. A. Lorilla, 'Marine biofouling testing of experimental marine paints: Technical considerations on methods, site selection and dynamic tests,' in Proc SSPC 2003 Industrial Protective Coatings Conference and Exhibit (in New Orleans, Louisiana), 2003. [68] G. W. Swain, B. Kovach, A. Touzot, F. Casse, and C. J. Kavanagh, 'Measuring the performance of today's antifouling coatings,' Journal of Ship Production, vol. 23, no. 3, p. 164, 2007. [69] M. R. Tapia-Rodriguez, A. Hernandez-Mendoza, G. A. Gonzalez-Aguilar, M. A. Martinez-Tellez, C. M. Martins, and J. F. Ayala-Zavala, 'Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces,' Food Control, vol. 75, pp. 255-261, 2017. [70] 'BDMDAC toxicity.' https://datasheets.scbt.com/sc-227342.pdf (accessed. [71] G. McDonnell and A. D. Russell, 'Antiseptics and disinfectants: activity, action, and resistance,' Clinical microbiology reviews, vol. 12, no. 1, pp. 147-179, 1999. [72] M. Sousa-Silva, M. Simões, L. Melo, and I. Machado, 'Pseudomonas fluorescens tolerance to benzyldimethyldodecyl ammonium chloride: Altered phenotype and cross-resistance,' Journal of Global Antimicrobial Resistance, vol. 15, pp. 188-195, 2018. [73] G. A. Pankey and L. Sabath, 'Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections,' Clinical infectious diseases, vol. 38, no. 6, pp. 864-870, 2004. [74] E. A. Greene, V. Brunelle, G. E. Jenneman, and G. Voordouw, 'Synergistic inhibition of microbial sulfide production by combinations of the metabolic inhibitor nitrite and biocides,' Applied and Environmental Microbiology, vol. 72, no. 12, pp. 7897-7901, 2006. [75] F. Fratini et al., 'A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium JR et G. Forst essential oils against Staphylococcus aureus strains,' Microbiological research, vol. 195, pp. 11-17, 2017. [76] F. C. Odds, 'Synergy, antagonism, and what the chequerboard puts between them,' Journal of Antimicrobial Chemotherapy, vol. 52, no. 1, pp. 1-1, 2003. [77] EUCAST, 'Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents,' Clin. Microbiol. Infect., vol. 6, pp. 503e-508e, 2000. [78] C. Davies and A. Jones, 'The precipitation of silver chloride from aqueous solutions. Part I,' Discussions of the Faraday Society, vol. 5, pp. 103-111, 1949. [79] M. Insley and G. Parfitt, 'Precipitation of silver chloride from homogeneous solution,' Kolloid-Zeitschrift und Zeitschrift für Polymere, vol. 233, no. 1, pp. 930-934, 1969. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79321 | - |
| dc.description.abstract | 海洋生物污損是影響海洋工業的世界性問題,像是在長時間航行的船壁上常常會發現大量生物附著,這不但會使船隻航行時阻力增加,並且提升耗油量,更嚴重還會導致微生物腐蝕的發生,故近年全球都試圖研發新型殺菌劑塗層來抑制生物污損。由於過去檢測塗層效果都需於海洋中長時間實地檢測,本文擬提出一系列快速檢測抑制微生物之方法,不管任何殺菌劑都能透過96孔盤棋盤稀釋法及瓊脂稀釋塗盤法,在短時間內得到其最小抑制濃度(MIC)及最小殺菌濃度(MBC)。當中會選用不同種類的殺菌劑來證明此方法的準確性,例如金屬銀離子、常見商用殺菌劑百里酚(Thymol)及十二烷基二甲基苄基氯化銨(BDMDAC),還有複合殺菌劑組。並且利用結果之有效抑制濃度的倍數來製作殺菌劑塗層,藉由靜態浸泡14天後拍攝塗層試片倒立共軛焦雷射掃描顯微鏡(CLSM)的結果及動態沖蝕試驗後的結果,能說明在依照其最佳濃度的倍數來製作新型防污塗層時,能快速且準確地找出最有效之最小抑菌塗層濃度,並有效降低對於環境的汙染,達到永續之目標。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:58:04Z (GMT). No. of bitstreams: 1 U0001-2710202112541400.pdf: 5573470 bytes, checksum: e9c5230f4a22d384f839719205aa140e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定 # 誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 ix 第 1 章 前言 1 第 2 章 文獻回顧 3 2.1 海洋生物污損 3 2.1.1 海洋生物污損機制 3 2.1.2 常見海洋污損生物 4 2.2 微生物腐蝕 6 2.2.1 海洋微生物腐蝕機制 6 2.2.2 常見導致微生物腐蝕之細菌 8 2.3 海洋微生物腐蝕防治方法 13 2.3.1 物理方法 13 2.3.2 化學方法 13 2.3.3 微生物方法 14 2.3.4 新型防污塗層 15 2.4 微生物特性分析 18 2.4.1 光密度(optical density) 18 2.5 塗層性能檢測 19 2.5.1 抗生物污損檢測 19 2.5.2 塗層動態試驗 19 第 3 章 實驗方法與步驟 23 3.1 實驗流程 23 3.2 微生物特性分析 24 3.2.1 菌種選定與培養 24 3.2.2 殺菌劑選用 26 3.2.3 殺菌劑抑制濃度測試 28 3.2.4 大容量殺菌劑效果測試 32 3.3 塗層效果檢測 33 3.3.1 靜態浸泡測試 33 3.3.2 動態沖蝕試驗 33 3.3.3 CLSM檢測 35 第 4 章 實驗結果 37 4.1 微生物特性分析之結果 37 4.1.1 金屬銀離子之抑制效果 37 4.1.2 百里酚之抑制效果 50 4.1.3 BDMDAC之抑制效果 54 4.1.4 複合殺菌劑之抑制效果 57 4.2 塗層效果測試 61 4.2.1 靜態浸泡後CLSM結果 61 4.2.2 動態沖蝕後CLSM結果 63 第 5 章 結果討論 65 5.1 金屬銀離子之抑制效果 65 5.2 百里酚之抑制效果 69 第 6 章 結論 73 第 7 章 未來展望 74 參考文獻 75 | |
| dc.language.iso | zh-TW | |
| dc.title | 海生物腐蝕抑制材料性能快速檢測技術之開發 | zh_TW |
| dc.title | The development of rapid test for inhibiting marine microbiologically influenced corrosion material | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 湯偉鉦(Hsin-Tsai Liu),魏宇昆(Chih-Yang Tseng),郭振華 | |
| dc.subject.keyword | 快速檢測方法,最小抑制濃度,最小殺菌濃度,倒立共軛焦雷射掃描顯微鏡,動態沖蝕試驗, | zh_TW |
| dc.subject.keyword | rapid test method,minimum inhibitory concentration,minimum bactericidal concentration,confocal laser scanning microscopy,dynamic erosion test, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202104330 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2710202112541400.pdf | 5.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
