請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79308完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童世煌(Shih-Huang Tung) | |
| dc.contributor.author | Dai-Hua Jiang | en |
| dc.contributor.author | 江岱樺 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:57:51Z | - |
| dc.date.available | 2021-10-04 | |
| dc.date.available | 2022-11-23T08:57:51Z | - |
| dc.date.copyright | 2021-10-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-01 | |
| dc.identifier.citation | 1. Sun, Y.; Wang, W.; Zhang, H.; Su, Q.; Wei, J.; Liu, P.; Chen, S.; Zhang, S., High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer. ACS Appl. Mater. Interfaces 2018, 10 (22), 18902-18909. 2. Kim, J.-H.; Han, C.-Y.; Lee, K.-H.; An, K.-S.; Song, W.; Kim, J.; Oh, M. S.; Do, Y. R.; Yang, H., Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer. Chem. Mater. 2015, 27 (1), 197-204. 3. Liang, X.; Ren, Y.; Bai, S.; Zhang, N.; Dai, X.; Wang, X.; He, H.; Jin, C.; Ye, Z.; Chen, Q., Colloidal indium-doped zinc oxide nanocrystals with tunable work function: rational synthesis and optoelectronic applications. Chem. Mater. 2014, 26 (17), 5169-5178. 4. Peng, H.; Wang, W.; Chen, S., Efficient quantum-dot light-emitting diodes with 4, 4, 4-tris (N-carbazolyl)-triphenylamine (TcTa) electron-blocking layer. IEEE Electron Device Lett. 2015, 36 (4), 369-371. 5. Sun, Q.; Subramanyam, G.; Dai, L.; Check, M.; Campbell, A.; Naik, R.; Grote, J.; Wang, Y., highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer. ACS Nano 2009, 3 (3), 737-743. 6. Ho, P. K.; Kim, J.-S.; Burroughes, J. H.; Becker, H.; Li, S. F.; Brown, T. M.; Cacialli, F.; Friend, R. H., Molecular-scale interface engineering for polymer light-emitting diodes. Nature 2000, 404 (6777), 481-484. 7. Saito, K.; Isono, T.; Sun, H.-S.; Kakuchi, T.; Chen, W.-C.; Satoh, T., Rod–coil type miktoarm star copolymers consisting of polyfluorene and polylactide: precise synthesis and structure–morphology relationship. Polym. Chem. 2015, 6 (39), 6959-6972. 8. Jin, X.; Chang, C.; Zhao, W.; Huang, S.; Gu, X.; Zhang, Q.; Li, F.; Zhang, Y.; Li, Q., Balancing the electron and hole transfer for efficient quantum dot light-emitting diodes by employing a versatile organic electron-blocking layer. ACS Appl. Mater. Interfaces 2018, 10 (18), 15803-15811. 9. Tseng, S.-R.; Meng, H.-F.; Yeh, C.-H.; Lai, H.-C.; Horng, S.-F.; Liao, H.-H.; Hsu, C.-S.; Lin, L.-C., High-efficiency blue multilayer polymer light-emitting diode fabricated by a general liquid buffer method. Synth. Met. 2008, 158 (3-4), 130-134. 10. Campbell, I.; Smith, D.; Neef, C.; Ferraris, J., Consistent time-of-flight mobility measurements and polymer light-emitting diode current–voltage characteristics. Appl. Phys. Lett. 1999, 74 (19), 2809-2811. 11. DeMello, J.; Tessler, N.; Graham, S.; Friend, R., Ionic space-charge effects in polymer light-emitting diodes. Phys. Rev. B 1998, 57 (20), 12951. 12. Haque, S. A.; Koops, S.; Tokmoldin, N.; Durrant, J. R.; Huang, J.; Bradley, D. D.; Palomares, E., A Multilayered Polymer Light‐Emitting Diode Using a Nanocrystalline Metal‐Oxide Film as a Charge‐Injection Electrode. Adv. Mater. 2007, 19 (5), 683-687. 13. O’Brien, D.; Giebeler, C.; Fletcher, R.; Cadby, A.; Palilis, L.; Lidzey, D.; Lane, P.; Bradley, D.; Blau, W., Electrophosphoresence from a doped polymer light emitting diode. Synth. Met. 2001, 116 (1-3), 379-383. 14. Carter, S.; Angelopoulos, M.; Karg, S.; Brock, P.; Scott, J., Polymeric anodes for improved polymer light-emitting diode performance. Appl. Phys. Lett. 1997, 70 (16), 2067-2069. 15. Shaheen, S.; Jabbour, G.; Morrell, M.; Kawabe, Y.; Kippelen, B.; Peyghambarian, N.; Nabor, M.-F.; Schlaf, R.; Mash, E. A.; Armstrong, N. R., Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode. J. Appl. Phys. 1998, 84 (4), 2324-2327. 16. Son, D. I.; Kim, H. H.; Hwang, D. K.; Kwon, S.; Choi, W. K., Inverted CdSe–ZnS quantum dots light-emitting diode using low-work function organic material polyethylenimine ethoxylated. J. Mater. Chem. C 2014, 2 (3), 510-514. 17. Burrows, P.; Forrest, S., Electroluminescence from trap‐limited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett. 1994, 64 (17), 2285-2287. 18. Burroughes, J. H.; Bradley, D. D.; Brown, A.; Marks, R.; Mackay, K.; Friend, R. H.; Burns, P.; Holmes, A., Light-emitting diodes based on conjugated polymers. Nature 1990, 347 (6293), 539-541. 19. Braun, D.; Heeger, A., Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 1991, 59 (7), 878-878. 20. Brown, A.; Bradley, D.; Burroughes, J.; Friend, R.; Greenham, N.; Burn, P.; Holmes, A.; Kraft, A., Poly (p‐phenylenevinylene) light‐emitting diodes: Enhanced electroluminescent efficiency through charge carrier confinement. Appl. Phys. Lett. 1992, 61 (23), 2793-2795. 21. Yang, Y.; Westerweele, E.; Zhang, C.; Smith, P.; Heeger, A., Enhanced performance of polymer light‐emitting diodes using high‐surface area polyaniline network electrodes. J. Appl. Phys. 1995, 77 (2), 694-698. 22. Parker, I.; Pei, Q.; Marrocco, M., Efficient blue electroluminescence from a fluorinated polyquinoline. Appl. Phys. Lett. 1994, 65 (10), 1272-1274. 23. Berggren, M.; Inganäs, O.; Gustafsson, G.; Rasmusson, J.; Andersson, M. R.; Hjertberg, T.; Wennerström, O., Light-emitting diodes with variable colours from polymer blends. Nature 1994, 372 (6505), 444-446. 24. Thompson, J.; Blyth, R.; Mazzeo, M.; Anni, M.; Gigli, G.; Cingolani, R., White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode? Appl. Phys. Lett. 2001, 79 (5), 560-562. 25. Moons, E., Conjugated polymer blends: linking film morphology to performance of light emitting diodes and photodiodes. J. Phys. Condens. Matter 2002, 14 (47), 12235. 26. Chen, Y.; Chen, J.; Zhao, Y.; Ma, D., High efficiency blue phosphorescent organic light-emitting diode based on blend of hole-and electron-transporting materials as a co-host. Appl. Phys. Lett. 2012, 100 (21), 114. 27. Zhang, L.; Cai, C.; Li, K. F.; Tam, H. L.; Chan, K. L.; Cheah, K. W., Efficient organic light-emitting diode through triplet exciton reharvesting by employing blended electron donor and acceptor as the emissive layer. ACS Appl. Mater. Interfaces 2015, 7 (45), 24983-24986. 28. Tu, G.; Mei, C.; Zhou, Q.; Cheng, Y.; Geng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F., Highly Efficient Pure‐White‐Light‐Emitting Diodes from a Single Polymer: Polyfluorene with Naphthalimide Moieties. Adv. Funct. Mater. 2006, 16 (1), 101-106. 29. Zou, J.; Liu, J.; Wu, H.; Yang, W.; Peng, J.; Cao, Y., High-efficiency and good color quality white light-emitting devices based on polymer blend. Org. Electron. 2009, 10 (5), 843-848. 30. Zhang, X.; Zheng, Q.; Tang, Z.; Li, W.; Zhang, Y.; Xu, K.; Xue, X.; Xu, J.; Wang, H.; Wei, B., Tunable hole injection of solution-processed polymeric carbon nitride towards efficient organic light-emitting diode. Appl. Phys. Lett. 2018, 112 (8), 083302. 31. Nimith, K.; Satyanarayan, M.; Umesh, G., Enhancement in fluorescence quantum yield of MEH-PPV: BT blends for polymer light emitting diode applications. Opt. Mater. 2018, 80, 143-148. 32. Zhang, Y.; Lee, J.; Forrest, S. R., Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat. Commun. 2014, 5 (1), 1-7. 33. Li, G.; Fleetham, T.; Li, J., Efficient and stable white organic Light‐Emitting diodes employing a single emitter. Adv. Mater. 2014, 26 (18), 2931-2936. 34. Zheng, H.; Zheng, Y.; Liu, N.; Ai, N.; Wang, Q.; Wu, S.; Zhou, J.; Hu, D.; Yu, S.; Han, S., All-solution processed polymer light-emitting diode displays. Nat. Commun. 2013, 4 (1), 1-7. 35. Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R., Recent advances in white organic light‐emitting materials and devices (WOLEDs). Adv. Mater. 2010, 22 (5), 572-582. 36. Geffroy, B.; Le Roy, P.; Prat, C., Organic light‐emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 2006, 55 (6), 572-582. 37. Jakubiak, R.; Rothberg, L.; Wan, W.; Hsieh, B., Reduction of photoluminescence quantum yield by interchain interactions in conjugated polymer films. Synth. Met. 1999, 101 (1-3), 230-233. 38. Van Dijken, A.; Perro, A.; Meulenkamp, E.; Brunner, K., The influence of a PEDOT: PSS layer on the efficiency of a polymer light-emitting diode. Org. Electron. 2003, 4 (2-3), 131-141. 39. Smith, L. H.; Wasey, J. A.; Samuel, I. D.; Barnes, W. L., Light out‐coupling efficiencies of organic light‐emitting diode structures and the effect of photoluminescence quantum yield. Adv. Funct. Mater. 2005, 15 (11), 1839-1844. 40. do Nascimento Neto, J. A. n.; Valdo, A. K. S. M.; da Silva, C. C.; Guimarães, F. F.; Queiroz Júnior, L. H. K.; Maia, L. J. Q.; de Santana, R. C.; Martins, F. T., A Blue-Light-Emitting Cadmium Coordination Polymer with 75.4% Photoluminescence Quantum Yield. J. Am. Chem. Soc. 2019, 141 (8), 3400-3403. 41. Rogers, J. A.; Someya, T.; Huang, Y., Materials and mechanics for stretchable electronics. Science 2010, 327 (5973), 1603-1607. 42. Kim, D. H.; Lu, N.; Huang, Y.; Rogers, J. A., Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 2012, 37 (3), 226-235. 43. Fan, J. A.; Yeo, W.-H.; Su, Y.; Hattori, Y.; Lee, W.; Jung, S.-Y.; Zhang, Y.; Liu, Z.; Cheng, H.; Falgout, L., Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5 (1), 1-8. 44. You, I.; Kong, M.; Jeong, U., Block copolymer elastomers for stretchable electronics. Acc. Chem. Res. 2018, 52 (1), 63-72. 45. Jiang, D.-H.; Liao, Y.-C.; Cho, C.-J.; Veeramuthu, L.; Liang, F.-C.; Wang, T.-C.; Chueh, C.-C.; Satoh, T.; Tung, S.-H.; Kuo, C.-C., Facile Fabrication of Stretchable Touch-Responsive Perovskite Light-Emitting Diodes Using Robust Stretchable Composite Electrodes. ACS Appl. Mater. Interfaces 2020, 12 (12), 14408-14415. 46. Veeramuthu, L.; Chen, B.-Y.; Tsai, C.-Y.; Liang, F.-C.; Venkatesan, M.; Jiang, D.-H.; Chen, C.-W.; Cai, X.; Kuo, C.-C., Novel stretchable thermochromic transparent heaters designed for smart window defroster applications by spray coating silver nanowire. RSC Adv. 2019, 9 (61), 35786-35796. 47. Coskun, S.; Ates, E. S.; Unalan, H. E., Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 2013, 24 (12), 125202. 48. Chen, J.; Liu, C. T., Technology advances in flexible displays and substrates. IEEE Access. 2013, 1, 150-158. 49. Ummartyotin, S.; Juntaro, J.; Sain, M.; Manuspiya, H., Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind. Crop. Prod. 2012, 35 (1), 92-97. 50. Yu, Z.; Zhang, Q.; Li, L.; Chen, Q.; Niu, X.; Liu, J.; Pei, Q., Highly flexible silver nanowire electrodes for shape‐memory polymer light‐emitting diodes. Adv. Mater. 2011, 23 (5), 664-668. 51. Li, L.; Yu, Z.; Hu, W.; Chang, C. h.; Chen, Q.; Pei, Q., Efficient flexible phosphorescent polymer light‐emitting diodes based on silver nanowire‐polymer composite electrode. Adv. Mater. 2011, 23 (46), 5563-5567. 52. Xie, Z.; Hung, L.-S.; Zhu, F., A flexible top-emitting organic light-emitting diode on steel foil. 2003, 381 (5-6), 691-696. 53. Polikov, V. S.; Tresco, P. A.; Reichert, W. M., Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Meth. 2005, 148 (1), 1-18. 54. Navarro, X.; Krueger, T. B.; Lago, N.; Micera, S.; Stieglitz, T.; Dario, P., A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 2005, 10 (3), 229-258. 55. Trohman, R. G.; Kim, M. H.; Pinski, S. L., Cardiac pacing: the state of the art. Lancet 2004, 364 (9446), 1701-1719. 56. Nordhausen, C. T.; Maynard, E. M.; Normann, R. A., Single unit recording capabilities of a 100 microelectrode array. Brain Res. 1996, 726 (1-2), 129-140. 57. Hoogerwerf, A. C.; Wise, K. D., A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 1994, 41 (12), 1136-1146. 58. Gobalasingham, N. S.; Thompson, B. C., Direct arylation polymerization: A guide to optimal conditions for effective conjugated polymers. Prog. Polym. Sci. 2018, 83, 135-201. 59. Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S., Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112 (8), 4687-4735. 60. Bhattacharyya, D.; Howden, R. M.; Borrelli, D. C.; Gleason, K. K., Vapor phase oxidative synthesis of conjugated polymers and applications. J. Polym. Sci., Part B: Polym. Phys. 2012, 50 (19), 1329-1351. 61. McNeill, C. R.; Greenham, N. C., Conjugated‐polymer blends for optoelectronics. Adv. Mater. 2009, 21 (38‐39), 3840-3850. 62. Fukuda, M.; Sawada, K.; Yoshino, K., Fusible conducting poly (9-alkylfluorene) and poly (9, 9-dialkylfluorene) and their characteristics. Japn. J. Appl. Phys. 1989, 28 (8A), L1433. 63. Iwasaki, Y.; Osasa, T.; Asahi, M.; Matsumura, M.; Sakaguchi, Y.; Suzuki, T., Fractions of singlet and triplet excitons generated in organic light-emitting devices based on a polyphenylenevinylene derivative. Phys. Rev. B 2006, 74 (19), 195209. 64. Chen, Z.-K.; Lee, N. H. S.; Huang, W.; Xu, Y.-S.; Cao, Y., New phenyl-substituted PPV derivatives for polymer light-emitting diodes− synthesis, characterization and structure− property relationship study. Macromolecules 2003, 36 (4), 1009-1020. 65. Liu, B.; Yu, W.-L.; Lai, Y.-H.; Huang, W., Blue-light-emitting cationic water-soluble polyfluorene derivatives with tunable quaternization degree. Macromolecules 2002, 35 (13), 4975-4982. 66. Ahn, T.; Lee, H.; Han, S.-H., Effect of annealing of polythiophene derivative for polymer light-emitting diodes. Appl. Phys. Lett. 2002, 80 (3), 392-394. 67. Yu, W. L.; Pei, J.; Huang, W.; Heeger, A. J., Spiro‐Functionalized Polyfluorene Derivatives as Blue Light‐Emitting Materials. Adv. Mater. 2000, 12 (11), 828-831. 68. Scott, J.; Carter, S.; Karg, S.; Angelopoulos, M., Polymeric anodes for organic light-emitting diodes. Synth. Met. 1997, 85 (1-3), 1197-1200. 69. Zhang, B.; Qin, C.; Ding, J.; Chen, L.; Xie, Z.; Cheng, Y.; Wang, L., High‐Performance All‐Polymer White‐Light‐Emitting Diodes Using Polyfluorene Containing Phosphonate Groups as an Efficient Electron‐Injection Layer. Adv. Funct. Mater. 2010, 20 (17), 2951-2957. 70. Zhao, Q.; Liu, S. J.; Huang, W., Polyfluorene‐based blue‐emitting materials. Macromol. Chem. Phys. 2009, 210 (19), 1580-1590. 71. van Woudenbergh, T.; Wildeman, J.; Blom, P. W.; Bastiaansen, J. J.; Langeveld‐Vos, B., Electron‐Enhanced Hole Injection in Blue Polyfluorene‐Based Polymer Light‐Emitting Diodes. Adv. Funct. Mater. 2004, 14 (7), 677-683. 72. Aldred, M. P.; Contoret, A. E.; Farrar, S. R.; Kelly, S. M.; Mathieson, D.; O'Neill, M.; Tsoi, W. C.; Vlachos, P., A full‐color electroluminescent device and patterned photoalignment using light‐emitting liquid crystals. Adv. Mater. 2005, 17 (11), 1368-1372. 73. Ego, C.; Marsitzky, D.; Becker, S.; Zhang, J.; Grimsdale, A. C.; Müllen, K.; MacKenzie, J. D.; Silva, C.; Friend, R. H., Attaching perylene dyes to polyfluorene: three simple, efficient methods for facile color tuning of light-emitting polymers. J. Am. Chem. Soc. 2003, 125 (2), 437-443. 74. Cho, N. S.; Hwang, D.-H.; Lee, J.-I.; Jung, B.-J.; Shim, H.-K., Synthesis and color tuning of new fluorene-based copolymers. Macromolecules 2002, 35 (4), 1224-1228. 75. Bhowmik, P. K.; Kamatam, S.; Han, H.; Nedeltchev, A. K., Synthesis and characterization of poly (pyridinium salt) s with oxyalkylene units exhibiting amphotropic liquid–crystalline and photoluminescence properties. Polym. 2008, 49 (7), 1748-1760. 76. Neher, D., Polyfluorene homopolymers: conjugated liquid‐crystalline polymers for bright blue emission and polarized electroluminescence. Macromol. Rapid Commun. 2001, 22 (17), 1365-1385. 77. Oda, M.; Nothofer, H. G.; Lieser, G.; Scherf, U.; Meskers, S.; Neher, D., Circularly polarized electroluminescence from liquid‐crystalline chiral polyfluorenes. Adv. Mater. 2000, 12 (5), 362-365. 78. Grell, M.; Bradley, D. D.; Inbasekaran, M.; Woo, E. P., A glass‐forming conjugated main‐chain liquid crystal polymer for polarized electroluminescence applications. Adv. Mater. 1997, 9 (10), 798-802. 79. Chen, J.-W.; Huang, C.-C.; Chao, C.-Y., Supramolecular liquid-crystal gels formed by polyfluorene-based π-conjugated polymer for switchable anisotropic scattering device. ACS Appl. Mater. Interfaces 2014, 6 (9), 6757-6764. 80. Lin, H.-W.; Lin, C.-L.; Chang, H.-H.; Lin, Y.-T.; Wu, C.-C.; Chen, Y.-M.; Chen, R.-T.; Chien, Y.-Y.; Wong, K.-T., Anisotropic optical properties and molecular orientation in vacuum-deposited ter (9, 9-diarylfluorene) s thin films using spectroscopic ellipsometry. J. Appl. Phys. 2004, 95 (3), 881-886. 81. Yang, X.; Neher, D.; Lucht, S.; Nothofer, H.; Güntner, R.; Scherf, U.; Hagen, R.; Kostromine, S., Efficient polarized light-emitting diodes utilizing ultrathin photoaddressable alignment layers. Appl. Phys. Lett. 2002, 81 (13), 2319-2321. 82. Wegner, G., Ultrathin films of polymers: architecture, characterization and properties. Thin Solid Films 1992, 216 (1), 105-116. 83. Alvarez, S.; Marcasuzaa, P.; Billon, L., Bio‐Inspired Silica Films Combining Block Copolymers Self‐Assembly and Soft Chemistry: Paving the Way toward Artificial Exosqueleton of Seawater Diatoms. Macromol. Rapid Commun. 2020, 2000582. 84. Galeotti, F.; Pisco, M.; Cusano, A., Self-assembly on optical fibers: a powerful nanofabrication tool for next generation “lab-on-fiber” optrodes. Nanoscale 2018, 10 (48), 22673-22700. 85. Zhang, J.; Chen, X.-F.; Wei, H.-B.; Wan, X.-H., Tunable assembly of amphiphilic rod–coil block copolymers in solution. Chem. Soc. Rev. 2013, 42 (23), 9127-9154. 86. Xie, L.-H.; Yang, S.-H.; Lin, J.-Y.; Yi, M.-D.; Huang, W., Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto) electronics. Philos. T. R. Soc. A 2013, 371 (2000), 20120337. 87. Cushen, J. D.; Otsuka, I.; Bates, C. M.; Halila, S.; Fort, S.; Rochas, C.; Easley, J. A.; Rausch, E. L.; Thio, A.; Borsali, R., Oligosaccharide/silicon-containing block copolymers with 5 nm features for lithographic applications. ACS Nano 2012, 6 (4), 3424-3433. 88. Verduzco, R.; Botiz, I.; Pickel, D. L.; Kilbey, S. M.; Hong, K.; Dimasi, E.; Darling, S. B., Polythiophene-block-polyfluorene and Polythiophene-block-poly (fluorene-co-benzothiadiazole): Insights into the Self-Assembly of All-Conjugated Block Copolymers. Macromolecules 2011, 44 (3), 530-539. 89. Lee, Y.-H.; Yen, W.-C.; Su, W.-F.; Dai, C.-A., Self-assembly and phase transformations of π-conjugated block copolymers that bend and twist: from rigid-rod nanowires to highly curvaceous gyroids. Soft Matter 2011, 7 (21), 10429-10442. 90. Slota, J. E.; He, X.; Huck, W. T., Controlling nanoscale morphology in polymer photovoltaic devices. Nano Today 2010, 5 (3), 231-242. 91. Zhang, Z.-J.; Qiang, L.-L.; Liu, B.; Xiao, X.-Q.; Wei, W.; Peng, B.; Huang, W., Synthesis and characterization of a novel water-soluble block copolymer with a rod–coil structure. Mater. Lett. 2006, 60 (5), 679-684. 92. Wang, J.-J.; Zhou, Y.-N.; Wang, P.; Luo, Z.-H., The synthesis and enhancement of the surface properties of polyfluorene-based photoelectric materials by introducing fluoromonomers. RSC Adv. 2013, 3 (15), 5045-5055. 93. Liu, N.; Qi, C.-G.; Wang, Y.; Liu, D.-F.; Yin, J.; Zhu, Y.-Y.; Wu, Z.-Q., Solvent-Induced White-Light Emission of Amphiphilic Rod–Rod Poly (3-triethylene glycol thiophene)-block-poly (phenyl isocyanide) Copolymer. Macromolecules 2013, 46 (19), 7753-7758. 94. Gutacker, A.; Lin, C.-Y.; Ying, L.; Nguyen, T.-Q.; Scherf, U.; Bazan, G. C., Cationic Polyfluorene-b-Neutral Polyfluorene “Rod–Rod” Diblock Copolymers. Macromolecules 2012, 45 (11), 4441-4446. 95. Knaapila, M.; Evans, R.; Gutacker, A.; Garamus, V.; Torkkeli, M.; Adamczyk, S.; Forster, M.; Scherf, U.; Burrows, H., Solvent Dependent Assembly of a Polyfluorene− Polythiophene “Rod− Rod” Block Copolyelectrolyte: Influence on Photophysical Properties. Langmuir 2010, 26 (7), 5056-5066. 96. Scherf, U.; Adamczyk, S.; Gutacker, A.; Koenen, N., All‐Conjugated, Rod‐Rod Block Copolymers‐Generation and Self‐Assembly Properties. Macromol. Rapid Commun. 2009, 30 (13), 1059-1065. 97. Scherf, U.; Gutacker, A.; Koenen, N., All-conjugated block copolymers. Acc. Chem. Res. 2008, 41 (9), 1086-1097. 98. Rubatat, L.; Kong, X.; Jenekhe, S. A.; Ruokolainen, J.; Hojeij, M.; Mezzenga, R., Self-assembly of polypeptide/π-conjugated polymer/polypeptide triblock copolymers in rod− rod− rod and coil− rod− coil conformations. Macromolecules 2008, 41 (5), 1846-1852. 99. Park, J. Y.; Koenen, N.; Forster, M.; Ponnapati, R.; Scherf, U.; Advincula, R., Interplay of Vesicle and Lamellae Formation in an Amphiphilic Polyfluorene-b-polythiophene All-Conjugated Diblock Copolymer at the Air− Water Interface. Macromolecules 2008, 41 (16), 6169-6175. 100. Olsen, B. D.; Segalman, R. A., Self-assembly of rod–coil block copolymers. Mater. Sci. 2008, 62 (2), 37-66. 101. Kros, A.; Jesse, W.; Metselaar, G. A.; Cornelissen, J. J., Synthesis and Self‐Assembly of Rod–Rod Hybrid Poly (γ‐benzyl L‐glutamate)‐block‐Polyisocyanide Copolymers. Angew. Chem. 2005, 117 (28), 4423-4426. 102. Kong, X.; Jenekhe, S. A., Block copolymers containing conjugated polymer and polypeptide sequences: synthesis and self-assembly of electroactive and photoactive nanostructures. Macromolecules 2004, 37 (22), 8180-8183. 103. Jiang, D.-H.; Kobayashi, S.; Jao, C.-C.; Mato, Y.; Isono, T.; Fang, Y.-H.; Lin, C.-C.; Satoh, T.; Tung, S.-H.; Kuo, C.-C., Light Down-Converter Based on Luminescent Nanofibers from the Blending of Conjugated Rod-Coil Block Copolymers and Perovskite through Electrospinning. Polymers 2020, 12 (1), 84. 104. Au-Duong, A.-N.; Wu, C.-C.; Li, Y.-T.; Huang, Y.-S.; Cai, H.-Y.; Jo Hai, I.; Cheng, Y.-H.; Hu, C.-C.; Lai, J.-Y.; Kuo, C.-C., Synthetic Concept of Intrinsically Elastic Luminescent Polyfluorene-Based Copolymers via RAFT Polymerization. Macromolecules 2020. 105. Zhou, M.; Li, J.; Zhang, H.; Hong, K., Stimuli-responsive fiber-like micelles from the self-assembly of well-defined rod-coil block copolymer. Eur. Polym. J. 2018, 103, 304-311. 106. Hsieh, H.-C.; Hung, C.-C.; Watanabe, K.; Chen, J.-Y.; Chiu, Y.-C.; Isono, T.; Chiang, Y.-C.; Reghu, R. R.; Satoh, T.; Chen, W.-C., Unraveling the stress effects on the optical properties of stretchable rod-coil polyfluorene-poly (n-butyl acrylate) block copolymer thin films. Polym. Chem. 2018, 9 (27), 3820-3831. 107. Wu, W.-C.; Chen, C.-Y.; Lee, W.-Y.; Chen, W.-C., Stimuli-responsive conjugated rod-coil block copolymers: Synthesis, morphology, and applications. Polymers 2015, 65, A1-A16. 108. Chiu, Y.-C.; Shih, C.-C.; Chen, W.-C., Nonvolatile memories using the electrets of conjugated rod-coil block copolymer and its nanocomposite with single wall carbon nanotubes. J. Mater. Chem. C 2015, 3 (3), 551-558. 109. Wang, Q., Theory and simulation of the self-assembly of rod–coil block copolymer melts: recent progress. Soft Matter 2011, 7 (8), 3711-3716. 110. Liu, C.-L.; Lin, C.-H.; Kuo, C.-C.; Lin, S.-T.; Chen, W.-C., Conjugated rod–coil block copolymers: Synthesis, morphology, photophysical properties, and stimuli-responsive applications. Prog. Polym. Sci. 2011, 36 (5), 603-637. 111. Richard, F.; Brochon, C.; Leclerc, N.; Eckhardt, D.; Heiser, T.; Hadziioannou, G., Design of a Linear Poly (3‐hexylthiophene)/Fullerene‐Based Donor‐Acceptor Rod‐Coil Block Copolymer. Macromol. Rapid Commun. 2008, 29 (11), 885-891. 112. Ma, Z.; Qiang, L.; Zheng, Z.; Wang, Y.; Zhang, Z.; Huang, W., Morphology and photophysical properties of a thermally responsive fluorescent material based on a rod‐coil tri‐block copolymer. J. Appl. Polym. Science 2008, 110 (1), 18-22. 113. Kuo, C. C.; Tung, Y. C.; Lin, C. H.; Chen, W. C., Novel Luminescent Electrospun Fibers Prepared From Conjugated Rod–Coil Block Copolymer of Poly [2, 7‐(9, 9‐dihexylfluorene)]‐block‐Poly (methyl methacrylate). Macromol. Rapid Commun. 2008, 29 (21), 1711-1715. 114. Wu, W.-C.; Tian, Y.; Chen, C.-Y.; Lee, C.-S.; Sheng, Y.-J.; Chen, W.-C.; Alex, K.-Y. J., Theoretical and experimental studies on the surface structures of conjugated rod− coil block copolymer brushes. Langmuir 2007, 23 (5), 2805-2814. 115. Tung, Y. C.; Wu, W. C.; Chen, W. C., Morphological Transformation and Photophysical Properties of Rod‐Coil Poly [2, 7‐(9, 9‐dihexylfluorene)]‐block‐poly (acrylic acid) in Solution. Macromol. Rapid Commun. 2006, 27 (21), 1838-1844. 116. Lu, S.; Liu, T.; Ke, L.; Ma, D.-G.; Chua, S.-J.; Huang, W., Polyfluorene-based light-emitting rod− coil block copolymers. Macromolecules 2005, 38 (20), 8494-8502. 117. Chochos, C. L.; Kallitsis, J. K.; Gregoriou, V. G., Rod− Coil Block Copolymers Incorporating Terfluorene Segments for Stable Blue Light Emission. J. Phys. Chem. B 2005, 109 (18), 8755-8760. 118. Tu, G.; Li, H.; Forster, M.; Heiderhoff, R.; Balk, L. J.; Scherf, U., Conjugated triblock copolymers containing both electron-donor and electron-acceptor blocks. Macromolecules 2006, 39 (13), 4327-4331. 119. Asawapirom, U.; Güntner, R.; Forster, M.; Scherf, U., Semiconducting block copolymers—synthesis and nanostructure formation. Thin Solid Films 2005, 477 (1-2), 48-52. 120. Scherf, U.; List, E. J., Semiconducting polyfluorenes—towards reliable structure–property relationships. Adv. Mater. 2002, 14 (7), 477-487. 121. Schmitt, C.; Nothofer, H. G.; Falcou, A.; Scherf, U., Conjugated polyfluorene/polyaniline block copolymers. Macromol. Rapid Commun. 2001, 22 (8), 624-628. 122. Tu, G.; Li, H.; Forster, M.; Heiderhoff, R.; Balk, L. J.; Sigel, R.; Scherf, U., Amphiphilic conjugated block copolymers: synthesis and solvent‐selective photoluminescence quenching. Small 2007, 3 (6), 1001-1006. 123. Van Horn, R. M.; Steffen, M. R.; O'Connor, D., Recent progress in block copolymer crystallization. Polym. Crystallization 2018, 1 (4), e10039. 124. Ban, M.; Zou, Y.; Rivett, J. P.; Yang, Y.; Thomas, T. H.; Tan, Y.; Song, T.; Gao, X.; Credgington, D.; Deschler, F., Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 2018, 9 (1), 1-10. 125. Tao, Y.; Ma, B.; Segalman, R. A., Self-assembly of rod− coil block copolymers and their application in electroluminescent devices. Macromolecules 2008, 41 (19), 7152-7159. 126. Wang, J.-T.; Saito, K.; Wu, H.-C.; Sun, H.-S.; Hung, C.-C.; Chen, Y.; Isono, T.; Kakuchi, T.; Satoh, T.; Chen, W.-C., High-performance stretchable resistive memories using donor–acceptor block copolymers with fluorene rods and pendent isoindigo coils. NPG Asia Mater. 2016, 8 (8), e298-e298. 127. Lin, S.-T.; Tung, Y.-C.; Chen, W.-C., Synthesis, structures and multifunctional sensory properties of poly [2, 7-(9, 9-dihexylfluorene)]-block-poly [2-(dimethylamino) ethyl methacrylate] rod-coil diblock copolymers. J. Mater. Chem. C 2008, 18 (33), 3985-3992. 128. Tung, Y.-C.; Chen, W.-C., Poly [2, 7-(9, 9-dihexylfluorene)]-block-poly [3-(trimethoxysilyl) propyl methacrylate](PF-b-PTMSPMA) rod-coil block copolymers: Synthesis, morphology and photophysical properties in mixed solvents. React. Funct. Polym. 2009, 69 (7), 507-518. 129. Chochos, C. L.; Tzanetos, N. P.; Economopoulos, S. P.; Gregoriou, V. G.; Kallitsis, J. K., New rod–coil block copolymers consisting of terfluorene segments and electron transporting units as the flexible blocks. Eur. Polym. J. 2007, 43 (12), 5065-5075. 130. Chochos, C. L.; Tsolakis, P. K.; Gregoriou, V. G.; Kallitsis, J. K., Influence of the Coil Block on the Properties of Rod− Coil Diblock Copolymers with Oligofluorene as the Rigid Segment. Macromolecules 2004, 37 (7), 2502-2510. 131. Tsolakis, P. K.; Kallitsis, J. K., Synthesis and Characterization of Luminescent Rod–Coil Block Copolymers by Atom Transfer Radical Polymerization: Utilization of Novel End‐Functionalized Terfluorenes as Macroinitiators. Chem. Eur. J. 2003, 9 (4), 936-943. 132. Marsitzky, D.; Klapper, M.; Müllen, K., End-Functionalization of Poly (2, 7-fluorene): A Key Step toward Novel Luminescent Rod− Coil Block Copolymers. Macromolecules 1999, 32 (25), 8685-8688. 133. Kobayashi, S.; Fujiwara, K.; Jiang, D.-H.; Yamamoto, T.; Tajima, K.; Yamamoto, Y.; Isono, T.; Satoh, T., Suzuki–Miyaura catalyst-transfer polycondensation of triolborate-type fluorene monomer: toward rapid access to polyfluorene-containing block and graft copolymers from various macroinitiators. Polym. Chem. 2020, 11 (42), 6832-6839. 134. Qiang, L.; Ma, Z.; Zheng, Z.; Yin, R.; Huang, W., Novel Photo‐Crosslinkable Light‐Emitting Rod/Coil Copolymers: Underlying Facile Material for Fabricating Pixelated Displays. Macromol. Rapid Commun. 2006, 27 (20), 1779-1786. 135. Jao, C. C.; Chang, J. R.; Ya, C. Y.; Chen, W. C.; Cho, C. J.; Lin, J. H.; Chiu, Y. C.; Zhou, Y.; Kuo, C. C., Novel stretchable light‐emitting diodes based on conjugated‐rod block elastic‐coil copolymers. Polym. Int. 2020. 136. Filiatrault, H. L.; Porteous, G. C.; Carmichael, R. S.; Davidson, G. J.; Carmichael, T. B., Stretchable light‐emitting electrochemical cells using an elastomeric emissive material. Adv. Mater. 2012, 24 (20), 2673-2678. 137. Yu, Z.; Niu, X.; Liu, Z.; Pei, Q., Intrinsically stretchable polymer light‐emitting devices using carbon nanotube‐polymer composite electrodes. Adv. Mater. 2011, 23 (34), 3989-3994. 138. Someya, T., Tiny lamps to illuminate the body. Nat. Mater. 2010, 9 (11), 879-880. 139. Viventi, J.; Kim, D.-H.; Moss, J. D.; Kim, Y.-S.; Blanco, J. A.; Annetta, N.; Hicks, A.; Xiao, J.; Huang, Y.; Callans, D. J., A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2010, 2 (24), 24ra22-24ra22. 140. Sun, P.; Qiu, M.; Li, M.; Mai, W.; Cui, G.; Tong, Y., Stretchable Ni@ NiCoP textile for wearable energy storage clothes. Nano Energy 2019, 55, 506-515. 141. Gao, M.; Li, L.; Song, Y., Inkjet printing wearable electronic devices. J. Mater. Chem. C 2017, 5 (12), 2971-2993. 142. Ma, C.; Song, Y.; Shi, J.; Zhang, D.; Zhai, X.; Zhong, M.; Guo, Q.; Liu, L., Preparation and One-step Activation of Microporous Carbon Nanofibers for Use as Supercapacitor Electrodes. Carbon 2013, 51, 290-300. 143. He, H.; Li, X.; Wang, J.; Qiu, T.; Fang, Y.; Song, Q.; Luo, B.; Zhang, X.; Zhi, L., Reduced Graphene Oxide Nanoribbon Networks: a Novel Approach Towards Scalable Fabrication of Transparent Conductive Films. Small 2013, 9 (6), 820-824. 144. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. nature 2009, 457 (7230), 706-710. 145. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N., Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. ACS nano 2009, 3 (7), 1767-1774. 146. Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y., Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS nano 2010, 4 (5), 2955-2963. 147. Lee, J.-Y.; Connor, S. T.; Cui, Y.; Peumans, P., Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano letters 2008, 8 (2), 689-692. 148. Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C., Uniform, Highly Conductive, and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique. Nano Research 2010, 3 (8), 564-573. 149. Rathmell, A. R.; Wiley, B. J., The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates. Advanced Materials 2011, 23 (41), 4798-4803. 150. Sachse, C.; Weiß, N.; Gaponik, N.; Müller‐Meskamp, L.; Eychmüller, A.; Leo, K., ITO‐Free, Small‐Molecule Organic Solar Cells on Spray‐Coated Copper‐Nanowire‐Based Transparent Electrodes. Advanced Energy Materials 2014, 4 (2), 1300737. 151. Ye, S.; Rathmell, A. R.; Stewart, I. E.; Ha, Y.-C.; Wilson, A. R.; Chen, Z.; Wiley, B. J., A Rapid Synthesis of High Aspect Ratio Copper Nanowires for High-Perform……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79308 | - |
| dc.description.abstract | "本研究本論文主要突出三個方面:(1)新穎的彈性導電電極製備與柔性發光二極體應用◦ (2)簡易高亮度且多光色聚芴基元件之製備◦ (3)一鍋法合成聚芴基軟硬雙嵌鏈段共聚物與高量子效率之柔性按壓元件展示◦首先於第二章中,證明了銅/銀雙核殼層結構之奈米纖維膜電極具有良好彈性和導電性且可應用於柔性聚芴基發光二極體。接著於第三章中,展示了高導電與彈性聚氨酯奈米銀線電極優越穩定性,並成功展示於按壓元件上,其擁有相當高穩定性◦第四章提出聚芴基軟硬雙嵌鏈段共聚物具有展現良好拉伸性以及熒光性能的潛力,並可以簡易透過聚芴基混摻鈣鈦礦藉以螢光轉換效應達到多種光色變化。最後在第五章節中,開發出簡易的一鍋法合成,並設計出一系列的聚芴基共軛高分子,如: 聚(9,9-二-正己基-2,7-芴)-嵌段-聚(ε-癸内酯) (PFN18-b-PDLn),利用嵌段共聚物之特性,結合軟鏈段聚(ε-癸内酯)與硬鏈段聚(9,9-二-正己基-2,7-芴)之功能性,探討其不同比例下的柔性發光二極體元件性能,其外部量子效率是聚芴高分子的六倍,且元件可以承受來回0-20%的應變300次下,性能沒有明顯的下降。綜上論述,作者成功研發出新穎導電彈性電極與聚芴嵌段共聚物的一鍋法合成,並成功的展示此軟硬嵌段共聚物擁較高的潛力應用於發光二極體,不只解決了穿戴式元件的柔性與性能之問題,更大大提升了工業量產化的可能性,在這種便捷智能合成和優越元件性能條件下,相信未來在穿戴式電子元件及光電材料等相關領域,具相當大的發展潛力。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:57:51Z (GMT). No. of bitstreams: 1 U0001-2709202110561700.pdf: 11744122 bytes, checksum: 96463f076f614ebb5d3d586862e94d99 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Acknowledgements i Chinese Abstract ii English Abstract iii Contents iv List of Figures vi List of Tables xi List of Schemes xii Chapter 1 General Introduction 1 1.1 Fundamental Principle of Light-Emitting Diode (LED) 2 1.1.1 The basic light-emitting principle of LED 2 1.2.2 Evolution of polymer light-emitting diode (PLED) 7 1.2.3 Current issues of polymer electroluminescent materials 10 1.2 Conjugated Polymers on LED 12 1.3 Polyfluorene-Based (PF-based) Conjugated Block Copolymers (BCPs) 15 1.4 Synthesis of PF-Based Conjugated BCPs 20 1.4.1 The macroinitiator method 21 1.4.2 The coupling method 22 1.4.3 The LED applications of PF-based conjugated BCPs 23 1.5 Objective and Outline of the Dissertation 26 Chapter 2 Facile Preparation of Cu/Ag Core/Shell Nanofiber as High Flexible Transparent Conductive Electrodes for Polyfluorene Light-Emitting Diode Devices 33 2.1 Introduction 34 2.2 Experimental Section 37 2.2.1 Material 37 2.2.2 Characterization 37 2.2.3 Preparation of CuAc2/PVP-NFs 38 2.2.4 Preparation of Cu-NFs by the reduction-oxidation heating method 38 2.2.5 Preparation of Cu/Ag core/shell NFs from Ag electroless deposition 39 2.2.6 Fabrication of polyfluorene light-emitting diode devices 39 2.3 Results and Discussion 40 2.3.1 NF film morphologies and fabrications 40 2.3.2 Sheet resistance (Rs) and transmittance (T) of NFs 46 2.3.3 Performance of PF-based light-emitting diode devices 51 2.4 Conclusions 53 Chapter 3 Facile Fabrication of Stretchable Touch Responsive Light-Emitting Diodes through Using Robust Stretchable Composite Electrodes 55 3.1 Introduction 56 3.2 Experimental Section 58 3.2.1. Materials 58 3.2.2 Composite electrode fabrication (PDMS, NOA63, and PU) 58 3.2.3 Stretchable LED fabrication on PU substrate (PU/PEDOT:PSS-PEO/PVP/CsPbBr3-PEO-PVP/PU-AgNWs) 59 3.2.4 LED Measurement 59 3.3 Results and Discussion 61 3.4 Conclusion 75 Chapter 4 Light Down-Converter Based on the Blending of Polyfluorene Block Copolymers with Perovskite through Electrospinning 77 4.1 Introduction 78 4.2 Experimental Section 81 4.2.1 Material 81 4.2.2 Characterization 81 4.2.3. Synthesis of the ethynyl end-functionalized polyfluorene 83 4.2.4. Synthesis of the azido-terminated poly (n-butyl acrylate) 84 4.2.5. Synthesis of the PFN-b-PBA block copolymer 85 4.2.6. Synthesis of the CsPbX3 (X = Cl, Br, I) 86 4.2.7. Preparation of the electrospinning of CsPbBr3 QDs/polymer NFs 87 4.3 Results and Discussion 88 4.3.1 Synthesis and structure characterization of PFN-b-PBA BCPs 88 4.3.2 The physical and optical properties of the PFN-b-PBA thin films 92 4.3.3 Morphologies and stretchable performance of the PFN-b-PBA thin films 95 4.3.4 The color-tunable properties of light-emitting diodes 97 4.4 Conclusion 99 Chapter 5 Smart Synthesis of Polyfluorene-Based Block Copolymers Accelerates Design and Fabrication of Flexible Light-Emitting Diode Devices 101 5.1 Introduction 102 5.2 Experimental Section 105 5.2.1 Material 105 5.2.2 Characterization 105 5.2.3 Arrhenius formula simulation of the binding energy 108 5.2.4 The time decay curve fitting by an exponential function 108 5.2.5 Synthesis of PF-based block copolymers with ring-opening polymerization monomer through a smart one-pot procedure 108 5.2.6 Touch-responsive light-emitting diodes fabrication 110 5.3 Results and Discussion 111 5.3.1 Synthesis and structure characterization of PFN-b-PDL BCPs 111 5.3.2 The Physical and Optical Properties of the PFN-b-PDL Thin Films 126 5.3.3 The correlation between PLQY and EBE 131 5.3.4 The performance of stretchable touch-responsive light-emitting diode 134 5.4 Conclusion 143 Chapter 6 Conclusions 145 References: 151 Publication Lists: 167 " | |
| dc.language.iso | en | |
| dc.title | 聚芴基共軛高分子在拉伸發光二極體元件之應用 | zh_TW |
| dc.title | Flexible Light-Emitting Diode Application of Polyfluorene-Based Conjugated Polymers | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-6090-8788 | |
| dc.contributor.advisor-orcid | 童世煌(0000-0002-6787-4955) | |
| dc.contributor.coadvisor | 佐藤敏文(Toshifumi Satoh),郭霽慶(Chi-Ching Kuo) | |
| dc.contributor.coadvisor-orcid | 佐藤敏文(0000-0001-5449-9642) | |
| dc.contributor.oralexamcommittee | 鄭如忠(Hsin-Tsai Liu),闕居振(Chih-Yang Tseng),林群哲 | |
| dc.subject.keyword | 聚芴高分子,雙嵌段共聚高分子,一鍋法合成,發光二極體,柔性穿戴式元件, | zh_TW |
| dc.subject.keyword | polyfluorene,block copolymer,one-pot synthesis,light-emitting diode,flexible wearable device, | en |
| dc.relation.page | 169 | |
| dc.identifier.doi | 10.6342/NTU202103384 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2709202110561700.pdf | 11.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
