請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79268完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾于恒(Yu-Heng Tseng) | |
| dc.contributor.author | Kuan-Ting Lin | en |
| dc.contributor.author | 林冠廷 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:57:02Z | - |
| dc.date.available | 2022-01-17 | |
| dc.date.available | 2022-11-23T08:57:02Z | - |
| dc.date.copyright | 2022-01-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2022-01-04 | |
| dc.identifier.citation | 吳輝虎. (1995). 台灣主要蜜源植物. 蠶蜂業專訊, 革新第十四號. 李思瑩與盧孟明. (2014). 冬季東亞季風與台灣氣候即時監測分析2010-2013 年實例. 大氣科學, 42卷2期, 87-112. 李思瑩與盧孟明. (2018). 臺灣冬季溫度季節預報的預報因子挑選及可預報度來源分析. 大氣科學, 46卷2期, 125-148. doi:10.3966/025400022018064602001 張智鈞, 洪志誠, 與董德輝. (2020). 台灣冬季寒潮歷史變遷與未來推估. 大氣科學, 第四十八期, 205-232. doi:doi.10.3966/025400022020124802003 陳枻廷與張羽萱. (2017). 全球蜂產業問題及臺灣蜂產業發展現況. 農業生技產業季刊, NO.52, 5. 陳運造. (1993). 台灣最重要的蜜源植物-龍眼. 蠶蜂業專訊, 革新第八號. 藍國賢. (1994). 東方蜂的生物特性. 蠶蜂業專訊, 革新第十號. Booij, N., R. C. Ris,and L. H. Holthuijsen. (1999). A third-generation wave model for coastal regions: 1. Model description and validation. JGR: Oceans, 104(C4), 7649-7666. doi:doi.org/10.1029/98JC02622 Chow, C. H., Yu-heng Tseng,, Huang-Hsiung Hsu and Chih-Chieh Young. (2017). Interannual variability of the subtropical countercurrent eddies in the North Pacific associated with the Western-Pacific teleconnection pattern. Continental Shelf Research, 143, 175-184. doi:doi.org/10.1016/j.csr.2016.08.006 Ding, R., Jianping Li, Yu-heng Tseng, Cheng Sun,and Yipeng Guo. (2014). The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. JGR: Atmospheres, 120(1), 27-45. doi:doi.org/10.1002/2014JD022221 Hsu, H.-H., and John M. Wallace. (1985). Vertical Structure of Wintertime Teleconnection Patterns. Journal of the Atmospheric Sciences, 42(16), 1693–1710. doi:https://doi.org/10.1175/1520-0469(1985)042<1693:VSOWTP>2.0.CO;2 Hsu, H.-H., Y.-L. Chen and W.-S. Kau. (2001). Effects of atmosphere-ocean interaction on interannual variability of winter temperature in Taiwan and East Asia. Climate Dynamics, 17, 306-316. Kanamitsu, M., Wesley Ebisuzaki, Jack Woollen, Shi-Keng Yang, J. J. Hnilo, M. Fiorino and G. L. Potter. (2002). NCEP–DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society, 83(11), 1631-1644. doi:doi.org/10.1175/BAMS-83-11-1631 Lee, S.-S., Seon-Hwa Kim, Jong-Ghap Jhun, Kyung-Ja Ha and Ye-Won Seo. (2013). Robust warming over East Asia during the boreal winter monsoon and its possible causes. Environmental Research, 44(33), 1748-9326. doi:doi.org/10.1088/1748-9326/8/3/034001 Lim, Y.-K. a. H.-D. K. (2013). Impact of the dominant large-scale teleconnections on winter temperature variability over East Asia. JGR: Atmospheres 118(13), 7427-8127. doi:doi.org/10.1002/jgrd.50462 Lindzen, R. S. a. S. N. (1987). On the Role of Sea Surface Temperature Gradients in Forcing Low-Level Winds and Convergence in the Tropics. Journal of The Atmospheric Science, 44(17), 2418-2436. Linkin, M. E. a. S. N. (2008). The North Pacific Oscillation–West Pacific Teleconnection Pattern: Mature-Phase Structure and Winter Impacts. Journal of Climate, 21(9), 1979-1997. doi:doi.org/10.1175/2007JCLI2048.1 Lu, M.-C. (2018). Beekeeping on Taiwan Island. In P. Chantawannakul, G. Williams, P. Neumann (Eds.), Asian Beekeeping in the 21st Century (pp. 159-173). Singapore: Springer Singapore. Maloney, E. D. a. D. B. C. (2006). An Assessment of the Sea Surface Temperature Influence on Surface Wind Stress in Numerical Weather Prediction and Climate Models. Journal of Climate, 19(12), 2743–2762. doi:https://doi.org/10.1175/JCLI3728.1 Reynolds, R. W., Thomas M. Smith, Chunying Liu, Dudley B. Chelton, Kenneth S. Casey, and Michael G. Schlax. (2007). Daily High-Resolution-Blended Analyses for Sea Surface Temperature. Journal of Climate, 20(22), 5473-5496. doi:doi.org/10.1175/2007JCLI1824.1 Rogers, J. C. (1981). The North Pacific Oscillation. Journal of Climatology, 1, 39-57. doi:https://doi.org/10.1002/joc.3370010106 Sasaki, Y. N. a. Y. Y. (2018). Atmospheric response to interannual variability of sea surface temperature front in the East China Sea in early summer. Climate Dynamics, 51, 2509-2522. Shchepetkin, A. F., and James C.McWilliams. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modeling, 9(4), 347-404. doi:doi.org/10.1016/j.ocemod.2004.08.002 Skamarock, W. C., Joseph B. Klemp, Jimy Dudhia, David O. Gill, Zhiquan Liu, Judith Berner, Wei Wang, Jordan G. Powers, Michael G. Duda, Dale Barker, and Xiang-yu Huang. (2021). A Description of the Advanced Research WRF Model Version 4.3. doi:dx.doi.org/10.5065/1dfh-6p97 Small, R. J., S.P.deSzoeke, S.P.Xie, L.O’Neill, H.Seo, Q.Song, P.Cornillon, M.Spall and S.Minobe. (2008). Air–sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45(3-4), 274-319. doi:doi.org/10.1016/j.dynatmoce.2008.01.001 Song, L., Lin Wang, Wen Chen and Yang Zhang. (2016). Intraseasonal Variation of the Strength of the East Asian Trough and Its Climatic Impacts in Boreal Winter. Journal of Climate, 29(7), 2557-2577. doi:doi.org/10.1175/JCLI-D-14-00834.1 Szabo, T. I. (1980). Effect of Weather Factors on Honeybee Flight Activity and Colony Weight Gain. Journal of Apicultural Research, 19(3), 164-171. doi:doi.org/10.1080/00218839.1980.11100017 Tseng, Y.-h., Ruiqiang Ding, Sen Zhao, Yi-chun Kuo, and Yu-chiao Liang. (2020). Could the North Pacific Oscillation Be Modified by the Initiation of the East Asian Winter Monsoon? Journal of Climate, 33(6), 2389-2406. doi:doi.org/10.1175/JCLI-D-19-0112.1 Walker, G. T., and E. W. Bliss. (1932). World weather V. Memoirs of the Royal Meteorological Society, 4, 53-84. Wallace, J. M. a. D. S. G. (1981). Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109(4), 784-812. doi:doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 Wang, B., Renguang Wu, and Xiouhua Fu. (2000). Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? Journal of Climate, 13(9), 1517-1536. doi:doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2 Wang, L., Wen Chen and Ronghui Huang. (2007). Changes in the variability of North Pacific Oscillation around 1975/1976 and its relationship with East Asian winter climate. JGR: Atmospheres, 112(D11). doi:doi.org/10.1029/2006JD008054 Wang, L. a. M.-M. L. (2016). The East Asian Winter Monsoon. The Global Monsoon System: Research and Forecast, 3, 51-61. Retrieved from doi: 10.1142/9789813200913_0005 Wang, T., LIU Fang, YU Linsheng, PAN Wei, JIANG Zhaohui and FU Yuesheng. (2015). A review of researches on the regulation mechanisms of temperature and humidity in honey bee hives. Acta Ecologica Sinica, 35(10), 3172-3179. doi:doi.org/10.5846/stxb201306281793 Warner, J. C., Armstrong, B., He, R., and Zambon, J.B. (2010). Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. Ocean Modeling, 35(3), 230-244. doi:doi.org/10.1016/j.ocemod.2010.07.010 Yang, E.-C., Chang, Hui-Chun,Chuang, and Yu-Cheng. (2014). Abnormal Behavior of Honeybee Workers Due to Contamination of Imidacloprid. Yang Song, K.-M. L., and K-M. Kim. (2002). Variations of the East Asian Jet Stream and Asian–Pacific–American Winter Climate Anomalies. Journal of Climate, 15(3), 306–325. doi:https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79268 | - |
| dc.description.abstract | 蜂蜜在台灣扮演非常重要的環境、生態與經濟角色,然而近十年蜂蜜產量卻逐漸下降,並在2019年來到最低點,本研究探討蜂蜜年產量與周遭環境因子(如溫度、降雨、日照週期)和大尺度海洋與大氣變異的關係,冀望能減少氣候變遷下環境變異對蜂農及消費者的衝擊。過去大多相關的研究聚焦在採收季節環境因子與蜜蜂飛行狀態之間的關係,然而我們的分析發現蜂蜜年產量都與台灣冬季所有地區的月平均氣溫有顯著的相關性,而其他因子皆無顯著的關聯。本研究推測可能原因為台灣最主要的蜜源植物如龍眼在冬季的花芽分化對於環境溫度相當敏感,溫度太高會限制花芽的分化數量,影響到兩個月後蜜源植物花期的泌蜜量,連帶造成了蜂蜜年產量的波動。本研究進而探討1982-2019年冬季海洋與大氣變異對於冬季氣溫年際震盪的影響,特別是台灣冬季氣溫變化到底是由海洋或大氣主導?了解變化機制主導的過程便能夠增加蜂蜜產量的可預報性,我們發現在台灣冬季時,北太平洋上大尺度大氣氣壓與環流的影響對台灣氣溫影響非常直接,特別是北太平洋上海面氣壓距平第二模態(North Pacific Oscillation)的空間分布特徵可能是影響台灣地區氣溫與海溫的重要變異,並連帶波動台灣上空的氣壓以及東亞沿岸背景風場,進而影響台灣冬季氣溫與蜜源植物花芽分化的狀態,並間接主導著蜂蜜年產量,而海洋中的重要變異如黑潮海溫鋒面以及海溫距平對氣溫的影響較不顯著,最後利用區域海氣耦合模式驗證大氣與海洋分別的影響,在三十天的海氣耦合模式中也顯示出冬季時大氣對氣溫的影響較直接。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:57:02Z (GMT). No. of bitstreams: 1 U0001-2912202117332200.pdf: 4976314 bytes, checksum: bb590a7329f0ebbf61640a3bab98e457 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 I 中文摘要 II Abstract III 目錄 V 圖片目錄 VII 表格目錄 X 第一章:前言 1 1-1 台灣養殖蜜蜂簡介 1 1-2 大環境因子與台灣冬季溫度變化 3 1-3 蜂蜜產量與冬季溫度研究議題 7 第二章:資料與方法 9 2-1 台灣養殖蜂蜜產量資料 9 2-2 環境資料 9 2-3 台灣冬季溫度(TWSAT) 10 2-4 氣候指標定義 11 a. 西太平洋遙相關模態指數(WP pattern index; WP) 11 b. 北太平洋震盪(North Pacific Oscillation; NPO) 11 c. 黑潮海溫鋒面指數SST front index 11 2-3 研究方法 12 2-4 區域耦合模式 13 第三章:單位蜂箱產量與環境因子分析結果 18 3-1 影響單位蜂箱產量的環境因子 18 3-2 一月溫度與單位蜂箱產量 19 第四章:台灣一月溫度與環境變異分析結果 26 4-1 台灣冬季溫度與環境變異的相關性 26 4-2 台灣一月溫度與海溫鋒面(SST Front) 29 4-3 東亞海溫PC1與環境變異的相關性 30 4-4 遙相關指標與溫度/海溫的領先-滯後相關分析 33 4-5 TWZ500相關的表層環流 35 4-6 分析結果總結 36 第五章:台灣一月溫度與環境變異分析結果 46 5-1 COAWST海氣耦合模式 46 a. 移除海洋反饋組(No ocean case) 46 b. 減弱海溫鋒面實驗組(Smooth front case) 47 5-2 COAWST模式結果 47 5-2.1 移除海洋反饋實驗結果 47 5-2.2 移除海洋鋒面實驗結果 48 第六章:物理機制討論與總結 55 參考資料 60 | |
| dc.language.iso | zh-TW | |
| dc.title | 影響台灣冬季溫度變化的大氣與海洋變異-應用在蜂蜜產量 | zh_TW |
| dc.title | Impacts of Ocean and Atmosphere Variabilities on Winter Temperature in Taiwan-Application in the Honeybee Production | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧孟明(Hsin-Tsai Liu),許晃雄(Chih-Yang Tseng),許哲源 | |
| dc.subject.keyword | 蜂蜜產量,冬季溫度,北太平洋震盪,東北季風,黑潮海溫鋒面,COAWST海氣耦合模式, | zh_TW |
| dc.subject.keyword | Taiwan Honeybee Production,Winter Temperature,North Pacific Oscillation,Sea Surface Temperature Front,COAWST coupled model, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202104596 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-01-04 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2912202117332200.pdf | 4.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
