請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79267完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳浩銘(Hao Ming Chen) | |
| dc.contributor.author | Chia-Jui Chang | en |
| dc.contributor.author | 張家睿 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:57:01Z | - |
| dc.date.available | 2023-07-01 | |
| dc.date.available | 2022-11-23T08:57:01Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-01-21 | |
| dc.identifier.citation | 1. S. J. Davis, K. Caldeira and H. D. Matthews, Science, 2010, 329, 1330. 2. S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo and I. Chorkendorff, Chem. Rev., 2019, 119, 7610-7672. 3. N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu and H. M. Chen, Chem. Soc. Rev., 2017, 46, 337-365. 4. M. Gattrell, N. Gupta and A. Co, J. Electroanal. Chem. , 2006, 594, 1-19. 5. E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazábal and J. Pérez-Ramírez, Energy Environ. Sci. , 2013, 6, 3112-3135. 6. Y. Hori, in Mod. Aspect Electroc., eds. C. G. Vayenas, R. E. White and M. E. Gamboa-Aldeco, Springer New York, New York, NY, 2008, pp. 89-189. 7. Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo and M. T. M. Koper, Nat. Energy, 2019, 4, 732-745. 8. K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramillo, Energy Environ. Sci., 2012, 5, 7050-7059. 9. L. R. L. Ting and B. S. Yeo, Curr. Opin. Electrochem., 2018, 8, 126-134. 10. J. E. Pander, M. F. Baruch and A. B. Bocarsly, ACS Catal., 2016, 6, 7824-7833. 11. R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo and M. T. M. Koper, J. Phys. Chem. Lett., 2015, 6, 4073-4082. 12. N. J. Firet and W. A. Smith, ACS Catal., 2017, 7, 606-612. 13. K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin and M. T. M. Koper, Chem. Sci., 2011, 2, 1902-1909. 14. J. D. Goodpaster, A. T. Bell and M. Head-Gordon, J. Phys. Chem. Lett., 2016, 7, 1471-1477. 15. J. H. Montoya, C. Shi, K. Chan and J. K. Nørskov, J. Phys. Chem. Lett., 2015, 6, 2032-2037. 16. A. J. Garza, A. T. Bell and M. Head-Gordon, ACS Catal., 2018, 8, 1490-1499. 17. C. W. Li, J. Ciston and M. W. Kanan, Nature, 2014, 508, 504-507. 18. A. Verdaguer-Casadevall, C. W. Li, T. P. Johansson, S. B. Scott, J. T. McKeown, M. Kumar, I. E. L. Stephens, M. W. Kanan and I. Chorkendorff, J. Am. Chem. Soc., 2015, 137, 9808-9811. 19. E. Bertheussen, A. Verdaguer-Casadevall, D. Ravasio, J. H. Montoya, D. B. Trimarco, C. Roy, S. Meier, J. Wendland, J. K. Nørskov, I. E. L. Stephens and I. Chorkendorff, Angew. Chem. Int. Ed., 2016, 55, 1450-1454. 20. A. D. Handoko, K. W. Chan and B. S. Yeo, ACS Energy Lett., 2017, 2, 2103-2109. 21. C. W. Li and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 7231-7234. 22. P. Zhu and H. Wang, Sci. Bull., 2020, 65, 977-979. 23. X. Feng, K. Jiang, S. Fan and M. W. Kanan, ACS Cent. Sci., 2016, 2, 169-174. 24. D. Kim, S. Lee, J. D. Ocon, B. Jeong, J. K. Lee and J. Lee, Phys. Chem. Chem. Phys., 2015, 17, 824-830. 25. S. Y. Lee, H. Jung, N.-K. Kim, H.-S. Oh, B. K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2018, 140, 8681-8689. 26. M. Favaro, H. Xiao, T. Cheng, W. A. Goddard, J. Yano and E. J. Crumlin, Proc. Natl. Acad. Sci. U. S. A. , 2017, 114, 6706-6711. 27. J.-J. Velasco-Vélez, T. Jones, D. Gao, E. Carbonio, R. Arrigo, C.-J. Hsu, Y.-C. Huang, C.-L. Dong, J.-M. Chen, J.-F. Lee, P. Strasser, B. Roldan Cuenya, R. Schlögl, A. Knop-Gericke and C.-H. Chuang, ACS Sustain. Chem. Eng., 2019, 7, 1485-1492. 28. Y. Lum and J. W. Ager, Angew. Chem. Int. Ed. Engl., 2018, 57, 551-554. 29. Y. Lum, B. Yue, P. Lobaccaro, A. T. Bell and J. W. Ager, J. Phys. Chem. C, 2017, 121, 14191-14203. 30. D. Gao, I. Zegkinoglou, N. J. Divins, F. Scholten, I. Sinev, P. Grosse and B. Roldan Cuenya, ACS Nano, 2017, 11, 4825-4831. 31. H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y. W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser and B. R. Cuenya, Nat Commun, 2016, 7, 12123. 32. S. Lee, D. Kim and J. Lee, Angew. Chem. Int. Ed. Engl., 2015, 127, 14914-14918. 33. P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang and E. H. Sargent, Nat. Catal., 2018, 1, 103-110. 34. C.-C. Chang, E. Y. Li and M.-K. Tsai, Phys. Chem. Chem. Phys., 2018, 20, 16906-16909. 35. H. Xiao, W. A. Goddard, T. Cheng and Y. Liu, Proc. Natl. Acad. Sci. U. S. A. , 2017, 114, 6685-6688. 36. R. M. Arán-Ais, F. Scholten, S. Kunze, R. Rizo and B. Roldan Cuenya, Nat. Energy, 2020, 5, 317-325. 37. S.-C. Lin, C.-C. Chang, S.-Y. Chiu, H.-T. Pai, T.-Y. Liao, C.-S. Hsu, W.-H. Chiang, M.-K. Tsai and H. M. Chen, Nat. Commun., 2020, 11, 3525. 38. H. Jung, S. Y. Lee, C. W. Lee, M. K. Cho, D. H. Won, C. Kim, H.-S. Oh, B. K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2019, 141, 4624-4633. 39. Q. Lei, H. Zhu, K. Song, N. Wei, L. Liu, D. Zhang, J. Yin, X. Dong, K. Yao, N. Wang, X. Li, B. Davaasuren, J. Wang and Y. Han, J. Am. Chem. Soc., 2020, 142, 4213-4222. 40. X. Wang, K. Klingan, M. Klingenhof, T. Möller, J. Ferreira de Araújo, I. Martens, A. Bagger, S. Jiang, J. Rossmeisl, H. Dau and P. Strasser, Nat. Commun., 2021, 12, 794. 41. F. Scholten, I. Sinev, M. Bernal and B. Roldan Cuenya, ACS Catal., 2019, 9, 5496-5502. 42. M. Watanabe, M. Shibata, A. Kato, M. Azuma and T. Sakata, J. Electrochem. Soc., 1991, 138, 3382-3389. 43. E. Stauffer, J. A. Dolan and R. Newman, in Fire Debris Analysis, eds. E. Stauffer, J. A. Dolan and R. Newman, Academic Press, Burlington, 2008, pp. 235-293. 44. E. L. Clark, C. Hahn, T. F. Jaramillo and A. T. Bell, J. Am. Chem. Soc. , 2017, 139, 15848-15857. 45. M. B. Ross, C. T. Dinh, Y. Li, D. Kim, P. De Luna, E. H. Sargent and P. Yang, J. Am. Chem. Soc. , 2017, 139, 9359-9363. 46. Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, J.-j. Zhu and S. Sun, J. Am. Chem. Soc. , 2017, 139, 4290-4293. 47. J. Huang, M. Mensi, E. Oveisi, V. Mantella and R. Buonsanti, J. Am. Chem. Soc., 2019, 141, 2490-2499. 48. G. O. Larrazábal, T. Shinagawa, A. J. Martín and J. Pérez-Ramírez, Nat. Commun., 2018, 9, 1477. 49. Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, J.-j. Zhu and S. Sun, J. Am. Chem. Soc., 2017, 139, 4290-4293. 50. G. Wen, D. U. Lee, B. Ren, F. M. Hassan, G. Jiang, Z. P. Cano, J. Gostick, E. Croiset, Z. Bai, L. Yang and Z. Chen, Adv. Energy Mater., 2018, 8, 1802427. 51. A. M. Ismail, G. F. Samu, Á. Balog, E. Csapó and C. Janáky, ACS Energy Lett., 2019, 4, 48-53. 52. W. J. Dong, J. W. Lim, D. M. Hong, J. Y. Park, W. S. Cho, S. Baek, C. J. Yoo, W. Kim and J.-L. Lee, ACS Appl. Energy Mater., 2020, 3, 10568-10577. 53. D. Li, L. Huang, Y. Tian, T. Liu, L. Zhen and Y. Feng, Appl. Catal. B Environ., 2021, 292, 120119. 54. M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, F. P. G. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley and E. H. Sargent, Nature, 2016, 537, 382-386. 55. X. Zheng, P. De Luna, F. P. García de Arquer, B. Zhang, N. Becknell, M. B. Ross, Y. Li, M. N. Banis, Y. Li, M. Liu, O. Voznyy, C. T. Dinh, T. Zhuang, P. Stadler, Y. Cui, X. Du, P. Yang and E. H. Sargent, Joule, 2017, 1, 794-805. 56. M. Bernal, A. Bagger, F. Scholten, I. Sinev, A. Bergmann, M. Ahmadi, J. Rossmeisl and B. R. Cuenya, Nano Energy, 2018, 53, 27-36. 57. M. B. Ross, C. T. Dinh, Y. Li, D. Kim, P. De Luna, E. H. Sargent and P. Yang, J. Am. Chem. Soc., 2017, 139, 9359-9363. 58. D. Kim, C. Xie, N. Becknell, Y. Yu, M. Karamad, K. Chan, E. J. Crumlin, J. K. Nørskov and P. Yang, J. Am. Chem. Soc., 2017, 139, 8329-8336. 59. D. Kim, J. Resasco, Y. Yu, A. M. Asiri and P. Yang, Nat. Commun., 2014, 5, 4948. 60. J. H. Lee, S. Kattel, Z. Jiang, Z. Xie, S. Yao, B. M. Tackett, W. Xu, N. S. Marinkovic and J. G. Chen, Nat. Commun., 2019, 10, 3724. 61. H. S. Jeon, J. Timoshenko, F. Scholten, I. Sinev, A. Herzog, F. T. Haase and B. Roldan Cuenya, J. Am. Chem. Soc., 2019, 141, 19879-19887. 62. D. Ren, B. S.-H. Ang and B. S. Yeo, ACS Catal., 2016, 6, 8239-8247. 63. Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S. A. Kulinich and X. Du, Langmuir, 2018, 34, 13544-13549. 64. J. Timoshenko, H. S. Jeon, I. Sinev, F. T. Haase, A. Herzog and B. Roldan Cuenya, Chem. Sci., 2020, 11, 3727-3736. 65. T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis and A. A. Gewirth, J. Am. Chem. Soc., 2018, 140, 5791-5797. 66. Y. C. Li, Z. Wang, T. Yuan, D.-H. Nam, M. Luo, J. Wicks, B. Chen, J. Li, F. Li, F. P. G. de Arquer, Y. Wang, C.-T. Dinh, O. Voznyy, D. Sinton and E. H. Sargent, J. Am. Chem. Soc., 2019, 141, 8584-8591. 67. J. Gao, H. Zhang, X. Guo, J. Luo, S. M. Zakeeruddin, D. Ren and M. Grätzel, J. Am. Chem. Soc., 2019, 141, 18704-18714. 68. A. Herzog, A. Bergmann, H. S. Jeon, J. Timoshenko, S. Kühl, C. Rettenmaier, M. Lopez Luna, F. T. Haase and B. Roldan Cuenya, Angew. Chem. Int. Ed., 2021, 60, 7426-7435. 69. E. Irtem, D. Arenas Esteban, M. Duarte, D. Choukroun, S. Lee, M. Ibáñez, S. Bals and T. Breugelmans, ACS Catal., 2020, 10, 13468-13478. 70. W. J. Dong, C. J. Yoo, J. W. Lim, J. Y. Park, K. Kim, S. Kim, D. Lee and J.-L. Lee, Nano Energy, 2020, 78, 105168. 71. A. Dutta, I. Z. Montiel, R. Erni, K. Kiran, M. Rahaman, J. Drnec and P. Broekmann, Nano Energy, 2020, 68, 104331. 72. M. Luo, Z. Wang, Y. C. Li, J. Li, F. Li, Y. Lum, D.-H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C.-T. Dinh, Y. Wang, Y. Wang, D. Sinton and E. H. Sargent, Nat. Commun. , 2019, 10, 5814. 73. Z. Lyu, S. Zhu, L. Xu, Z. Chen, Y. Zhang, M. Xie, T. Li, S. Zhou, J. Liu, M. Chi, M. Shao, M. Mavrikakis and Y. Xia, J. Am. Chem. Soc., 2021, 143, 149-162. 74. Y. Zhu, J. Wang, H. Chu, Y.-C. Chu and H. M. Chen, ACS Energy Lett., 2020, 5, 1281-1291. 75. M. Wang, L. Árnadóttir, Z. J. Xu and Z. Feng, Nano-Micro Lett., 2019, 11, 47. 76. C. Ni, in Encyclopedia of Tribology, eds. Q. J. Wang and Y.-W. Chung, Springer US, Boston, MA, 2013, pp. 2977-2982. 77. https://www.ccber.ucsb.edu/ucsb-natural-history-collections-botanical-plant-anatomy/transmission-electron-microscope. 78. https://emc-proceedings.com/abstract/subcellular-localization-of-metal-pools-determined-by-tem-eds-in-embryo-arabidopsis-thaliana-mutants/. 79. J. J. Carroll, J. D. Slupsky and A. E. Mather, J. Phys. Chem. Ref. Data, 1991, 20, 1201-1209. 80. A. S. Varela, M. Kroschel, T. Reier and P. Strasser, Catal. Today, 2016, 260, 8-13. 81. M. E. Leonard, L. E. Clarke, A. Forner-Cuenca, S. M. Brown and F. R. Brushett, ChemSusChem, 2020, 13, 400-411. 82. R. S. Das and Y. K. Agrawal, Vib. Spectrosc., 2011, 57, 163-176. 83. S. Jiang, K. Klingan, C. Pasquini and H. Dau, J. Chem. Phys., 2019, 150, 041718. 84. J. Wong, F. W. Lytle, R. P. Messmer and D. H. Maylotte, Phys. Rev. B, 1984, 30, 5596-5610. 85. D. C. Koningsberger, B. L. Mojet, G. E. van Dorssen and D. E. Ramaker, Top. Catal., 2000, 10, 143-155. 86. M. Robert, ACS Energy Lett., 2016, 1, 281-282. 87. P. Friedlingstein, R. M. Andrew, J. Rogelj, G. P. Peters, J. G. Canadell, R. Knutti, G. Luderer, M. R. Raupach, M. Schaeffer, D. P. van Vuuren and C. Le Quere, Nat. Geosci., 2014, 7, 709-715. 88. O. S. Bushuyev, P. De Luna, C. T. Dinh, L. Tao, G. Saur, J. van de Lagemaat, S. O. Kelley and E. H. Sargent, Joule, 2018, 2, 825-832. 89. Y. Hori, K. Kikuchi and S. Suzuki, Chem. Lett., 1985, 14, 1695-1698. 90. Y. Hori, in Modern Aspects of Electrochemistry, eds. C. G. Vayenas, R. E. White and M. E. Gamboa-Aldeco, Springer New York, 2008, pp. 89-189. 91. K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard and T. F. Jaramillo, J. Am. Chem. Soc., 2014, 136, 14107-14113. 92. D. T. Whipple and P. J. A. Kenis, J. Phys. Chem. Lett., 2010, 1, 3451-3458. 93. M. Gattrell, N. Gupta and A. Co, J. Electroanal. Chem., 2006, 594, 1-19. 94. T. Cheng, H. Xiao and W. A. Goddard, J. Am. Chem. Soc., 2016, 138, 13802-13805. 95. A. Loiudice, P. Lobaccaro, E. A. Kamali, T. Thao, B. H. Huang, J. W. Ager and R. Buonsanti, Angew. Chem. Int. Ed., 2016, 55, 5789-5792. 96. Y. Li, F. Cui, M. B. Ross, D. Kim, Y. Sun and P. Yang, Nano Lett., 2017, 17, 1312-1317. 97. R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya and P. Strasser, J. Am. Chem. Soc., 2014, 136, 6978-6986. 98. K. Manthiram, B. J. Beberwyck and A. P. Aivisatos, J. Am. Chem. Soc., 2014, 136, 13319-13325. 99. D. Kim, C. S. Kley, Y. Li and P. Yang, Proc Natl Acad Sci U S A, 2017, 114, 10560-10565. 100. D. Raciti, K. J. Livi and C. Wang, Nano Lett., 2015, 15, 6829-6835. 101. Y. X. Duan, F. L. Meng, K. H. Liu, S. S. Yi, S. J. Li, J. M. Yan and Q. Jiang, Adv. Mater., 2018, 30. 102. C. W. Li and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 7231-7234. 103. H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y. W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser and B. R. Cuenya, Nat. Commun., 2016, 7, 12123. 104. D. Ren, N. T. Wong, A. D. Handoko, Y. Huang and B. S. Yeo, J. Phys. Chem. Lett., 2016, 7, 20-24. 105. A. Verdaguer-Casadevall, C. W. Li, T. P. Johansson, S. B. Scott, J. T. McKeown, M. Kumar, I. E. Stephens, M. W. Kanan and I. Chorkendorff, J. Am. Chem. Soc., 2015, 137, 9808-9811. 106. A. Eilert, F. Cavalca, F. S. Roberts, J. Osterwalder, C. Liu, M. Favaro, E. J. Crumlin, H. Ogasawara, D. Friebel, L. G. Pettersson and A. Nilsson, J. Phys. Chem. Lett., 2017, 8, 285-290. 107. F. Calle-Vallejo and M. T. Koper, Angew. Chem. Int. Ed., 2013, 52, 7282-7285. 108. K. J. Schouten, F. Calle-Vallejo and M. T. Koper, Angew. Chem. Int. Ed., 2014, 53, 10858-10860. 109. S. Lee, G. Park and J. Lee, ACS Catal., 2017, 7, 8594-8604. 110. S. Back, M. S. Yeom and Y. Jung, ACS Catal., 2015, 5, 5089-5096. 111. S. M. Bergin, Y. H. Chen, A. R. Rathmell, P. Charbonneau, Z. Y. Li and B. J. Wiley, Nanoscale, 2012, 4, 1996-2004. 112. A. Gaur and B. D. Shrivastava, Acta Phys. Pol., 2012, 121, 647-652. 113. C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, 16977-16987. 114. T. Hatsukade, K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramillo, Phys. Chem. Chem. Phys., 2014, 16, 13814-13819. 115. D. Ren, Y. L. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi and B. S. Yeo, ACS Catal., 2015, 5, 2814-2821. 116. M. Ma, K. Djanashvili and W. A. Smith, Angew. Chem. Int. Ed., 2016, 55, 6680-6684. 117. Y. Huang, A. D. Handoko, P. Hirunsit and B. S. Yeo, ACS Catal., 2017, 7, 1749-1756. 118. S.-F. Hung, Y.-Y. Hsu, C.-J. Chang, C.-S. Hsu, N.-T. Suen, T.-S. Chan and H. M. Chen, Adv. Energy Mater., 2018, 8, 1701686. 119. S.-F. Hung, Y.-T. Chan, C.-C. Chang, M.-K. Tsai, Y.-F. Liao, N. Hiraoka, C.-S. Hsu and H. M. Chen, J. Am. Chem. Soc., 2018, 140, 17263-17270. 120. S.-C. Lin, C.-S. Hsu, S.-Y. Chiu, T.-Y. Liao and H. M. Chen, J. Am. Chem. Soc., 2017, 139, 2224-2233. 121. C. S. Hsu, N. T. Suen, Y. Y. Hsu, H. Y. Lin, C. W. Tung, Y. F. Liao, T. S. Chan, H. S. Sheu, S. Y. Chen and H. M. Chen, Phys Chem Chem Phys, 2017, 19, 8681-8693. 122. H.-Y. Wang, S.-F. Hung, H.-Y. Chen, T.-S. Chan, H. M. Chen and B. Liu, J. Am. Chem. Soc., 2016, 138, 36-39. 123. C. W. Tung, Y. Y. Hsu, Y. P. Shen, Y. Zheng, T. S. Chan, H. S. Sheu, Y. C. Cheng and H. M. Chen, Nat Commun, 2015, 6, 8106. 124. J. Jiao, R. Lin, S. Liu, W. C. Cheong, C. Zhang, Z. Chen, Y. Pan, J. Tang, K. Wu, S. F. Hung, H. M. Chen, L. Zheng, Q. Lu, X. Yang, B. Xu, H. Xiao, J. Li, D. Wang, Q. Peng, C. Chen and Y. Li, Nat. Chem., 2019, 11, 222-228. 125. S. Jiang, K. Klingan, C. Pasquini and H. Dau, J. Chem. Phys., 2018, 150, 041718. 126. T. Sander, C. T. Reindl, M. Giar, B. Eifert, M. Heinemann, C. Heiliger and P. J. Klar, Phys. Rev. B, 2014, 90, 045203. 127. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, 1974. 128. S. C. Perry, S. M. Gateman, L. I. Stephens, R. Lacasse, R. Schulz and J. Mauzeroll, J. Electrochem. Soc., 2019, 166, C3186-C3192. 129. G. Hultquist, M. J. Graham, O. Kodra, S. Moisa, R. Liu, U. Bexell and J. L. Smialek, Corros. Sci., 2015, 95, 162-167. 130. F. Cavalca, R. Ferragut, S. Aghion, A. Eilert, O. Diaz-Morales, C. Liu, A. L. Koh, T. W. Hansen, L. G. M. Pettersson and A. Nilsson, J. Phys. Chem. C, 2017, 121, 25003-25009. 131. Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T.-K. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen and E. H. Sargent, Nat. Chem., 2018, 10, 974-980. 132. S. Lee, D. Kim and J. Lee, Angew. Chem. Int. Ed., 2015, 127, 14914-14918. 133. R. Kas, R. Kortlever, A. Milbrat, M. T. Koper, G. Mul and J. Baltrusaitis, Phys. Chem. Chem. Phys., 2014, 16, 12194-12201. 134. Y. W. Lum and J. W. Ager, Angew. Chem. Int. Ed., 2018, 57, 551-554. 135. S. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi and P. J. A. Kenis, J. Power Sources, 2016, 301, 219-228. 136. E. L. Clark and A. T. Bell, J. Am. Chem. Soc., 2018, 140, 7012-7020. 137. E. Bertheussen, A. Verdaguer-Casadevall, D. Ravasio, J. H. Montoya, D. B. Trimarco, C. Roy, S. Meier, J. Wendland, J. K. Norskov, I. E. L. Stephens and I. Chorkendorff, Angew. Chem. Int. Ed., 2016, 55, 1450-1454. 138. I. Ledezma-Yanez, E. P. Gallent, M. T. M. Koper and F. Calle-Vallejo, Catal. Today, 2016, 262, 90-94. 139. R. Kortlever, J. Shen, K. J. Schouten, F. Calle-Vallejo and M. T. Koper, J. Phys. Chem. Lett., 2015, 6, 4073-4082. 140. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov and T. F. Jaramillo, Science, 2017, 355, eaad4998. 141. C. Graves, S. D. Ebbesen, M. Mogensen and K. S. Lackner, Sust. Energ. Rev. , 2011, 15, 1-23. 142. S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo and I. Chorkendorff, Chem. Rev., 2019, 119, 7610-7672. 143. Y. Hori and S. Suzuki, B. Chem. Soc. Jpn., 1982, 55, 660-665. 144. Y. Hori, K. Kikuchi, A. Murata and S. Suzuki, Chem. Lett., 1986, 15, 897-898. 145. R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya and P. Strasser, J. Am. Chem. Soc., 2014, 136, 6978-6986. 146. N.-T. Suen, Z.-R. Kong, C.-S. Hsu, H.-C. Chen, C.-W. Tung, Y.-R. Lu, C.-L. Dong, C.-C. Shen, J.-C. Chung and H. M. Chen, ACS Catal., 2019, 9, 5217-5222. 147. F. S. Roberts, K. P. Kuhl and A. Nilsson, Angew. Chem. Int. Ed., 2015, 54, 5179-5182. 148. X. Nie, M. R. Esopi, M. J. Janik and A. Asthagiri, Angew. Chem. Int. Ed., 2013, 52, 2459-2462. 149. Z. Chen, X. Zhang and G. Lu, Chem. Sci., 2015, 6, 6829-6835. 150. Y. Wang, K. Yin, L. Lv, T. Kou, C. Zhang, J. Zhang, H. Gao and Z. Zhang, J. Mater. Chem. A, 2017, 5, 23651-23661. 151. C. Koenigsmann, W.-p. Zhou, R. R. Adzic, E. Sutter and S. S. Wong, Nano Lett., 2010, 10, 2806-2811. 152. L. Zhang, N. Li, F. Gao, L. Hou and Z. Xu, J. Am. Chem. Soc., 2012, 134, 11326-11329. 153. S. Sarfraz, A. T. Garcia-Esparza, A. Jedidi, L. Cavallo and K. Takanabe, ACS Catal., 2016, 6, 2842-2851. 154. W. Zhu, L. Zhang, P. Yang, C. Hu, H. Dong, Z.-J. Zhao, R. Mu and J. Gong, ACS Energy Lett., 2018, 3, 2144-2149. 155. S. Zhang, P. Kang, M. Bakir, A. M. Lapides, C. J. Dares and T. J. Meyer, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 15809-15814. 156. Y. Zhu, H.-C. Chen, C.-S. Hsu, T.-S. Lin, C.-J. Chang, S.-C. Chang, L.-D. Tsai and H. M. Chen, ACS Energy Lett., 2019, 4, 987-994. 157. L. Bai, C.-S. Hsu, D. T. L. Alexander, H. M. Chen and X. Hu, J. Am. Chem. Soc, 2019, 141, 14190-14199. 158. S.-F. Hung, Y. Zhu, G.-Q. Tzeng, H.-C. Chen, C.-S. Hsu, Y.-F. Liao, H. Ishii, N. Hiraoka and H. M. Chen, ACS Energy Lett., 2019, 4, 2813-2820. 159. D. Karapinar, A. Zitolo, T. N. Huan, S. Zanna, D. Taverna, L. H. Galvão Tizei, D. Giaume, P. Marcus, V. Mougel and M. Fontecave, ChemSusChem, 2020, 13, 173-179. 160. D. Karapinar, N. T. Huan, N. Ranjbar Sahraie, J. Li, D. Wakerley, N. Touati, S. Zanna, D. Taverna, L. H. Galvão Tizei, A. Zitolo, F. Jaouen, V. Mougel and M. Fontecave, Angew. Chem. Int. Ed., 2019, 58, 15098-15103. 161. C.-J. Chang, S.-F. Hung, C.-S. Hsu, H.-C. Chen, S.-C. Lin, Y.-F. Liao and H. M. Chen, ACS Cent. Sci., 2019, 5, 1998-2009. 162. M. Luo, Z. Wang, Y. C. Li, J. Li, F. Li, Y. Lum, D.-H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C.-T. Dinh, Y. Wang, Y. Wang, D. Sinton and E. H. Sargent, Nat. Commun., 2019, 10, 5814. 163. D. V. Ravi Kumar, I. Kim, Z. Zhong, K. Kim, D. Lee and J. Moon, Phys. Chem. Chem. Phys., 2014, 16, 22107-22115. 164. A. S. Varela, M. Kroschel, T. Reier and P. Strasser, Catal. Today, 2016, 260, 8-13. 165. Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, Electrochim. Acta, 1994, 39, 1833-1839. 166. Y. Takatsuji, I. Nakata, M. Morimoto, T. Sakakura, R. Yamasaki and T. Haruyama, Electrocatalysis, 2019, 10, 29-34. 167. Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu and G. Zheng, ACS Catal., 2018, 8, 7113-7119. 168. Z. Weng, X. Zhang, Y. Wu, S. Huo, J. Jiang, W. Liu, G. He, Y. Liang and H. Wang, Angew. Chem. Int. Ed., 2017, 56, 13135-13139. 169. Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K. L. Materna, W. Liu, V. S. Batista, G. W. Brudvig and H. Wang, J. Am. Chem. Soc., 2016, 138, 8076-8079. 170. M. K. Kim, H. J. Kim, H. Lim, Y. Kwon and H. M. Jeong, Electrochim. Acta., 2019, 306, 28-34. 171. K. Manthiram, B. J. Beberwyck and A. P. Alivisatos, J. Am. Chem. Soc., 2014, 136, 13319-13325. 172. E. L. Clark, C. Hahn, T. F. Jaramillo and A. T. Bell, J. Am. Chem. Soc., 2017, 139, 15848-15857. 173. D. Öhl, Y. U. Kayran, J. R. C. Junqueira, V. Eßmann, T. Bobrowski and W. Schuhmann, Langmuir, 2018, 34, 12293-12301. 174. B. S. Yeo and A. T. Bell, J. Am. Chem. Soc., 2011, 133, 5587-5593. 175. Y. Deng, L. R. L. Ting, P. H. L. Neo, Y.-J. Zhang, A. A. Peterson and B. S. Yeo, ACS Catal., 2016, 6, 7790-7798. 176. C.-W. Tung, Y.-Y. Hsu, Y.-P. Shen, Y. Zheng, T.-S. Chan, H.-S. Sheu, Y.-C. Cheng and H. M. Chen, Nature Commun., 2015, 6, 8106. 177. B.-A. Chen, J.-T. Lin, N.-T. Suen, C.-W. Tsao, T.-C. Chu, Y.-Y. Hsu, T.-S. Chan, Y.-T. Chan, J.-S. Yang, C.-W. Chiu and H. M. Chen, ACS Energy Lett., 2017, 2, 342-348. 178. C. W. Tung, T. R. Kuo, C. S. Hsu, Y. Chuang, H. C. Chen, C. K. Chang, C. Y. Chien, Y. J. Lu, T. S. Chan, J. F. Lee, J. Y. Li and H. M. Chen, Adv. Energy Mater., 2019, 9. 179. P. R. Subramanian and J. H. Perepezko, J. Phase. Equilib., 1993, 14, 62-75. 180. P. T. Sprunger, E. Lægsgaard and F. Besenbacher, Phys. Rev. B, 1996, 54, 8163-8171. 181. Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu and X. Wang, Nat. Energy, 2019, 4, 329-338. 182. D. A. Oulianov, I. V. Tomov, A. S. Dvornikov and P. M. Rentzepis, Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 12556-12561. 183. R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu and Y. Xiong, J. Am. Chem. Soc., 2017, 139, 4486-4492. 184. D. Y. Shin, J. H. Jo, J.-Y. Lee and D.-H. Lim, Comput. Theor. Chem., 2016, 1083, 31-37. 185. B. Hammer and J. K. Nørskov, Surf. Sci., 1995, 343, 211-220. 186. B. Hammer and J. K. Nørskov, in Adv. Catal., Academic Press, 2000, vol. 45, pp. 71-129. 187. S. Sakong and A. Groß, Surf. Sci., 2003, 525, 107-118. 188. A. D. Handoko, F. Wei, Jenndy, B. S. Yeo and Z. W. Seh, Nat. Catal., 2018, 1, 922-934. 189. L. Mandal, K. R. Yang, M. R. Motapothula, D. Ren, P. Lobaccaro, A. Patra, M. Sherburne, V. S. Batista, B. S. Yeo, J. W. Ager, J. Martin and T. Venkatesan, ACS Appl. Mater. Inter., 2018, 10, 8574-8584. 190. G. Niaura, Electrochim. Acta, 2000, 45, 3507-3519. 191. D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi and B. S. Yeo, ACS Catal., 2015, 5, 2814-2821. 192. S. M. Londoño-Restrepo, R. Jeronimo-Cruz, B. M. Millán-Malo, E. M. Rivera-Muñoz and M. E. Rodriguez-García, Sci. Rep., 2019, 9, 5915. 193. M. F. a. M. M. A. Monshi, World J. Nano Sci. Eng., 2012, 2, 154-160. 194. T. N. Nguyen and C.-T. Dinh, Chem. Soc. Rev., 2020, 49, 7488-7504. 195. S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo and I. Chorkendorff, Chemical Reviews, 2019, 119, 7610-7672. 196. S. H. Lee, J. C. Lin, M. Farmand, A. T. Landers, J. T. Feaster, J. E. Avilés Acosta, J. W. Beeman, Y. Ye, J. Yano, A. Mehta, R. C. Davis, T. F. Jaramillo, C. Hahn and W. S. Drisdell, J. Am. Chem. Soc., 2021, 143, 588-592. 197. M. He, C. Li, H. Zhang, X. Chang, J. G. Chen, W. A. Goddard, M.-j. Cheng, B. Xu and Q. Lu, Nat. Commun., 2020, 11, 3844. 198. F. Li, A. Thevenon, A. Rosas-Hernández, Z. Wang, Y. Li, C. M. Gabardo, A. Ozden, C. T. Dinh, J. Li, Y. Wang, J. P. Edwards, Y. Xu, C. McCallum, L. Tao, Z.-Q. Liang, M. Luo, X. Wang, H. Li, C. P. O’Brien, C.-S. Tan, D.-H. Nam, R. Quintero-Bermudez, T.-T. Zhuang, Y. C. Li, Z. Han, R. D. Britt, D. Sinton, T. Agapie, J. C. Peters and E. H. Sargent, Nature, 2020, 577, 509-513. 199. Z.-Z. Niu, F.-Y. Gao, X.-L. Zhang, P.-P. Yang, R. Liu, L.-P. Chi, Z.-Z. Wu, S. Qin, X. Yu and M.-R. Gao, J. Am. Chem. Soc., 2021. 200. Z. Zhang, G. Wen, D. Luo, B. Ren, Y. Zhu, R. Gao, H. Dou, G. Sun, M. Feng, Z. Bai, A. Yu and Z. Chen, J. Am. Chem. Soc., 2021, 143, 6855-6864. 201. J. E. Pander Iii, D. Ren, Y. Huang, N. W. X. Loo, S. H. L. Hong and B. S. Yeo, ChemElectroChem, 2018, 5, 219-237. 202. E. McCafferty, in Introduction to Corrosion Science, ed. E. McCafferty, Springer New York, New York, NY, 2010, DOI: 10.1007/978-1-4419-0455-3_6, pp. 95-117. 203. P.-P. Yang, X.-L. Zhang, F.-Y. Gao, Y.-R. Zheng, Z.-Z. Niu, X. Yu, R. Liu, Z.-Z. Wu, S. Qin, L.-P. Chi, Y. Duan, T. Ma, X.-S. Zheng, J.-F. Zhu, H.-J. Wang, M.-R. Gao and S.-H. Yu, J. Am. Chem. Soc., 2020, 142, 6400-6408. 204. J. Kim, W. Choi, J. W. Park, C. Kim, M. Kim and H. Song, J. Am. Chem. Soc., 2019, 141, 6986-6994. 205. W. Zhang, C. Huang, Q. Xiao, L. Yu, L. Shuai, P. An, J. Zhang, M. Qiu, Z. Ren and Y. Yu, J. Am. Chem. Soc., 2020, 142, 11417-11427. 206. J. Wang, C. Cheng, B. Huang, J. Cao, L. Li, Q. Shao, L. Zhang and X. Huang, Nano Lett., 2021, 21, 980-987. 207. J. Wang, H.-Y. Tan, Y. Zhu, H. Chu and H. M. Chen, Angew. Chem. Int. Ed., 2021, 60, 2-16. 208. B. Kumar, J. P. Brian, V. Atla, S. Kumari, K. A. Bertram, R. T. White and J. M. Spurgeon, ACS Catal., 2016, 6, 4739-4745. 209. C. Kim, L.-C. Weng and A. T. Bell, ACS Catal., 2020, 10, 12403-12413. 210. Y. Lou, J. Xu, Y. Zhang, C. Pan, Y. Dong and Y. Zhu, Mater. Today Nano, 2020, 12, 100093. 211. J. Gu, C.-S. Hsu, L. Bai, H. M. Chen and X. Hu, Science, 2019, 364, 1091-1094. 212. S. Chen, B. Wang, J. Zhu, L. Wang, H. Ou, Z. Zhang, X. Liang, L. Zheng, L. Zhou, Y.-Q. Su, D. Wang and Y. Li, Nano Lett., 2021, 21, 7325-7331. 213. Y. Cai, J. Fu, Y. Zhou, Y.-C. Chang, Q. Min, J.-J. Zhu, Y. Lin and W. Zhu, Nat. Commun., 2021, 12, 586. 214. B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12, 537-541. 215. J.-N. Nian, S.-A. Chen, C.-C. Tsai and H. Teng, J. Phys. Chem. B, 2006, 110, 25817-25824. 216. A. B. Gurevich, B. E. Bent, A. V. Teplyakov and J. G. Chen, Surf. Sci., 1999, 442, 971-976. 217. C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton and E. H. Sargent, Science, 2018, 360, 783-787. 218. M. G. Kibria, C.-T. Dinh, A. Seifitokaldani, P. De Luna, T. Burdyny, R. Quintero-Bermudez, M. B. Ross, O. S. Bushuyev, F. P. García de Arquer, P. Yang, D. Sinton and E. H. Sargent, Adv. Mater., 2018, 30, 1804867. 219. J.-J. Lv, M. Jouny, W. Luc, W. Zhu, J.-J. Zhu and F. Jiao, Adv. Mater., 2018, 30, 1803111. 220. J. Timoshenko and B. Roldan Cuenya, Chem. Rev., 2021, 121, 882-961. 221. Y. Xu, F. Li, A. Xu, J. P. Edwards, S.-F. Hung, C. M. Gabardo, C. P. O’Brien, S. Liu, X. Wang, Y. Li, J. Wicks, R. K. Miao, Y. Liu, J. Li, J. E. Huang, J. Abed, Y. Wang, E. H. Sargent and D. Sinton, Nat. Commun., 2021, 12, 2932. 222. C.-J. Chang, S.-C. Lin, H.-C. Chen, J. Wang, K. J. Zheng, Y. Zhu and H. M. Chen, J. Am. Chem. Soc., 2020, 142, 12119-12132. 223. J. Y. Zheng, T.-K. Van, A. U. Pawar, C. W. Kim and Y. S. Kang, RSC Adv., 2014, 4, 18616-18620. 224. T.-L. Chen, H.-C. Chen, Y.-P. Huang, S.-C. Lin, C.-H. Hou, H.-Y. Tan, C.-W. Tung, T. S. Chan, J.-J. Shyue and H. M. Chen, Nanoscale, 2020, 12, 18013-18021. 225. H. P. Hack, in Shreir's Corrosion, Elsevier, Oxford, 2010, pp. 828-856. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79267 | - |
| dc.description.abstract | 為了因應氣候變遷,近年來科學家嘗試以電催化還原二氧化碳成可再利用的產物,並輔以再生能源以達成發展,因此如何有效地降低電催化二氧化碳還原的過電位以及提高其單一產物的選擇性是近年來相當熱門的議題,而了解催化劑在反應過程中的動態結構變化及價態改變對於發展高效能的催化劑是相當重要的,然而這方面詳盡的研究仍有待探討。 本研究論文著重於三個部分,首先,銅金屬是電催化二氧化碳還原中最重要的催化劑,但是近年來,科學家對於銅在進行反應時的價態改變與結構變化仍有待商榷,因此,我們藉由先進的臨場分析技術,發現電催化二氧化碳還原的產物選擇性與銅結構變化有想當大的關聯,當施加一定程度的還原電位後,我們發現銅原子穩定的還原價態有助於碳氫化合物與醇類的生成,因此我們推論在還原電位的環境之下,原子的動態價態會與二氧化碳還原做競爭反應,進而造成只有在穩定金屬銅價態下,碳氫化合物與醇類才能順利生成。 另外,雙金屬催化劑也能夠有效提升反應的選擇性以及活性,但是科學家們對於活性的提升往往歸咎於偕同效應的籠統概念,除此之外,他們往往忽略了催化劑在反應過程當中,可能會有結構重組的現象,對此我們以銅銀雙金屬的核殼結構去探討此一現象。藉由臨場X光繞射實驗分析,我們發現催化過程中,銀原子會擴散至銅原子上形成銅銀合金,此一特殊結構有利於提升甲烷產物的選擇性,再結合先前的實驗,我們推測銅銀合金的形成,源自於銅原子在低還原電位時的動態價態,當施予足夠的還原電位後,銅原子的還原過程將銀一同帶入形成銅銀合金,以利二氧化碳還原成甲烷。 最後我們重新探討銅在電催化二氧化碳還原時的價態,我們以雙金屬的銅鋅氧化物做為催化劑並使用脈衝電化學方法還原能夠有效提升活性,再以臨場快速吸收譜觀察後我們發現,脈衝電化學方法會將催化劑結構重組成分相的銅鋅結構,鋅會作為路易士酸使銅在還原電位下仍保有氧化價態,並在不施加還原電位時,強鹼的電解液能夠重新補充銅的氧化價態,我們認為在還原電位下穩定帶價態的銅是提升二碳產物的重要因素。 在本研究主題中,我們成功地解釋催化劑的結構變化對於活性以及產物分布造成的影響,提供電催化二氧化碳還原催化劑的設計構想。我們期望這些研究成果能夠對當前的環境問題提供些許幫助,讓人類未來的生活更美好。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:57:01Z (GMT). No. of bitstreams: 1 U0001-3112202114340100.pdf: 14611796 bytes, checksum: 4848bf8d7d5408820bbc4f98f2efa112 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "CONTENTS List of Figures………………………………………………………….……………..VII List of Tables……………………………...………………………………………XVIII Chapter 1. Background………………...…………………………………1 1.1 Introduction…………………………………………………………………………1 1.2 Electrochemical CO2 Reduction Reaction…………….…………………………...3 1.2.1 Overview of Electrochemical CO2 Reduction Reaction………………………....3 1.2.2 Products and Product Distribution under Different Applied Potentials...…….…..5 1.2.3 Mechanism of CO2RR …………………………………………………………7 1.2.4 Oxide-derived Copper Catalysts……………………………………………...11 1.2.5 Bimetallic Catalysts…………………………………………………….……..17 1.3 Research Motive……………………………………………………......……………22 1.4 References……………………………………………………………...……………25 Chapter 2. Characterization Techniques…………………….…………30 2.1 Scanning Electron Microscope (SEM)……………………………………………...30 2.2 Transmission Electron Microscope (TEM)…………………………...………….31 2.3 Energy-dispersive X-ray Spectroscopy…………………………………………...33 2.4 Electrochemical Measurements………………………………………..…………34 2.4.1 Linear Sweep Voltammetry ……………………………………………….34 2.4.2 Chronoamperometry……………………………………………...…………34 2.4.3 Faradaic Efficiency………………………………………………………..35 2.5 Electrochemical Cells……………………………………………………………36 2.6 Product Analysis…………………………………………………………………...39 2.6.1 Gas Chromatography …………………………………………....…………..39 2.6.2 Gas Chromatography-mass Spectrometry…………………………………40 2.7 In situ Techniques for Electrolysis………………………………………………41 2.7.1 Raman Spectroscopy……………………………………………..………..41 2.7.2 X-ray Diffraction……………………………………………………………42 2.7.3 X-ray Absorption Spectroscopy…………………………………….…………44 2.8 References…………………………………………………………………..……..47 Chapter 3. Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuOx on Silver Nanowires Using in Situ X‑ray Absorption Spectroscopy…………………………………………48 3.1 Introduction…………………………………………………………………………49 3.2 Experimental Section……………………………………………………………53 3.2.1 Preparation of Catalysts……………………………………………………...53 3.2.2 Structural Characterization ……………………………………..…………...54 3.2.3 XAS Data Collection and Analysis…………………………….…………….55 3.2.4 EXAFS Fittings……………………………...…………………..…………..56 3.2.5 In situ Raman Characterization……………...………………………………57 3.2.6 Electrochemical Characterization……………………………...……...57 3.2.7 Analysis of the CO2 reduction Products……………………….…….59 3.3 Results and Discussion……………………………...………………………..……60 3.3.1 Structural Characterization…………………………………………….…….60 3.3.2 Catalytic Performance……………………...…………………………67 3.3.3 In situ XAS Characterization………………...………………………..73 3.3.4 In situ Raman Characterization………………..………………………86 3.3.5 Proposed Reoxidation of Cu under Cathodic Potentials……...…….....93 3.3.6 The Role of Silver Nanowire under CO2RR………………………...……….95 3.4 Conclusions………………………………………………………………...……....99 3.5 References………………………………………………………………….……..100 Chapter 4. Dynamic Reoxidation/reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane………………….104 4.1 Introduction………………………………………………………………………105 4.2 Experimental Section………………………………………...……………..……109 4.2.1 Chemicals and Materials………………………………...…………………109 4.2.2 Synthesis of Cu Nanowires…………………………………………………109 4.2.3 Synthesis of Ag Nanowires…………………………………………………110 4.2.4 Synthesis of Cu100-XAgX Nanowires………………………………….…..110 4.2.5 Structural Characterization………………………………..………………..111 4.2.6 Operando X-ray Absorption Spectroscopy and in situ Grazing-angle X-ray Scattering Technique Analysis.…………..……………………………....111 4.2.7 In situ Raman Characterization………………………………….….112 4.2.8 Electrochemical Measurements……………………...……………..113 4.2.9 Analysis of the CO2 Reduction Performance………………………….….114 4.3 Results and Discussion……………………………………………..…………….115 4.3.1 Structural Characterization…………………………………………….…115 4.3.2 Electrochemical Properties toward CO2RR…………………..…………….123 4.3.3 In situ Grazing-angle X-ray Scattering Characterization……………......….132 4.3.4 Operando Chemical State and Tensile Strain Analyses……………………..137 4.3.5 Proposed Dynamic Reoxidation/reduction-driven Atomic Interdiffusion.....151 4.4 Conclusions…………………………………………………………………….....158 4.5 References…………………………………………………………………….......160 Chapter 5. Lewis Acid Universally Controls the Oxidation State of Cu during Pulsed Electrochemical CO2 Reduction with High Turnover Frequency for C2+ Products……………………………………………164 5.1 Introduction………………………………………………………………..………165 5.2 Experimental section……………………………………………………...…….…168 5.2.1 Chemicals and Materials……………………………………………...……...168 5.2.2 Synthesis of CuxZn0.2-x………………………………………………...……..168 5.2.3 Synthesis of Cu010Mn010, and Cu010Cd010…………………………………..169 5.2.4 Structural Characterization………………………………………….......……169 5.2.5 X-ray Absorption Spectroscopy……………………………………………170 5.2.6 Electrochemical Characterization……………………………………....……170 5.2.7 Analysis of the CO2 Reduction Products……………………………….…….171 5.3 Results and Discussion……………………………………………………….......172 5.3.1 Structural Characterization………………………………………………....172 5.3.2 CO2RR Performance Evaluation………….……...………………………...180 5.3.3 In situ XAS Investigation………………………………………………..…187 5.3.4 Proposed Structural Evolution…………………………………………….207 5.4 Conclusions…………………………………………………………….................211 5.5 Reference…………………………………………………………………...….....212 Chapter 6. Concluding Remarks……………………………………..…215 Appendix Curriculum Vitae……………………………………………………………….217 " | |
| dc.language.iso | zh-TW | |
| dc.title | 以臨場與非臨場技術分析電催化二氧化碳還原催化劑於反應時之結構變化對於活性之影響 | zh_TW |
| dc.title | Probing the Structural Transformation of Electrochemical CO2 Reduction Reaction Catalysts via In/Ex situ Analysis | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.advisor-orcid | 陳浩銘(0000-0002-7480-9940) | |
| dc.contributor.oralexamcommittee | 洪崧富(Hsin-Tsai Liu),陳効謙(Chih-Yang Tseng),廖彥發,郭聰榮,林律吟,廖尉斯 | |
| dc.subject.keyword | 電催化二氧化碳還原反應,電化學,臨場分析,X光吸收譜,X光繞射譜, | zh_TW |
| dc.subject.keyword | Electrochemical CO2 Reduction Reaction,Electrocatalyst,Electrochemistry,In situ Analysis,X-ray Absorption Spectroscopy,X-ray Diffraction, | en |
| dc.relation.page | 218 | |
| dc.identifier.doi | 10.6342/NTU202104601 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-01-22 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-07-01 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3112202114340100.pdf | 14.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
