Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79261
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor莊永裕(Yung-Yu Chuang)
dc.contributor.authorChun-Wei Chenen
dc.contributor.author陳俊瑋zh_TW
dc.date.accessioned2022-11-23T08:56:54Z-
dc.date.available2022-01-17
dc.date.available2022-11-23T08:56:54Z-
dc.date.copyright2022-01-17
dc.date.issued2022
dc.date.submitted2022-01-10
dc.identifier.citation[1] HE, Kaiming, et al. Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision. 2017. p. 2961-2969. [2] SHEN, Xing, et al. Dct-mask: Discrete cosine transform mask representation for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p. 8720-8729. [3] ZHANG, Gang, et al. RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p. 6861-6869. [4] CHEN, Hao, et al. BlendMask: Top-down meets bottom-up for instance segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020. p. 8573-8581. [5] CAO, Jiale, et al. Sipmask: Spatial information preservation for fast image and video instance segmentation. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16. Springer International Publishing, 2020. p. 1-18. [6] WANG, Chien-Yao; BOCHKOVSKIY, Alexey; LIAO, Hong-Yuan Mark. Scaled-yolov4: Scaling cross stage partial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p. 13029-13038. [7] BOLYA, Daniel, et al. Yolact: Real-time instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019. p. 9157-9166. [8] REN, Shaoqing, et al. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 2015, 28: 91-99. [9] TIAN, Zhi, et al. Fcos: Fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019. p. 9627-9636. [10] GE, Zheng, et al. OTA: Optimal Transport Assignment for Object Detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p. 303-312. [11] LIU, Shu, et al. Path aggregation network for instance segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 8759-8768. [12] ZHENG, Zhaohui, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 2021. [13] LI, Yi, et al. Fully convolutional instance-aware semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 2359-2367. [14] FU, Cheng-Yang; SHVETS, Mykhailo; BERG, Alexander C. RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free. arXiv preprint arXiv:1901.03353, 2019. [15] CHEN, Kai, et al. Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. p. 4974-4983. [16] CHEN, Xinlei, et al. Tensormask: A foundation for dense object segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019. p. 2061-2069.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79261-
dc.description.abstract本研究提出一個即時的實例分割系統,實例分割的目的在於找出圖片中的各個物件,並區分出每個實例之間的差異,例如圖中有兩個人,就需要區分出是兩個不同的人。目前有許多基於Mask R-CNN的two-stage方法,能達到相當高的MAP,例如RefineMask可以於coco2017val達到45.3 MAP,但無法達到Real-time。同時Real-time的作法,例如BlendMask與SipMask MAP則僅有36.3與34.2。本系統基於scaled yolov4,並將其延伸,在維持其原本Real-time的特性下,加入了實例分割的功能,實例分割的部分主要參考BlendMask,並加上了錨定(anchor)的概念。同時於NMS提出了一個創新的做法,Mask confidence。並於FPN的P2加入一個Saliency Map branch進行self-supervised learning。最終可在Real-time的情況下,於coco2017val達到42.6 MAP。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:56:54Z (GMT). No. of bitstreams: 1
U0001-1001202210084600.pdf: 1735583 bytes, checksum: 323681cb32b93c6e2ab107af513e2b20 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii Content iv List of Figures vi List of Tables vii 1 Introduction 1 1.1 Motivation 1 1.2 Objective: Real Time Instance Segmenation 1 1.3 Contributions 2 1.4 Chapter Outline 2 2 Related Works 3 3 Data Augmentation 5 3.1 Mosaic 5 3.2 Perspective Warping and Flipping 5 4 Network Architecture 7 4.1 Object Detection: Yolov4 7 4.2 Detection Heads 9 4.3 Bases Branch and Blender 10 4.4 Auxiliary Saliency Branch 11 4.5 Whole Network Architecture 13 5 Label Assignment 14 5.1 Label Assignment in Yolov4 and OTA 14 5.2 Strictly Optimal Transport Assignment 16 6 Mask Confidence 16 7 Experiments 17 7.1 Results 17 7.2 Comparison with other works 19 7.3 Number of Neighbors in OTA 20 7.4 Anchor for Mask 20 7.5 Ablation Study 21 8 Conclusions 23 Reference 24
dc.language.isoen
dc.title基於錨定的即時實例分割系統zh_TW
dc.titleAnchor-based real-time instance segmentation systemen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee廖弘源(Keh-Ming Shyue),林永隆(Yu-Chen Shu),王建堯
dc.subject.keyword電腦視覺,物件偵測,實例分割,深度學習,錨定,zh_TW
dc.subject.keywordComputer vision,Object detection,Instance segmentation,Deep learning,Anchor-based,en
dc.relation.page27
dc.identifier.doi10.6342/NTU202200031
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-01-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
U0001-1001202210084600.pdf1.69 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved