Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7920
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹智強
dc.contributor.authorYu-Chin Changen
dc.contributor.author張毓秦zh_TW
dc.date.accessioned2021-05-19T17:58:42Z-
dc.date.available2026-12-31
dc.date.available2021-05-19T17:58:42Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-03
dc.identifier.citation1. Acharya, J. K., U. Dasgupta, S. S. Rawat, C. Yuan, P. D. Sanxaridis, I. Yonamine, P. Karim, K. Nagashima, M. H. Brodsky, S. Tsunoda and U. Acharya (2008). 'Cell-nonautonomous function of ceramidase in photoreceptor homeostasis.' Neuron 57(1): 69-79.
2. Adachi-Yamada, T., T. Gotoh, I. Sugimura, M. Tateno, Y. Nishida, T. Onuki and H. Date (1999). 'De novo synthesis of sphingolipids is required for cell survival by down-regulating c-Jun N-terminal kinase in Drosophila imaginal discs.' Mol Cell Biol 19(10): 7276-7286.
3. Alexaki, A., S. D. Gupta, S. Majumder, M. Kono, G. Tuymetova, J. M. Harmon, T. M. Dunn and R. L. Proia (2014). 'Autophagy regulates sphingolipid levels in the liver.' J Lipid Res 55(12): 2521-2531.
4. Barbarroja, N., S. Rodriguez-Cuenca, H. Nygren, A. Camargo, A. Pirraco, J. Relat, I. Cuadrado, V. Pellegrinelli, G. Medina-Gomez, C. Lopez-Pedrera, F. J. Tinahones, J. D. Symons, S. A. Summers, M. Oresic and A. Vidal-Puig (2015). 'Increased dihydroceramide/ceramide ratio mediated by defective expression of degs1 impairs adipocyte differentiation and function.' Diabetes 64(4): 1180-1192.
5. Bartke, N. and Y. A. Hannun (2009). 'Bioactive sphingolipids: metabolism and function.' Journal of Lipid Research 50(Supplement): S91-S96.
6. Basu, J. and Z. Li (1998). 'The Des-1 protein, required for central spindle assembly and cytokinesis, is associated with mitochondria along the meiotic spindle apparatus and with the contractile ring during male meiosis in Drosophila melanogaster.' MGG - Molecular and General Genetics.
7. Bauer, R., A. Voelzmann, B. Breiden, U. Schepers, H. Farwanah, I. Hahn, F. Eckardt, K. Sandhoff and M. Hoch (2009). 'Schlank, a member of the ceramide synthase family controls growth and body fat in Drosophila.' EMBO J 28(23): 3706-3716.
8. Beauchamp, E., X. Tekpli, G. Marteil, D. Lagadic-Gossmann, P. Legrand and V. Rioux (2009). 'N-Myristoylation targets dihydroceramide Δ4-desaturase 1 to mitochondria: Partial involvement in the apoptotic effect of myristic acid.' Biochimie 91(11–12): 1411-1419.
9. Bejaoui, K., C. Wu, M. D. Scheffler, G. Haan, P. Ashby, L. Wu, P. de Jong and R. H. Brown (2001). 'SPTLC1 is mutated in hereditary sensory neuropathy, type 1.' Nat Genet 27(3): 261-262.
10. Bienias, K., A. Fiedorowicz, A. Sadowska, S. Prokopiuk and H. Car (2016). 'Regulation of sphingomyelin metabolism.' Pharmacol Rep 68(3): 570-581.
11. Breslow, D. K. and J. S. Weissman (2010). 'Membranes in Balance: Mechanisms of Sphingolipid Homeostasis.' Molecular Cell 40(2): 267-279.
12. Brozinick, J. T., E. Hawkins, H. Hoang Bui, M. S. Kuo, B. Tan, P. Kievit and K. Grove (2013). 'Plasma sphingolipids are biomarkers of metabolic syndrome in non-human primates maintained on a Western-style diet.' Int J Obes (Lond) 37(8): 1064-1070.
13. Cadena, D. L., R. C. Kurten and G. N. Gill (1997). 'The Product of the MLD Gene Is a Member of the Membrane Fatty Acid Desaturase Family:  Overexpression of MLD Inhibits EGF Receptor Biosynthesis.' Biochemistry 36(23): 6960-6967.
14. Catherine Causeret, Luc Geeraert, Gerd Van der Hoeven, Guy P. Mannaerts and P. P. V. Veldhoven (2000). 'Further characterization of rat dihydroceramide desaturase: Tissue distribution, subcellular localization, and substrate specificity.' Lipids Volume 35,(Issue 10).
15. Cherry, S., E. J. Jin, M. N. Özel, Z. Lu, E. Agi, D. Wang, W.-H. Jung, D. Epstein, I. A. Meinertzhagen, C.-C. Chan and P. R. Hiesinger (2013). 'Charcot-Marie-Tooth 2B mutations in rab7 cause dosage-dependent neurodegeneration due to partial loss of function.' eLife 2: e01064.
16. Davis, R. J. (2000). 'Signal transduction by the JNK group of MAP kinases.' Cell 103(2): 239-252.
17. Dawkins, J. L., D. J. Hulme, S. B. Brahmbhatt, M. Auer-Grumbach and G. A. Nicholson (2001). 'Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I.' Nat Genet 27(3): 309-312.
18. Dourlen, P., B. Bertin, G. Chatelain, M. Robin, F. Napoletano, M. J. Roux and B. Mollereau (2012). '<italic>Drosophila Fatty Acid Transport Protein</italic> Regulates Rhodopsin-1 Metabolism and Is Required for Photoreceptor Neuron Survival.' PLoS Genet 8(7): e1002833.
19. Endo, K., T. Akiyama, S. Kobayashi and M. Okada (1996). 'Degenerative spermatocyte, a novel gene encoding a transmembrane protein required for the initiation of meiosis in Drosophila spermatogenesis.' Mol Gen Genet 253(1-2): 157-165.
20. Fonteh, A. N., C. Ormseth, J. Chiang, M. Cipolla, X. Arakaki and M. G. Harrington (2015). 'Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer's disease.' PLoS One 10(5): e0125597.
21. Fransen, M., M. Nordgren, B. Wang and O. Apanasets (2012). 'Role of peroxisomes in ROS/RNS-metabolism: implications for human disease.' Biochim Biophys Acta 1822(9): 1363-1373.
22. Futerman, A. H. and Y. A. Hannun (2004). 'The complex life of simple sphingolipids.' EMBO Rep 5(8): 777-782.
23. Futerman, A. H. and H. Riezman (2005). 'The ins and outs of sphingolipid synthesis.' Trends Cell Biol 15(6): 312-318.
24. Gagliostro, V., J. Casas, A. Caretti, J. L. Abad, L. Tagliavacca, R. Ghidoni, G. Fabrias and P. Signorelli (2012). 'Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy.' Int J Biochem Cell Biol 44(12): 2135-2143.
25. Gan, J. J., V. Garcia, J. Tian, M. Tagliati, J. E. Parisi, J. M. Chung, R. Lewis, R. Baloh, T. Levade and T. M. Pierson (2015). 'Acid ceramidase deficiency associated with spinal muscular atrophy with progressive myoclonic epilepsy.' Neuromuscular Disorders 25(12): 959-963.
26. Ghafourifar, P., S. D. Klein, O. Schucht, U. Schenk, M. Pruschy, S. Rocha and C. Richter (1999). 'Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state.' J Biol Chem 274(10): 6080-6084.
27. Ghosh, A., T. Kling, N. Snaidero, J. L. Sampaio, A. Shevchenko, H. Gras, B. Geurten, M. C. Gopfert, J. B. Schulz, A. Voigt and M. Simons (2013). 'A global in vivo Drosophila RNAi screen identifies a key role of ceramide phosphoethanolamine for glial ensheathment of axons.' PLoS Genet 9(12): e1003980.
28. Gilgun-Sherki, Y., E. Melamed and D. Offen (2001). 'Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier.' Neuropharmacology 40(8): 959-975.
29. Han, X., D. M. Holtzman, D. W. McKeel, J. Kelley and J. C. Morris (2002). 'Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis.' Journal of Neurochemistry 82(4): 809-818.
30. Hannun, Y. A. and L. M. Obeid (2008). 'Principles of bioactive lipid signalling: lessons from sphingolipids.' Nat Rev Mol Cell Biol 9(2): 139-150.
31. Hannun, Y. A. and L. M. Obeid (2008). 'Principles of bioactive lipid signalling: lessons from sphingolipids.' Nat Rev Mol Cell Biol 9(2): 139-150.
32. Hla, T. (2004). 'Physiological and pathological actions of sphingosine 1-phosphate.' Seminars in Cell & Developmental Biology 15(5): 513-520.
33. Hu, W., H. Tian, W. Yue, L. Li, S. Li, C. Gao, L. Si, L. Qi, M. Lu, B. Hao and S. Shan (2016). 'Rotenone induces apoptosis in human lung cancer cells by regulating autophagic flux.' IUBMB Life 68(5): 388-393.
34. Huang, Y. N., L. Y. Yang, J. Y. Wang, C. C. Lai, C. T. Chiu and J. Y. Wang (2016). 'L-Ascorbate Protects Against Methamphetamine-Induced Neurotoxicity of Cortical Cells via Inhibiting Oxidative Stress, Autophagy, and Apoptosis.' Mol Neurobiol.
35. Idkowiak-Baldys, J., A. Apraiz, L. Li, M. Rahmaniyan, Christopher J. Clarke, Jacqueline M. Kraveka, A. Asumendi and Yusuf A. Hannun (2010). 'Dihydroceramide desaturase activity is modulated by oxidative stress.' Biochemical Journal 427(2): 265-274.
36. Imgrund, S., D. Hartmann, H. Farwanah, M. Eckhardt, R. Sandhoff, J. Degen, V. Gieselmann, K. Sandhoff and K. Willecke (2009). 'Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas.' J Biol Chem 284(48): 33549-33560.
37. Jiang, Q., X. Rao, C. Y. Kim, H. Freiser, Q. Zhang, Z. Jiang and G. Li (2012). 'Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide.' Int J Cancer 130(3): 685-693.
38. Kaushik, S., J. A. Rodriguez-Navarro, E. Arias, R. Kiffin, S. Sahu, G. J. Schwartz, A. M. Cuervo and R. Singh (2011). 'Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance.' Cell Metab 14(2): 173-183.
39. Kennan, A., A. Aherne and P. Humphries (2005). 'Light in retinitis pigmentosa.' Trends Genet 21(2): 103-110.
40. Koga, H., M. Martinez-Vicente, E. Arias, S. Kaushik, D. Sulzer and A. M. Cuervo (2011). 'Constitutive Upregulation of Chaperone-Mediated Autophagy in Huntington's Disease.' The Journal of Neuroscience 31(50): 18492-18505.
41. Lee, E. S. and J. G. Flannery (2007). 'Transport of truncated rhodopsin and its effects on rod function and degeneration.' Invest Ophthalmol Vis Sci 48(6): 2868-2876.
42. Lin, M. T. and M. F. Beal (2006). 'Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.' Nature 443(7113): 787-795.
43. Liu, K. and M. J. Czaja (2013). 'Regulation of lipid stores and metabolism by lipophagy.' Cell Death Differ 20(1): 3-11.
44. Liu, L., K. Zhang, H. Sandoval, S. Yamamoto, M. Jaiswal, E. Sanz, Z. Li, J. Hui, B. H. Graham, A. Quintana and H. J. Bellen (2015). 'Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration.' Cell 160(1-2): 177-190.
45. Mamtani, M., P. J. Meikle, H. Kulkarni, J. M. Weir, C. K. Barlow, J. B. Jowett, C. Bellis, T. D. Dyer, L. Almasy, M. C. Mahaney, R. Duggirala, A. G. Comuzzie, J. Blangero and J. E. Curran (2014). 'Plasma dihydroceramide species associate with waist circumference in Mexican American families.' Obesity (Silver Spring) 22(3): 950-956.
46. Mendes, H. F., J. van der Spuy, J. P. Chapple and M. E. Cheetham (2005). 'Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy.' Trends Mol Med 11(4): 177-185.
47. Michel, C. and G. van Echten-Deckert (1997). 'Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum.' FEBS Letters 416(2): 153-155.
48. Michel, C. and G. van Echten-Deckert (1997). 'Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum.' FEBS Lett 416(2): 153-155.
49. Mielke, M. M., N. J. Haughey, V. V. Bandaru, D. D. Weinberg, E. Darby, N. Zaidi, V. Pavlik, R. S. Doody and C. G. Lyketsos (2011). 'Plasma sphingomyelins are associated with cognitive progression in Alzheimer's disease.' J Alzheimers Dis 27(2): 259-269.
50. Mizutani, Y., A. Kihara and Y. Igarashi (2004). 'Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation.' FEBS Letters 563(1-3): 93-97.
51. Naash, M. I., J. G. Hollyfield, M. R. al-Ubaidi and W. Baehr (1993). 'Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene.' Proc Natl Acad Sci U S A 90(12): 5499-5503.
52. Niki, E. (2009). 'Lipid peroxidation: physiological levels and dual biological effects.' Free Radic Biol Med 47(5): 469-484.
53. Ohi, K., G. Ursini, M. Li, J. H. Shin, T. Ye, Q. Chen, R. Tao, J. E. Kleinman, T. M. Hyde, R. Hashimoto and D. R. Weinberger (2015). 'DEGS2 polymorphism associated with cognition in schizophrenia is associated with gene expression in brain.' Transl Psychiatry 5: e550.
54. OMAE, F., M. MIYAZAKI, A. ENOMOTO, M. SUZUKI, Y. SUZUKI and A. SUZUKI (2004). 'DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine.' Biochemical Journal 379(3): 687-695.
55. Park, J. H. and E. H. Schuchman (2006). 'Acid ceramidase and human disease.' Biochim Biophys Acta 1758(12): 2133-2138.
56. Pelled, D., T. Raveh, C. Riebeling, M. Fridkin, H. Berissi, A. H. Futerman and A. Kimchi (2002). 'Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons.' J Biol Chem 277(3): 1957-1961.
57. Puglielli, L., B. C. Ellis, A. J. Saunders and D. M. Kovacs (2003). 'Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis.' J Biol Chem 278(22): 19777-19783.
58. Rahal, A., A. Kumar, V. Singh, B. Yadav, R. Tiwari, S. Chakraborty and K. Dhama (2014). 'Oxidative stress, prooxidants, and antioxidants: the interplay.' Biomed Res Int 2014: 761264.
59. Reed, T. T. (2011). 'Lipid peroxidation and neurodegenerative disease.' Free Radic Biol Med 51(7): 1302-1319.
60. Roederer, K., L. Cozy, J. Anderson and J. P. Kumar (2005). 'Novel dominant-negative mutation within the six domain of the conserved eye specification gene sine oculis inhibits eye development in Drosophila.' Dev Dyn 232(3): 753-766.
61. Roy G Cutler, Ward A Pedersen, Simonetta Camandola, Jeffrey Rothstein and M. P. Mattson (2002). 'Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in ALS.' Annals of Neurology.
62. S&ouml;llner, T., M. K. Bennett, S. W. Whiteheart, R. H. Scheller and J. E. Rothman (1993). 'A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.' Cell 75(3): 409-418.
63. Saddoughi, S. A., P. Song and B. Ogretmen (2008). 'Roles of bioactive sphingolipids in cancer biology and therapeutics.' Subcell Biochem 49: 413-440.
64. Scarlatti, F., C. Bauvy, A. Ventruti, G. Sala, F. Cluzeaud, A. Vandewalle, R. Ghidoni and P. Codogno (2004). 'Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1.' J Biol Chem 279(18): 18384-18391.
65. Sentelle, R. D., C. E. Senkal, W. Jiang, S. Ponnusamy, S. Gencer, S. P. Selvam, V. K. Ramshesh, Y. K. Peterson, J. J. Lemasters, Z. M. Szulc, J. Bielawski and B. Ogretmen (2012). 'Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy.' Nat Chem Biol 8(10): 831-838.
66. Siddique, M. M., Y. Li, B. Chaurasia, V. A. Kaddai and S. A. Summers (2015). 'Dihydroceramides: From Bit Players to Lead Actors.' J Biol Chem 290(25): 15371-15379.
67. Siddique, M. M., Y. Li, L. Wang, J. Ching, M. Mal, O. Ilkayeva, Y. J. Wu, B. H. Bay and S. A. Summers (2013). 'Ablation of dihydroceramide desaturase 1, a therapeutic target for the treatment of metabolic diseases, simultaneously stimulates anabolic and catabolic signaling.' Mol Cell Biol 33(11): 2353-2369.
68. Signorelli, P., J. M. Munoz-Olaya, V. Gagliostro, J. Casas, R. Ghidoni and G. Fabrias (2009). 'Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells.' Cancer Lett 282(2): 238-243.
69. Spiegel, S. and S. Milstien (2003). 'Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways.' Biochemical Society Transactions 31(6): 1216-1219.
70. Stronach, B. E. and N. Perrimon (1999). 'Stress signaling in Drosophila.' Oncogene 18(45): 6172-6182.
71. Subramaniam, V. N., E. Loh and W. Hong (1997). 'N-Ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment proteins (SNAP) mediate dissociation of GS28-syntaxin 5 Golgi SNAP receptors (SNARE) complex.' J Biol Chem 272(41): 25441-25444.
72. Sugita, M., J. T. Dulaney and H. W. Moser (1972). 'Ceramidase deficiency in Farber's disease (lipogranulomatosis).' Science 178(4065): 1100-1102.
73. Tagaya, M., T. Genma, A. Yamamoto, S. Kozaki and S. Mizushima (1996). 'SNAP-25 is present on chromaffin granules and acts as a SNAP receptor.' FEBS Letters 394(1): 83-86.
74. Tripathi, D. N. and C. L. Walker (2016). 'The peroxisome as a cell signaling organelle.' Current Opinion in Cell Biology 39: 109-112.
75. Tsujimoto, Y. and S. Shimizu (2005). 'Another way to die: autophagic programmed cell death.' Cell Death Differ 12(S2): 1528-1534.
76. Uttara, B., A. V. Singh, P. Zamboni and R. T. Mahajan (2009). 'Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options.' Curr Neuropharmacol 7(1): 65-74.
77. Vidaurre, O. G., J. D. Haines, I. Katz Sand, K. P. Adula, J. L. Huynh, C. A. McGraw, F. Zhang, M. Varghese, E. Sotirchos, P. Bhargava, V. V. Bandaru, G. Pasinetti, W. Zhang, M. Inglese, P. A. Calabresi, G. Wu, A. E. Miller, N. J. Haughey, F. D. Lublin and P. Casaccia (2014). 'Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics.' Brain 137(Pt 8): 2271-2286.
78. Walls, S. M., Jr., S. J. Attle, G. B. Brulte, M. L. Walls, K. D. Finley, D. A. Chatfield, D. R. Herr and G. L. Harris (2013). 'Identification of Sphingolipid Metabolites That Induce Obesity via Misregulation of Appetite, Caloric Intake and Fat Storage in <italic>Drosophila</italic>.' PLoS Genet 9(12): e1003970.
79. Wang, M. C., D. Bohmann and H. Jasper (2003). 'JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila.' Dev Cell 5(5): 811-816.
80. Wells, G. B., R. C. Dickson and R. L. Lester (1998). 'Heat-induced Elevation of Ceramide in Saccharomyces cerevisiae via de Novo Synthesis.' Journal of Biological Chemistry 273(13): 7235-7243.
81. Xu, T. and G. M. Rubin (1993). 'Analysis of genetic mosaics in developing and adult Drosophila tissues.' Development 117(4): 1223-1237.
82. Zhao, L., S. D. Spassieva, T. J. Jucius, L. D. Shultz, H. E. Shick, W. B. Macklin, Y. A. Hannun, L. M. Obeid and S. L. Ackerman (2011). 'A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation.' PLoS Genet 7(5): e1002063.
83. Zheng, W., J. Kollmeyer, H. Symolon, A. Momin, E. Munter, E. Wang, S. Kelly, J. C. Allegood, Y. Liu, Q. Peng, H. Ramaraju, M. C. Sullards, M. Cabot and A. H. Merrill, Jr. (2006). 'Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy.' Biochim Biophys Acta 1758(12): 1864-1884.
84. 劉中致 (2015)。infertile crescent (ifc) 於神經發育及神經退化中調控細胞自噬作用。國立臺灣大學醫學院生理學研究所碩士論文,未出版,臺灣。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7920-
dc.description.abstract神經磷脂質 (Sphingolipid) 為神經細胞膜之重要分子,因此其胞內組成須被嚴謹調控。在果蠅神經磷脂質新合成路徑中,基因infertile crescent (ifc) 為演化上具高度保守性的脂質修飾酵素Dihydroceramide (DHC) desaturase,負責將dihydroceramide (DHC) 轉變為神經醯胺 (ceramide)。具生物活性的神經醯胺 (ceramide) 的失衡與許多神經退化疾病相關,然而關於其上游的dihydroceramid (DHC) 對於神經功能的影響仍未知。為探討ifc於神經所扮演的角色,我們製造出ifc-KO基因剔除果蠅。Sphingolipidomic analysis顯示失去ifc導致DHC增加。ifc-KO果蠅眼睛在連續光刺激下會導致感光細胞退化。透過ifc-KO感光細胞突變群組分析 (clonal analysis),我們在連續光刺激下,觀察到脂噬 (lipophagy) 結構堆積以及活性氧物種 (ROS) 染劑H2DCF的訊號上升,因此推論DHC堆積會活化脂噬作用並誘導ROS 增加。然而,神經退化是否歸因於脂噬作用而造成細胞死亡或是活性氧物種 (ROS) 所致,則仍有待實驗證明。當減少ifc表現時,酸性胞器中的Atg8/LC3 puncta會增加,而且溶酶體的蛋白酶Cathepsins會提升,這表示活化的脂噬作用可以促進溶酶體的活性。ifc依賴性神經退化可藉由餵食抗氧化劑AD4部分拯救,表示活性氧物種 (ROS) 是造成神經退化的部分原因。此外,在ifc-KO中,活性氧物種的提升及油滴的堆積均能藉由餵食誘導細胞自噬作用發生的Rapamycin所部分抑制,因此推論在ifc依賴性神經退化細胞中提升脂噬作用,具有部分保護功能。反之,脂噬作用可藉由餵食AD4而下調,表示活性氧物種 (ROS) 為導致保護性的脂噬作用的成因。綜合上述,失去ifc會導致DHC堆積與活性氧物種 (ROS) 產生,後者隨後激活脂噬作用以保護神經免於退化。這些實驗結果支持我們的假說:DHC具有生物活性;其堆積會造成神經退化,且在這過程中細胞會活化脂噬作用以作為因應的保護機制。zh_TW
dc.description.abstractSphingolipids are essential membrane components of the neuron; hence their levels need to be tightly regulated. Infertile crescent (Ifc) is an evolutionarily conserved dihydroceramide (DHC) desaturase which converts DHC to Ceramide (Cer) for the de novo synthesis of Cer in Drosophila. While the imbalance of Cer, a bioactive sphingolipid, has been associated with several neurodegenerative diseases, the neuronal function of its precursor DHC remains unknown. To investigate the role of ifc, we generated ifc knockout flies (ifc-KO). Sphingolipidomic analysis showed that loss of ifc resulted in increased DHC. Prolonged light stimuli to the ifc-KO eye led to activity-dependent degeneration of photoreceptors. Clonal analysis of ifc-KO photoreceptors revealed the accumulation of lipophagic structure and the increased H2DCF signals upon light stimuli, suggesting that DHC accumulation may activate lipophagy and induce the production of reactive oxygen species (ROS). However, it remains to be determined whether the degeneration is attributed to lipophagic cell death or the ROS insults. Reduction of ifc led to the increase of Atg8/LC3 puncta in the acidified compartment and elevation of lysosomal proteases, indicating the activated lipophagy can promote subsequent lysosomal function. ifc-dependent neurodegeneration can be partially rescued by an antioxidant AD4, indicating that ROS is at least partially responsible for the degeneration. In addition, both ROS elevation and lipid accumulation in ifc-KO was suppressed by treating with the autophagy inducer Rapamycin, suggesting that enhanced lipophagy plays a protective role in ifc-dependent neurodegeneration. Conversely, lipophagy can be downregulated by AD4, indicating ROS insults lead to the feedback upregulation of protective lipophagy. In summary, loss of ifc results in DHC accumulation and ROS generation, the latter of which subsequently activates lipophagy to protect against neurodegeneration. These findings support our hypothesis that DHC is bio-active and lipophagy can be protective, highlighting their potential as therapeutic targets for regulating sphingolipid homeostasis.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:58:42Z (GMT). No. of bitstreams: 1
ntu-105-R03441003-1.pdf: 4323971 bytes, checksum: 01571b1b73b77ba33c6da9f5773ca633 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄
口試委員會審定書...i
誌謝.............ii
摘要............iii
Abstract........iv
第一章 實驗背景....4
1.1 神經磷脂質新合成路徑 (Sphingolipid de novo synthesis pathway) 平衡對於神經退化之影響.......5
1.2 Dihydroceramide desaturase於哺乳類細胞及果蠅中之功能..8
1.3 Dihydroceramide於細胞自噬作用中扮演之角色.............9
1.4 神經磷脂質與細胞自噬作用............................10
1.5 活性氧物種 (ROS)、細胞自噬作用與神經退化之關係........11
第二章 實驗材料與方法......13
2.1 果蠅株及培養方法.....14
2.2 果蠅食物培養基製備...16
2.3 視神經電位紀錄 (Electroretinogram)....16
2.4 免疫螢光染色 (Immunohistochemistry)...17
2.5 免疫染色抗體清單 (IHC Antibody List)..18
2.6 西方墨點法 (Western blotting).........19
2.7 ifc基因剃除 (gene knockout) 果蠅製作..20
2.8 群組分析 (Clonal analysis)...........21
2.9 即時聚合酶鏈式反應 (Real-Time Quantitative PCR)..21
2.10 果蠅餵食藥劑實驗製備....22
2.11 神經母細胞瘤細胞株 (SH-SY5Y) 培養及染色....23
第三章 實驗結果.....24
3.1 神經細胞中的ifc對於生物個體的存活是必需的、且具有演化上的保守性......25
3.2 失去ifc會導致果蠅成蟲視神經細胞活性依賴退化.....26
3.3 失去ifc造成細胞內DHC堆積及Cer減少......26
3.4 失去ifc導致DHC的堆積是視神經退化的主因,並非為缺乏下游產物Cer所致....27
3.5 Ifc蛋白在神經細胞中位於次級核內體 (late endosome)...27
3.6 失去ifc會導致視神經活性氧物種 (ROS) 增加....28
3.7 ifc-KO視神經中有脂噬作用 (lipophagy) 的活化....28
3.8 ifc-KO所提升的細胞自噬作用為一保護機制,使細胞免於活性氧物種的攻擊....30
3.9 DHC具有生物活性,DHC堆積會導致神經毒性....31
第四章 實驗討論....32
4.1 ifc於神經細胞及神經膠細胞 (glia cell) 扮演重要角色..33
4.2 Ifc於神經細胞之新定位....33
4.3 細胞自噬作用與神經磷脂質之恆定....34
4.4 在神經退化疾病中,DHC為一具有生物活性的神經磷脂質....34
第五章 未來實驗方向....36
5.1 DHC在神經退化相關疾病扮演的角色....37
5.2 排除ifc-KO為non-activity dependent degeneration...37
5.3 Ifc與Rab7之關聯性...38
第六章 實驗圖表....39
第七章 參考文獻....64
圖目錄
Figure. 1 神經磷脂質新合成路徑 (Sphingolipid de novo synthesis pathway)....6
Figure. 2 Ifc與其人類同源蛋白 (homolog) 之胺基酸序列比對..9
Figure. 3 製作ifc無效等位基因 (null allele) 之果蠅...40
Figure. 4 ifc基因剔除果蠅呈現發育遲緩且於二齡幼蟲時死亡..42
Figure. 5 失去ifc會導致果蠅成蟲視神經細胞的活性依賴退化..44
Figure. 6 失去ifc會造成細胞內DHC堆積以及Cer減少........46
Figure. 7 DHC的堆積是ifc-KO視神經退化的主因...........48
Figure. 8 Ifc蛋白位於神經細胞的次級核內體(late endosome)......50
Figure. 9 失去ifc會導致細胞內活性氧物種增加.....52
Figure. 10 ifc-KO視神經中有脂噬作用 (Lipophagy) 之活化..54
Figure. 11 失去ifc會提升細胞自噬作用.....56
Figure. 12 ifc-KO所提升之細胞自噬作用為保護神經細胞免於活性氧物種之傷害....58
Figure. 13 提升細胞自噬作用能使ifc-KO中堆積之油滴減少...60
Figure. 14 DHC具有生物活性...62
dc.language.isozh-TW
dc.title細胞脂噬作用對神經磷脂質失衡導致退化的保護機制zh_TW
dc.titleActivation of lipophagy protects neurons from neurodegeneration caused by sphingolipid imbalanceen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳光超,周雅惠,李秀香
dc.subject.keyword細胞脂噬作用,神經磷脂質,神經退化,zh_TW
dc.subject.keywordlipophagy,sphingolipid,neurodegeneration,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201601784
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
dc.date.embargo-lift2026-12-31-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  此日期後於網路公開 2026-12-31
4.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved