請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79182
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 段維新 | |
dc.contributor.author | Ting-Yi Lin | en |
dc.contributor.author | 林庭儀 | zh_TW |
dc.date.accessioned | 2021-07-11T15:50:55Z | - |
dc.date.available | 2023-07-31 | |
dc.date.copyright | 2018-07-31 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-26 | |
dc.identifier.citation | [1] Goldstein, A. and A. Krell (2016). 'Transparent ceramics at 50: progress made and further prospects.' Journal of the American Ceramic Society 99(10): 3173-3197
[2] Golubović, A. V., et al. (2002). 'The growth of Nd: YAG single crystals.' Journal of the Serbian Chemical Society 67(4): 291-300. [3] Ikesue, A. and Y. L. Aung (2008). 'Ceramic laser materials.' Nature photonics 2(12): 721. [4] Ikesue, A., et al. (1995). 'Fabrication of Polycrystal line, Transparent YAG Ceramics by a Solid‐State Reaction Method.' Journal of the American Ceramic Society 78(1): 225-228. [5] Kupp, E. R., et al. (2010). 'Co-casting and optical characteristics of transparent segmented composite Er: YAG laser ceramics.' Journal of Materials Research 25(3): 476-483. [6] Hulst, H. C. and H. C. van de Hulst (1957). Light scattering by small particles, Courier Corporation. [7] Sekita, M., et al. (1991). 'Optical spectra of undoped and rare‐earth‐(= Pr, Nd, Eu, and Er) doped transparent ceramic Y3Al5O12.' Journal of applied physics 69(6): 3709-3718. [8] Zhou, Y., et al. (2014). 'Theoretical investigation on mechanical and thermal properties of a promising thermal barrier material: Yb3Al5O12.' Journal of Materials Science & Technology 30(7): 631-638. [9] Tachiwaki, T., et al. (2001). 'Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics.' Solid State Communications 119(10-11): 603-606. [10] Patel, A., et al. (2008). 'Mechanisms of nonstoichiometry in Y3Al5O12.' Applied Physics Letters 93(19): 191902. [11] Kuklja, M. M. (2000). 'Defects in yttrium aluminium perovskite and garnet crystals: atomistic study.' Journal of Physics: Condensed Matter 12(13): 2953. [12] Stanek, C., et al. (2007). 'Oxygen transport mechanisms in REAlO3 scintillators.' physica status solidi (c) 4(3): 984-987. [13] Fabrichnaya, O., et al. (2001). 'The assessment of thermodynamic parameters in the Al2O3‐Y2O3 system and phase relations in the Y‐Al‐O system.' Scandinavian journal of metallurgy 30(3): 175-183. [14] W. Koechner, Solid-State Laser Engineering, pp. 28-53. Springer-Verlag Berlin Heidelberg, Germany,1999. [15] R. C. Powell, S. A. Payne, L. L. Chase and G. D. Wilke, “Index-of-Refraction Change in Optically Pumped Solid-State Laser Materials,” Opt. Lett., 14 [21] 1204-1206 (1989). [16] W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird and S. E. Stokowski, “Spectroscopic, Optical, and Thermomechanical Properties of Neodymium- and chromium-Doped Gadolinium Scandium Gallium Garnet,” J. Opt. Soc. Am. B, 3 [1] 102-113 (1986). [17] Liu, B., et al. (2014). 'Solid-state reactive sintering of Nd: YAG transparent ceramics: the effect of Y2O3 powders pretreatment.' Optical Materials 36(9): 1591-1597. [18] Rahaman, M. N. (2007). Sintering of ceramics, CRC press. [19] Huang, Y., et al. (2014). 'Sintering kinetics of YAG ceramics.' Journal of Rare Earths 32(5): 416-422. [20] Ikesue, A., et al. (1995). 'Fabrication and optical properties of high‐Performance polycrystalline Nd: YAG ceramics for solid‐State lasers.' Journal of the American Ceramic Society 78(4): 1033-1040. [21] Kołodziejczak-Radzimska, A. and T. Jesionowski (2014). 'Zinc oxide—from synthesis to application: a review.' Materials 7(4): 2833-2881. [22] H. Wang, L. Gao and K. Niihara, 'Synthesis of Nanoscaled Yttrium Aluminum Garnet Powder by the Co-Precipitation Method,' Mat. Sci. Eng. A228, 1-4 (2000). [23] J.-G. Li, T. Ikegami, J. -H. Lee, T. Mori and Y. Yajima,'Co-Precipitation Synthesis and Sintering of Yttrium Aluminum Garnet (YAG) Powders: the Effect of Precipitant,' J. Euro. Ceram. Soc., 20, 2395-2405 (2000). [24] P. Apte, H. Burke and H. Pickup, 'Sythesis of Yttrium Aluminum Garnet by Reverse Strike Precipitation,' J. Mater. Res., 7 [3] 706-711 (1992). [25] Matsushita, N., et al. (1999). 'Precipitation and calcination processes for yttrium aluminum garnet precursors synthesized by the urea method.' Journal of the American Ceramic Society 82(8): 1977-1984. [26] Lee, S. H., et al. (2006). 'Solid‐State Reactive Sintering of Transparent Polycrystalline Nd: YAG Ceramics.' Journal of the American Ceramic Society 89(6): 1945-1950. [27] Appiagyei, K. A., et al. (2008). 'Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics.' Ceramics International 34(5): 1309-1313. [28] Zhou, J., et al. (2011). 'Fabrication of YAG transparent ceramics using slip casting with ethanol.' J Inorg Mater 26(3): 254-256. [29] Ba, X., et al. (2013). 'Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics.' Journal of Alloys and Compounds 577: 228-231. [30] Fu, Y.-P., et al. (2009). 'Aqueous tape casting and crystallization behavior of gadolinium-doped ceria.' Ceramics International 35(8): 3153-3159. [31] Tang, F., et al. (2012). 'Fabrication and laser behavior of composite Yb: YAG ceramic.' Journal of the American Ceramic Society 95(1): 56-69. [32] Tang, F., et al. (2012). 'Multilayer YAG/Re: YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method.' Journal of the European Ceramic Society 32(16): 3995-4002. [33] Wang, S., et al. (2013). 'Transparent ceramics: processing, materials and applications.' Progress in Solid State Chemistry 41(1-2): 20-54. [34] Coble, R. L. (1962). Transparent alumina and method of preparation, Google Patents. [35] Stevenson, A. J., et al. (2011). 'Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd: YAG transparent ceramics.' Journal of Materials Research 26(9): 1151-1158. [36] HUANG, Y., et al. (2013). 'Sintering of transparent Nd: YAG ceramics in oxygen atmosphere.' Journal of Rare Earths 31(2): 153-157. [37] Chen, Z.-h., et al. (2008). 'Fabrication of YAG transparent ceramics by two-step sintering.' Ceramics International 34(7): 1709-1712. [38] Chen, I.-W. and X.-H. Wang (2000). 'Sintering dense nanocrystalline ceramics without final-stage grain growth.' Nature 404(6774): 168. [39] Liu, K., et al. (2012). 'High-pressure sintering mechanism of yttrium aluminum garnet (Y3Al5O12) transparent nanoceramics.' Scripta Materialia 66(6): 319-322. [40] Wang, H., et al. (2018). 'On the densification mechanism of nano grained Yttrium aluminum garnet transparent ceramic during high pressure sintering process.' Scripta Materialia 142: 126-128. [41] Ikesue, A. and K. Kamata (1996). 'Microstructure and optical properties of hot isostatically pressed Nd: YAG ceramics.' Journal of the American Ceramic Society 79(7): 1927-1933. [42] Lee, S. H., et al. (2009). 'Hot isostatic pressing of transparent Nd: YAG ceramics.' Journal of the American Ceramic Society 92(7): 1456-1463. [43] Ikesue, A. and Y. L. Aung (2017). 'Synthesis of Yb: YAG ceramics without sintering additives and their performance.' Journal of the American Ceramic Society 100(1): 26-30. [44] Omori, M. (2000). 'Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS).' Materials Science and Engineering: A 287(2): 183-188. [45] Chaim, R., et al. (2007). 'Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering.' Journal of the European Ceramic Society 27(11): 3331-3337. [46] Esposito, L., et al. (2013). 'Microwave sintering of Yb: YAG transparent laser ceramics.' Optical Materials 35(4): 761-765. [47] Akchurin, M. S., et al. (2013). 'CaF2: Yb laser ceramics.' Optical Materials 35(3): 444-450. [48] Contributors, W. (20 May 2018 23:30 UTC). 'Tetraethyl orthosilicate.' from https://en.wikipedia.org/w/index.php?title=Tetraethyl_orthosilicate&oldid=842207097. [49] Kochawattana, S., et al. (2008). 'Sintering and grain growth in SiO2 doped Nd: YAG.' Journal of the European Ceramic Society 28(7): 1527-1534. [50] Fabrichnaya, O., et al. (2001). 'Phase Equilibria and Thermodynamics in the YO-AlO–SiO System.' [51] Boulesteix, R., et al. (2009). 'Mechanism of the liquid-phase sintering for Nd: YAG ceramics.' Optical Materials 31(5): 711-715. [52] Boulesteix, R., et al. (2017). 'Silica reactivity during reaction‐sintering of Nd: YAG transparent ceramics.' Journal of the American Ceramic Society 100(3): 945-953. [53] Stevenson, A. J., et al. (2011). 'Effect of SiO2 on densification and microstructure development in Nd: YAG transparent ceramics.' Journal of the American Ceramic Society 94(5): 1380-1387. [54] Zamir, S. (2017). 'Si segregation and its role in reaching transparent YAG.' Journal of the American Ceramic Society 100(4): 1689-1696. [55] Yang, H., et al. (2012). 'The effect of MgO and SiO2 codoping on the properties of Nd: YAG transparent ceramic.' Optical Materials 34(6): 940-943. [56] Frage, N., et al. (2010). 'Densification of transparent yttrium aluminum garnet (YAG) by SPS processing.' Journal of the European Ceramic Society 30(16): 3331-3337. [57] Frage, N., et al. (2012). 'Effect of the spark plasma sintering (SPS) parameters and LiF doping on the mechanical properties and the transparency of polycrystalline Nd-YAG.' Ceramics International 38(7): 5513-5519. [58] Frage, N., et al. (2007). 'Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel.' Journal of Materials Science 42(9): 3273-3275. [59] Rozenburg, K., et al. (2007). 'Chemical interaction between LiF and MgAl2O4 spinel during sintering.' Journal of the American Ceramic Society 90(7): 2038-2042. [60] 黃坤祥,粉末冶金學,中華民國粉末冶金協會,第三版,2014,84-86頁。 [61] Mendelson, M. I. (1969). 'Average grain size in polycrystalline ceramics.' Journal of the American Ceramic Society 52(8): 443-446. [62] Kupp, E. R., et al. (2014). 'Particle size effects on yttrium aluminum garnet (YAG) phase formation by solid-state reaction.' Journal of Materials Research 29(19): 2303-2311. [63] Kosyanov, D. Y., et al. (2015). 'Nd 3+: Y 3 Al 5 O 12 laser ceramics: Influence of the size of yttrium oxide particles on sintering.' Crystallography Reports 60(2): 299-305. [64] Yeh, T. S. and M. D. Sacks (1988). 'Effect of particle size distribution on the sintering of alumina.' Journal of the American Ceramic Society 71(12). [65] Su, H. and D. L. Johnson (1996). 'Master sintering curve: a practical approach to sintering.' Journal of the American Ceramic Society 79(12): 3211-3217. [66] Spriggs, R., et al. (1964). 'Mechanical properties of pure, dense aluminum oxide as a function of temperature and grain size.' Journal of the American Ceramic Society 47(7): 323-327. [67] Zamir, S. (2017). 'Solubility limit of Si in YAG at 1700 C in vacuum.' Journal of the European Ceramic Society 37(1): 243-248. [68] Maitre, A., et al. (2008). 'Effect of silica on the reactive sintering of polycrystalline Nd: YAG ceramics.' Journal of the American Ceramic Society 91(2): 406-413. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79182 | - |
dc.description.abstract | 釔鋁石榴石(YAG)由於具備出色的物理、化學性質以及立方體結構,故其一直以來為製備光學透明陶瓷的理想材料。本實驗採用氧化釔與氧化鋁搭配燒結助劑二氧化矽,比較兩種不同固態燒結路徑:(1)典型固相燒結:先高溫(1500°C)煅燒形成均相YAG再行燒結; (2)固相反應燒結: 混和氧化物在升溫過程中,燒結伴隨著生成YAG反應。在本研究中,在空氣氣氛下進行燒結,最高溫度為1650°C。使用傳統固相燒結法時,煅燒生成之YAG粉末即使透過長時間球磨細化,仍會有輕微燒結現象而成硬凝團,故粉末之燒結活性較差,進而造成燒結後密度過低。本實驗中透過反應燒結法省略了高溫煅燒步驟,進一步探討不同製程參數如:粉末粒徑、升溫速率、燒結溫度以及持溫時間對於YAG反應燒結之影響。此外,本實驗亦探討添加燒結助劑二氧化矽的影響,燒結緻密速率及晶粒成長皆隨著添加二氧化矽量越多而顯著提升。然而,過多的燒結助劑會造成二次相或析出物產生。本實驗中,最佳製程條件為: 採用反應燒結法,當添加0.14 wt% 二氧化矽時,使用升溫速率10°C/min,在1650°C持溫兩小時得到相對密度約97.4%,晶粒大小約4.9 um且無二次相析出之YAG多晶陶瓷。 | zh_TW |
dc.description.abstract | Y3Al5O12 (YAG) has been seen as an ideal candidate for optical transparent ceramics due to its highly symmetries garnet structure. The solid state processing is popular in ceramic processing due to its feasibility for the fabrication of ceramic products. There are two approaches adopted in the present study: (1) traditional solid state sintering and (2) solid state reaction sintering. The major difference between these two processes involves a reaction at elevated temperature. The calcined YAG powder is used as the starting material for traditional sintering, while the Y2O3-Al2O3 powder mixture for reaction sintering. Two processing routes are conducted in air with a maximum sintering temperature at 1650°C.
For the traditional sintering, some hard agglomerates are formed during the calcination of YAG powder at 1500°C. The sinterability is thus poor due to the presence of these hard agglomerates. As a consequence, the density of traditional sintered YAG is low, less than 91.8% when the sintering temperature is 1650°C. The reaction sintering avoids the use of calcination process. The formation of YAG is taken place at the same time with the densification process. In the present study, several processing parameters such as particle size, sintering temperatures, heating rates and dwell time, are evaluated. Moreover, the use of a sintering additive, silica, is also investigated. Increasing the doping level of SiO2 would facilitate both densification and grain growth. However, some precipitations or inclusions are observed when the doping level of SiO2 is higher than the solubility limit (<0.1 wt%). The optimum amount of silica is 0.14 wt%. The density of the reaction sintered YAG reaches 97.4% after sintering at 1650°C for 2h and no second phase particle or inclusion was observed. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:50:55Z (GMT). No. of bitstreams: 1 ntu-107-R05527048-1.pdf: 11755544 bytes, checksum: e33f5da4db4a806cbdd7be3176048610 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS vvi LIST OF FIGURES x LIST OF TABLES xvi Chapter 1 Introduction 1 Chapter 2 Literature survey 3 2.1 Light and materials 3 2.1.1 Reflection 3 2.1.2 Absorption 4 2.1.3 Light scattering 5 2.1.4 Transmission 6 2.2 Basic concepts of YAG 7 2.2.1 Structure 7 2.2.2 Phase diagram of YAG 8 2.2.3 Properties of YAG 10 2.3 Fabrication of polycrystalline YAG ceramics 11 2.3.1 Preparation of the starting powder 12 2.3.1.1 Solid state reaction 12 2.3.1.2 Co-precipitation 14 2.3.1.3 Sol-gel 16 2.3.2 Forming methods 16 2.3.2.1 Dry pressing 16 2.3.2.2 Slip casting 17 2.3.2.3 Tape casting 18 2.3.3 Sintering techmiques 19 2.3.3.1 Atmospheric sintering 20 2.3.3.2 Vacuum sintering 20 2.3.3.3 Hot pressing (HP) 21 2.3.3.4 Hot isostatic pressing (HIP) 23 2.3.3.5 Spark plasma sintering (SPS) 25 2.3.4 The use of sintering additive 27 2.3.4.1 TEOS and SiO2 28 2.3.4.2 Other sintering additive 30 Chapter 3 Experimental procedures 32 3.1 Starting materials 32 3.2 Pre-ball milling of Y2O3 32 3.3 Powder preparation 33 3.3.1 Powder mixture for reaction sintering 33 3.3.2 YAG powder for traditional sintering 34 3.4 Forming 36 3.5 Sintering 36 3.6 Characterization analysis 40 3.6.1 Particle size distribution 40 3.6.2 Phase identification 40 3.6.3 Dilatometer analysis 40 3.6.4 Relative density 41 3.6.5 Thermal analysis 42 3.6.6 Microstructure observation and composition analysis 42 Chapter 4 Results 44 4.1 Powder preparation 44 4.1.1 The refinement of Y2O3 powder 44 4.1.2 Mixing of Al2O3 and Y2O3 powder 48 4.1.2 Preparation of YAG powder through calcination 54 4.2 Traditional sintering 56 4.2.1 Sintering kinetics 57 4.2.2 Relative density 59 4.2.3 Microstructure analysis 61 4.3 Reaction sintering 67 4.3.1 Sintering kinetics 67 4.3.2 Thermal analysis 70 4.3.3 Phase evolution during reaction sintering 71 4.3.4 Relative density 72 4.3.5 Microstructure analysis 76 4.4 The effect of sintering additive silica 81 4.4.1 Particle size distribution and green density 81 4.4.2 Sintering kinetics 83 4.4.3 Phase analysis 85 4.4.4 Relative density 86 4.4.5 Microstructure observation and composition analysis 88 Chapter 5 Discussion 94 5.1 Powder preparation 94 5.1.1 Influence of pre-ball milling Y2O3 on powder calcination 94 5.1.2 Influence of pre-ball milling Y2O3 on reaction sintering 95 5.2 Sintering behavior of traditional sintering route 100 5.2.1 Relative density and dilatometry 100 5.2.2 Microstructure 102 5.3 Sintering behavior of reaction sintering route 103 5.3.1 Phase identification 103 5.3.2 Sintering kinetics and relative density 104 5.3.3 Microstructure observation 106 5.3.4 Brief summary on two approaches 107 5.4 Effect of silica on sintering 110 5.4.1 Sintering mechanism 110 5.4.2 Microstructure and composition analysis 114 Chapter 6 Conclusion 118 REFERENCE 121 | |
dc.language.iso | en | |
dc.title | 以反應燒結法制備多晶釔鋁石榴石陶瓷 | zh_TW |
dc.title | Processing of polycrystalline YAG ceramic by reaction sintering method | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃啟原,施邵儒,劉哲原,許沛衣 | |
dc.subject.keyword | 釔鋁石榴石,透明陶瓷,固相反應法,固相反應燒結, | zh_TW |
dc.subject.keyword | YAG,transparent ceramic,solid state reaction,reaction sintering, | en |
dc.relation.page | 127 | |
dc.identifier.doi | 10.6342/NTU201801908 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
dc.date.embargo-lift | 2023-07-31 | - |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05527048-1.pdf 目前未授權公開取用 | 11.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。