Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79173Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李明學 | zh_TW |
| dc.contributor.author | 尤冠景 | zh_TW |
| dc.contributor.author | Kuan-Ching Yu | en |
| dc.date.accessioned | 2021-07-11T15:50:08Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-11 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Torre, L.A., F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108.
2. Molina, J.R., P. Yang, S.D. Cassivi, S.E. Schild, and A.A. Adjei, Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc, 2008. 83(5): p. 584-94. 3. Alberg, A.J., M.V. Brock, J.G. Ford, J.M. Samet, and S.D. Spivack, Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013. 143(5 Suppl): p. e1S-e29S. 4. Sun, S., J.H. Schiller, and A.F. Gazdar, Lung cancer in never smokers--a different disease. Nat Rev Cancer, 2007. 7(10): p. 778-90. 5. Kutkowska, J., I. Porebska, and A. Rapak, Non-small cell lung cancer - mutations, targeted and combination therapy. Postepy Hig Med Dosw (Online), 2017. 71(0): p. 431-445. 6. da Cunha Santos, G., F.A. Shepherd, and M.S. Tsao, EGFR mutations and lung cancer. Annu Rev Pathol, 2011. 6: p. 49-69. 7. Herbst, R.S., Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys, 2004. 59(2 Suppl): p. 21-6. 8. de Larco, J.E. and G.J. Todaro, Epithelioid and fibroblastic rat kidney cell clones: epidermal growth factor (EGF) receptors and the effect of mouse sarcoma virus transformation. J Cell Physiol, 1978. 94(3): p. 335-42. 9. Yarden, Y. and M.X. Sliwkowski, Untangling the ErbB signalling network. Nat Rev Mol Cell Biol, 2001. 2(2): p. 127-37. 10. Citri, A. and Y. Yarden, EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol, 2006. 7(7): p. 505-16. 11. Shigematsu, H., L. Lin, T. Takahashi, M. Nomura, M. Suzuki, Wistuba, II, K.M. Fong, H. Lee, S. Toyooka, N. Shimizu, T. Fujisawa, Z. Feng, J.A. Roth, J. Herz, J.D. Minna, and A.F. Gazdar, Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst, 2005. 97(5): p. 339-46. 12. Arnold, D., S. Peinert, W. Voigt, and H.J. Schmoll, Epidermal growth factor receptor tyrosine kinase inhibitors: present and future role in gastrointestinal cancer treatment: a review. Oncologist, 2006. 11(6): p. 602-11. 13. Choong, N.W., S. Dietrich, T.Y. Seiwert, M.S. Tretiakova, V. Nallasura, G.C. Davies, S. Lipkowitz, A.N. Husain, R. Salgia, and P.C. Ma, Gefitinib response of erlotinib-refractory lung cancer involving meninges--role of EGFR mutation. Nat Clin Pract Oncol, 2006. 3(1): p. 50-7; quiz 1 p following 57. 14. Zhang, X., J. Gureasko, K. Shen, P.A. Cole, and J. Kuriyan, An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell, 2006. 125(6): p. 1137-49. 15. Yun, C.H., T.J. Boggon, Y. Li, M.S. Woo, H. Greulich, M. Meyerson, and M.J. Eck, Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 2007. 11(3): p. 217-27. 16. Sordella, R., D.W. Bell, D.A. Haber, and J. Settleman, Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 2004. 305(5687): p. 1163-7. 17. Sharma, S.V., D.W. Bell, J. Settleman, and D.A. Haber, Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer, 2007. 7(3): p. 169-81. 18. Lynch, T.J., D.W. Bell, R. Sordella, S. Gurubhagavatula, R.A. Okimoto, B.W. Brannigan, P.L. Harris, S.M. Haserlat, J.G. Supko, F.G. Haluska, D.N. Louis, D.C. Christiani, J. Settleman, and D.A. Haber, Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med, 2004. 350(21): p. 2129-39. 19. Yang, J.C., Y.L. Wu, V. Chan, J. Kurnianda, K. Nakagawa, N. Saijo, M. Fukuoka, G. McWalter, R. McCormack, and T.S. Mok, Epidermal growth factor receptor mutation analysis in previously unanalyzed histology samples and cytology samples from the phase III Iressa Pan-ASia Study (IPASS). Lung Cancer, 2014. 83(2): p. 174-81. 20. Sequist, L.V., J.C. Yang, N. Yamamoto, K. O'Byrne, V. Hirsh, T. Mok, S.L. Geater, S. Orlov, C.M. Tsai, M. Boyer, W.C. Su, J. Bennouna, T. Kato, V. Gorbunova, K.H. Lee, R. Shah, D. Massey, V. Zazulina, M. Shahidi, and M. Schuler, Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol, 2013. 31(27): p. 3327-34. 21. Zhou, W., D. Ercan, L. Chen, C.H. Yun, D. Li, M. Capelletti, A.B. Cortot, L. Chirieac, R.E. Iacob, R. Padera, J.R. Engen, K.K. Wong, M.J. Eck, N.S. Gray, and P.A. Janne, Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature, 2009. 462(7276): p. 1070-4. 22. Petrelli, F., M. Cabiddu, K. Borgonovo, and S. Barni, Risk of venous and arterial thromboembolic events associated with anti-EGFR agents: a meta-analysis of randomized clinical trials. Ann Oncol, 2012. 23(7): p. 1672-9. 23. Abdel-Rahman, O. and H. Elhalawani, Risk of fatal pulmonary events in patients with advanced non-small-cell lung cancer treated with EGF receptor tyrosine kinase inhibitors: a comparative meta-analysis. Future Oncol, 2015. 11(7): p. 1109-22. 24. Qi, W.X., Y.J. Sun, Z. Shen, and Y. Yao, Risk of interstitial lung disease associated with EGFR-TKIs in advanced non-small-cell lung cancer: a meta-analysis of 24 phase III clinical trials. J Chemother, 2015. 27(1): p. 40-51. 25. Wang, Y., M. Wang, Q. Wang, Z. Geng, and M. Sun, Incidence and risk of infections associated with EGFR-TKIs in advanced non-small-cell lung cancer: a systematic review and meta-analysis of randomized controlled trials. Oncotarget, 2017. 8(17): p. 29406-29415. 26. Qi, W.X., S. Fu, Q. Zhang, and X.M. Guo, Incidence and risk of severe infections associated with anti-epidermal growth factor receptor monoclonal antibodies in cancer patients: a systematic review and meta-analysis. BMC Med, 2014. 12: p. 203. 27. Lamb, D.J., H. Modjtahedi, N.J. Plant, and G.A. Ferns, EGF mediates monocyte chemotaxis and macrophage proliferation and EGF receptor is expressed in atherosclerotic plaques. Atherosclerosis, 2004. 176(1): p. 21-6. 28. Hardbower, D.M., K. Singh, M. Asim, T.G. Verriere, D. Olivares-Villagomez, D.P. Barry, M.M. Allaman, M.K. Washington, R.M. Peek, Jr., M.B. Piazuelo, and K.T. Wilson, EGFR regulates macrophage activation and function in bacterial infection. J Clin Invest, 2016. 126(9): p. 3296-312. 29. Lu, N., L. Wang, H. Cao, L. Liu, L. Van Kaer, M.K. Washington, M.J. Rosen, P.E. Dube, K.T. Wilson, X. Ren, X. Hao, D.B. Polk, and F. Yan, Activation of the epidermal growth factor receptor in macrophages regulates cytokine production and experimental colitis. J Immunol, 2014. 192(3): p. 1013-23. 30. Chattopadhyay, S., M. Veleeparambil, D. Poddar, S. Abdulkhalek, S.K. Bandyopadhyay, V. Fensterl, and G.C. Sen, EGFR kinase activity is required for TLR4 signaling and the septic shock response. EMBO Rep, 2015. 16(11): p. 1535-47. 31. Volkman, A. and J.L. Gowans, The Origin of Macrophages from Bone Marrow in the Rat. Br J Exp Pathol, 1965. 46: p. 62-70. 32. Van Furth, R., M.C. Diesselhoff-den Dulk, and H. Mattie, Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction. J Exp Med, 1973. 138(6): p. 1314-30. 33. Gordon, S., Biology of the macrophage. J Cell Sci Suppl, 1986. 4: p. 267-86. 34. Dijkstra, C.D., E. Van Vliet, E.A. Dopp, A.A. van der Lelij, and G. Kraal, Marginal zone macrophages identified by a monoclonal antibody: characterization of immuno- and enzyme-histochemical properties and functional capacities. Immunology, 1985. 55(1): p. 23-30. 35. Benoit, M., B. Desnues, and J.L. Mege, Macrophage polarization in bacterial infections. J Immunol, 2008. 181(6): p. 3733-9. 36. Mosser, D.M., The many faces of macrophage activation. J Leukoc Biol, 2003. 73(2): p. 209-12. 37. Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014. 6: p. 13. 38. Anderson, C.F. and D.M. Mosser, A novel phenotype for an activated macrophage: the type 2 activated macrophage. J Leukoc Biol, 2002. 72(1): p. 101-6. 39. Fleming, B.D. and D.M. Mosser, Regulatory macrophages: setting the threshold for therapy. Eur J Immunol, 2011. 41(9): p. 2498-502. 40. Ou, S.H., Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): a better mousetrap? A review of the clinical evidence. Crit Rev Oncol Hematol, 2012. 83(3): p. 407-21. 41. Mountzios, G., Making progress in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer by surpassing resistance: third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs). Ann Transl Med, 2018. 6(8): p. 140. 42. Aw, D.C., E.H. Tan, T.M. Chin, H.L. Lim, H.Y. Lee, and R.A. Soo, Management of epidermal growth factor receptor tyrosine kinase inhibitor-related cutaneous and gastrointestinal toxicities. Asia Pac J Clin Oncol, 2018. 14(1): p. 23-31. 43. Beswick, E.J. and V.E. Reyes, Macrophage migration inhibitory factor and interleukin-8 produced by gastric epithelial cells during Helicobacter pylori exposure induce expression and activation of the epidermal growth factor receptor. Infect Immun, 2008. 76(7): p. 3233-40. 44. Scholes, A.G., S. Hagan, P. Hiscott, B.E. Damato, and I. Grierson, Overexpression of epidermal growth factor receptor restricted to macrophages in uveal melanoma. Arch Ophthalmol, 2001. 119(3): p. 373-7. 45. Yuan, A., Y.J. Hsiao, H.Y. Chen, H.W. Chen, C.C. Ho, Y.Y. Chen, Y.C. Liu, T.H. Hong, S.L. Yu, J.J. Chen, and P.C. Yang, Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression. Sci Rep, 2015. 5: p. 14273. 46. Schwende, H., E. Fitzke, P. Ambs, and P. Dieter, Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol, 1996. 59(4): p. 555-61. 47. Ziegler-Heitbrock, H.W. and R.J. Ulevitch, CD14: cell surface receptor and differentiation marker. Immunol Today, 1993. 14(3): p. 121-5. 48. Tan, S.M., R.H. Hyland, A. Al-Shamkhani, W.A. Douglass, J.M. Shaw, and S.K. Law, Effect of integrin beta 2 subunit truncations on LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) assembly, surface expression, and function. J Immunol, 2000. 165(5): p. 2574-81. 49. Zhang, X., R. Goncalves, and D.M. Mosser, The isolation and characterization of murine macrophages. Curr Protoc Immunol, 2008. Chapter 14: p. Unit 14 1. 50. Ghosn, E.E., A.A. Cassado, G.R. Govoni, T. Fukuhara, Y. Yang, D.M. Monack, K.R. Bortoluci, S.R. Almeida, L.A. Herzenberg, and L.A. Herzenberg, Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci U S A, 2010. 107(6): p. 2568-73. 51. Dziadziuszko, R. and J. Jassem, Epidermal growth factor receptor (EGFR) inhibitors and derived treatments. Ann Oncol, 2012. 23 Suppl 10: p. x193-6. 52. Remon, J., C.E. Steuer, S.S. Ramalingam, and E. Felip, Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann Oncol, 2018. 29(suppl_1): p. i20-i27. 53. Finlay, M.R., M. Anderton, S. Ashton, P. Ballard, P.A. Bethel, M.R. Box, R.H. Bradbury, S.J. Brown, S. Butterworth, A. Campbell, C. Chorley, N. Colclough, D.A. Cross, G.S. Currie, M. Grist, L. Hassall, G.B. Hill, D. James, M. James, P. Kemmitt, T. Klinowska, G. Lamont, S.G. Lamont, N. Martin, H.L. McFarland, M.J. Mellor, J.P. Orme, D. Perkins, P. Perkins, G. Richmond, P. Smith, R.A. Ward, M.J. Waring, D. Whittaker, S. Wells, and G.L. Wrigley, Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J Med Chem, 2014. 57(20): p. 8249-67. 54. Shi, Y., Y.F. Ping, X. Zhang, and X.W. Bian, Hostile takeover: glioma stem cells recruit TAMs to support tumor progression. Cell Stem Cell, 2015. 16(3): p. 219-20. 55. Fan, Q.M., Y.Y. Jing, G.F. Yu, X.R. Kou, F. Ye, L. Gao, R. Li, Q.D. Zhao, Y. Yang, Z.H. Lu, and L.X. Wei, Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett, 2014. 352(2): p. 160-8. 56. Tariq, M., J.Q. Zhang, G.K. Liang, Q.J. He, L. Ding, and B. Yang, Gefitinib inhibits M2-like polarization of tumor-associated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway. Acta Pharmacol Sin, 2017. 38(11): p. 1501-1511. 57. Godek, M.L., J.A. Sampson, N.L. Duchsherer, Q. McElwee, and D.W. Grainger, Rho GTPase protein expression and activation in murine monocytes/macrophages is not modulated by model biomaterial surfaces in serum-containing in vitro cultures. J Biomater Sci Polym Ed, 2006. 17(10): p. 1141-1158. 58. van Helden, S.F., E.C. Anthony, R. Dee, and P.L. Hordijk, Rho GTPase expression in human myeloid cells. PLoS One, 2012. 7(8): p. e42563. 59. Ecker, J., G. Liebisch, M. Englmaier, M. Grandl, H. Robenek, and G. Schmitz, Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci U S A, 2010. 107(17): p. 7817-22. 60. Vicente-Manzanares, M., D.J. Webb, and A.R. Horwitz, Cell migration at a glance. J Cell Sci, 2005. 118(Pt 21): p. 4917-9. 61. Kehrl, J.H., Chemoattractant receptor signaling and the control of lymphocyte migration. Immunol Res, 2006. 34(3): p. 211-27. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79173 | - |
| dc.description.abstract | 表皮生長因子受體為一種重要的癌症治療標的,而目前已開發出許多代的表皮生長因子受體-酪胺酸激酶抑制劑(EGFR-TKI)來治療非小細胞肺癌。雖然這類藥物能有效治療癌症,但是有報導指出使用表皮生長因子受體-酪胺酸激酶抑制劑會顯著提升非小細胞肺癌患者受到細菌感染的風險。然而至今仍未有人探討表皮生長因子受體酪胺酸激酶抑制劑對先天免疫的影響。在本篇論文中我探討第二代和第三代表皮生長因子受體-酪胺酸激酶抑制劑是否會影響先天免疫反應。結果顯示表皮生長因子受體-酪胺酸激酶抑制劑會抑制人類單核球細胞株THP-1分化成巨噬細胞的能力,同時使表皮生長因子受體酪胺酸激酶的磷酸化、細胞的貼附能力、移動能力、吞噬能力受到抑制。此外表皮生長因子缺陷會抑制THP-1分化、細胞移動性以及吞噬能力。這表示表皮生長因子受體-酪胺酸激酶抑制劑會透過抑制表皮生長因子酪胺酸激酶的磷酸化,造成單核球分化延遲。而在老鼠的骨髓巨噬細胞及腹腔巨噬細胞也得到了類似的結果。有服用表皮生長因子受體-酪胺酸激酶抑制劑的老鼠在接受巰基乙酸(thioglycollate)誘發發炎反應時,受到吸引的單核球會減少,並且延遲分化成巨噬細胞。這些結果顯示表皮生長因子受體-酪胺酸激酶抑制劑會抑制單核球分化成巨噬細胞並且降低先天免疫反應。 | zh_TW |
| dc.description.abstract | Epidermal growth factor receptor (EGFR) is one of the important therapeutic targets in human cancer and several EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been developed for the treatment of non-small cell lung carcinoma (NSCLC). Although EGFR-TKIs are generally effective on cancer therapy, it has been reported that EGFR-TKIs are with a risk of infectious events in NSCLC patients. However, how EGFR-TKIs affect immunity is still elusive. In this study, I investigated if a second-generation EGFR-TKI1 and a third-generation EGFR-TKI2 could alter innate immunity. The results showed that both EGFR-TKIs could significantly reduce the differentiation of human monocyte THP-1 cells into macrophages, which was concurrent with suppression of EGFR phosphorylation, the cell adherent, motility and phagocytosis. Moreover, EGFR silencing reduced THP-1 cell differentiation, motility, and phagocytosis. The results suggest that EGFR-TKIs can retard macrophage differentiation via inhibition of EGFR. Similar results of EGFR-TKI-inhibited macrophage differentiation and function were also obtained from bone marrow-derived macrophage (BMDM) and peritoneal macrophages. Moreover, EGFR-TKIs reduced the monocyte recruitment and monocyte-to-macrophage differentiation after thioglycollate induction. The results together indicate that EGFR-TKIs have inhibitory effects on the innate immunity via retarding monocyte-macrophage differentiation. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:50:08Z (GMT). No. of bitstreams: 1 ntu-107-R05442007-1.pdf: 4099940 bytes, checksum: 1b625cc7fb8c13d4a672757b0dcab900 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 1
摘要 2 Abstract 3 Chapter 1. Introduction 9 1.1 Lung cancer 10 1.2 Epidermal growth factor receptor (EGFR) in cancer 10 1.3 EGFR tyrosine kinase inhibitors (TKIs) 12 1.4 Anti-EGFR agents increased the risk of infection. 13 1.5 EGFR in monocytes and macrophages. 13 1.6 Monocytes and macrophages 14 1.7 Research motivation 16 Chapter 2. Materials and Methods 17 2.1 Materials 18 2.2 Methods 22 Chapter 3. Result 33 3.1 Effects of EGFR tyrosine kinase inhibitor on the cell growth of monocytes and macrophages 34 3.2 EGFR TKI diminished monocyte to macrophage differentiation. 35 3.3 Effects of EGFR TKIs on EGFR during the THP-1 monocyte differentiation to macrophages. 36 3.4 EGFR TKIs inhibited the phagocytotic capability of THP-1-derived macrophage. 37 3.5 EGFR TKI suppressed the invasion of THP-1-derived macrophages. 37 3.6 EGFR TKIs suppressed the invasion of THP-1-derived macrophages and RAW264.7 cells with no significant effect on the phagocytosis of the macrophages. 38 3.7 EGFR TKIs diminished the differentiation of bone marrow-derived monocytes to bone marrow-derived macrophages (BMDM) but had no significant cytotoxicity on monocytes and macrophages. 38 3.8 EGFR TKI inhibited the phagocytotic capability and cell invasion of BMDM. 39 3.9 EGFR TKI diminished monocyte to macrophage differentiation in vivo. 40 3.10 EGFR TKI decreased the phagocytosis and cell invasion of peritoneal macrophages. 41 3.11 EGFR TKI have no significant on the cytotoxicity of EGFR-knockdown THP-1 cells. 42 3.12 Involvement of EGFR in monocyte THP-1 differentiation to macrophages. 42 3.13 EGFR was involved in the phagocytosis of THP-1-derived macrophages. 43 3.14 EGFR was involved in the cell invasion of THP-1-derived macrophages. 44 Chapter 4. Discussion 45 Chapter 5. Figure 50 Chapter 6. Reference 85 | - |
| dc.language.iso | en | - |
| dc.subject | 表皮生長因子受體酪胺酸激?抑制劑 | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | 單核球 | zh_TW |
| dc.subject | 表皮生長因子受體 | zh_TW |
| dc.subject | 先天免疫 | zh_TW |
| dc.subject | EGFR tyrosine kinase inhibitors | en |
| dc.subject | epidermal growth factor receptor | en |
| dc.subject | monocyte | en |
| dc.subject | macrophage | en |
| dc.subject | innate immunity | en |
| dc.title | 探討酪胺酸激酶抑制劑對巨噬細胞的影響 | zh_TW |
| dc.title | Effects of tyrosine kinase inhibitors on macrophage functions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐立中;張震東;張永祺 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 表皮生長因子受體,表皮生長因子受體酪胺酸激?抑制劑,單核球,巨噬細胞,先天免疫, | zh_TW |
| dc.subject.keyword | epidermal growth factor receptor,EGFR tyrosine kinase inhibitors,monocyte,macrophage,innate immunity, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU201802173 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-07-30 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | - |
| dc.date.embargo-lift | 2023-10-11 | - |
| Appears in Collections: | 生物化學暨分子生物學科研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-106-2.pdf Restricted Access | 4 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
