Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79166
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙玲
dc.contributor.authorU-Ting Chiuen
dc.contributor.author邱鈺婷zh_TW
dc.date.accessioned2021-07-11T15:49:32Z-
dc.date.available2023-07-31
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-07-30
dc.identifier.citation1. Zhang, Y., et al., Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005. 72(1): p. 156-165.
2. Choi, Y.S., et al., Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 1999. 20(5): p. 409-417.
3. Li, J.K., N. Wang, and X.S. Wu, Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. Journal of microencapsulation, 1998. 15(2): p. 163-172.
4. Kim, D.-H., et al., Epidermal electronics. science, 2011. 333(6044): p. 838-843.
5. Windmiller, J.R. and J. Wang, Wearable electrochemical sensors and biosensors: a review. Electroanalysis, 2013. 25(1): p. 29-46.
6. Kumari, P., L. Mathew, and P. Syal, Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosensors and Bioelectronics, 2017. 90: p. 298-307.
7. Son, D., et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature nanotechnology, 2014. 9(5): p. 397-404.
8. Cai, Y., et al., A flexible organic resistance memory device for wearable biomedical applications. Nanotechnology, 2016. 27(27): p. 275206.
9. Shih, C.-C., et al., Transparent deoxyribonucleic acid substrate with high mechanical strength for flexible and biocompatible organic resistive memory devices. Chemical Communications, 2016. 52(92): p. 13463-13466.
10. Sharma, A.K., Advanced Semiconductor Memories: Architectures, Designs, and Applications. 2009: Wiley-IEEE Press. 672.
11. Ling, Q.-D., et al., Polymer electronic memories: Materials, devices and mechanisms. Progress in Polymer Science, 2008. 33(10): p. 917-978.
12. Ling, Q.-D., et al., Polymer memories: Bistable electrical switching and device performance. Polymer, 2007. 48(18): p. 5182-5201.
13. Heremans, P., et al., Polymer and organic nonvolatile memory devices. Chemistry of Materials, 2010. 23(3): p. 341-358.
14. Hosseini, N.R. and J.S. Lee, Biocompatible and Flexible Chitosan‐Based Resistive Switching Memory with Magnesium Electrodes. Advanced Functional Materials, 2015. 25(35): p. 5586-5592.
15. Raeis-Hosseini, N. and J.-S. Lee, Controlling the resistive switching behavior in starch-based flexible biomemristors. ACS applied materials & interfaces, 2016. 8(11): p. 7326-7332.
16. Nishino, T., N. Hayashi, and P.T. Bui, Direct measurement of electron transfer through a hydrogen bond between single molecules. Journal of the American Chemical Society, 2013. 135(12): p. 4592-4595.
17. Meidanshahi, R.V., et al., Electronic transport across hydrogen bonds in organic electronics. International Journal of Nanotechnology, 2015. 12(3-4): p. 297-312.
18. Wickstrand, C., et al., Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochimica et Biophysica Acta (BBA)-General Subjects, 2015. 1850(3): p. 536-553.
19. Kimura, Y., et al., Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature, 1997. 389(6647): p. 206-211.
20. Lozier, R.H., R.A. Bogomolni, and W. Stoeckenius, Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophysical journal, 1975. 15(9): p. 955-962.
21. Subramaniam, S. and R. Henderson, Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature, 2000. 406(6796): p. 653-657.
22. Lanyi, J.K., Proton transfers in the bacteriorhodopsin photocycle. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006. 1757(8): p. 1012-1018.
23. Jin, Y., et al., Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chemical Society Reviews, 2008. 37(11): p. 2422-2432.
24. He, J.A., et al., Bacteriorhodopsin Thin‐Film Assemblies—Immobilization, Properties, and Applications. Advanced Materials, 1999. 11(6): p. 435-446.
25. Hampp, N., Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews, 2000. 100(5): p. 1755-1776.
26. Chu, L.-K., C.-W. Yen, and M.A. El-Sayed, Bacteriorhodopsin-based photo-electrochemical cell. Biosensors and Bioelectronics, 2010. 26(2): p. 620-626.
27. Rao, S., et al., A Light‐Powered Bio‐Capacitor with Nanochannel Modulation. Advanced Materials, 2014. 26(33): p. 5846-5850.
28. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
29. Morozov, S., et al., Giant intrinsic carrier mobilities in graphene and its bilayer. Physical review letters, 2008. 100(1): p. 016602.
30. Chen, J.-H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO 2. Nature nanotechnology, 2008. 3(4): p. 206-209.
31. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
32. Lemme, M.C., et al., A graphene field-effect device. IEEE Electron Device Letters, 2007. 28(4): p. 282-284.
33. Williams, J., L. DiCarlo, and C. Marcus, Quantum Hall effect in a gate-controlled pn junction of graphene. Science, 2007. 317(5838): p. 638-641.
34. Matyba, P., et al., Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. Acs Nano, 2010. 4(2): p. 637-642.
35. Mohanty, N. and V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano letters, 2008. 8(12): p. 4469-4476.
36. Kim, S.M., et al., Transparent and flexible graphene charge-trap memory. ACS nano, 2012. 6(9): p. 7879-7884.
37. Echtermeyer, T.J., et al., Nonvolatile switching in graphene field-effect devices. IEEE Electron Device Letters, 2008. 29(8): p. 952-954.
38. Jang, S., et al., Graphene–graphene oxide floating gate transistor memory. Small, 2015. 11(3): p. 311-318.
39. Zheng, Y., et al., Gate-controlled nonvolatile graphene-ferroelectric memory. Applied Physics Letters, 2009. 94(16): p. 163505.
40. Song, E.B., et al., Robust bi-stable memory operation in single-layer graphene ferroelectric memory. Applied Physics Letters, 2011. 99(4): p. 042109.
41. Xiaomu, W., X. Weiguang, and X. Jian‐Bin, Graphene Based Non‐Volatile Memory Devices. Advanced Materials, 2014. 26(31): p. 5496-5503.
42. Bertolazzi, S., D. Krasnozhon, and A. Kis, Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures. ACS Nano, 2013. 7(4): p. 3246-3252.
43. Sup Choi, M., et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nature Communications, 2013. 4: p. 1624.
44. Roy, K., et al., Graphene–MoS 2 hybrid structures for multifunctional photoresponsive memory devices. Nature nanotechnology, 2013. 8(11): p. 826-830.
45. Chou, Y.-H., et al., Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polymer Chemistry, 2015. 6(3): p. 341-352.
46. Chou, Y.-H., Y.-C. Chiu, and W.-C. Chen, High-k polymer-graphene oxide dielectrics for low-voltage flexible nonvolatile transistor memory devices. Chemical Communications, 2014. 50(24): p. 3217-3219.
47. Goniszewski, S., et al., Correlation of p-doping in CVD Graphene with Substrate Surface Charges. Scientific reports, 2016. 6: p. 22858.
48. Chen, F., J. Xia, and N. Tao, Ionic screening of charged-impurity scattering in graphene. Nano Letters, 2009. 9(4): p. 1621-1625.
49. Lee, D., G. Ahn, and S. Ryu, Two-dimensional water diffusion at a graphene–silica interface. Journal of the American Chemical Society, 2014. 136(18): p. 6634-6642.
50. Lee, M.J., et al., Characteristics and effects of diffused water between graphene and a SiO 2 substrate. Nano Research, 2012. 5(10): p. 710-717.
51. Fu, H.-Y., et al., A novel six-rhodopsin system in a single archaeon. Journal of bacteriology, 2010. 192(22): p. 5866-5873.
52. Kaur, G., et al., Electrically conductive polymers and composites for biomedical applications. RSC Advances, 2015. 5(47): p. 37553-37567.
53. Tan, C., et al., Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chemical Society Reviews, 2015. 44(9): p. 2615-2628.
54. Qian, K., et al., Novel concepts in functional resistive switching memories. Journal of Materials Chemistry C, 2016. 4(41): p. 9637-9645.
55. Szymanski, A., D. Larson, and M. Labes, A temperature‐independent conducting state in tetracene thin film. Applied Physics Letters, 1969. 14(3): p. 88-90.
56. Ma, D., et al., Organic reversible switching devices for memory applications. Advanced Materials, 2000. 12(14): p. 1063-1066.
57. Kevorkian, J., et al., Bistable switching in organic thin films. Discussions of the Faraday Society, 1971. 51: p. 139-143.
58. Duggal, A.R. and F. Sun, The initiation of high current density switching in electrically conductive polymer composite materials. Journal of Applied physics, 1998. 83(4): p. 2046-2051.
59. Henisch, H. and W. Smith, Switching in organic polymer films. Applied Physics Letters, 1974. 24(12): p. 589-591.
60. Cordes, M. and B. Giese, Electron transfer in peptides and proteins. Chemical Society Reviews, 2009. 38(4): p. 892-901.
61. Isied, S.S., Long‐Range Electron Transfer in Peptides and Proteins. Progress in Inorganic Chemistry, Volume 32, 1984: p. 443-517.
62. Isied, S.S., M.Y. Ogawa, and J.F. Wishart, Peptide-mediated intramolecular electron transfer: long-range distance dependence. Chemical reviews, 1992. 92(3): p. 381-394.
63. Gorgieva, S. and V. Kokol, Collagen-vs. gelatine-based biomaterials and their biocompatibility: review and perspectives, in Biomaterials applications for nanomedicine. 2011, InTech.
64. Te Nijenhuis, K., Gelatin. 1997: Springer.
65. Unal, M., S. Yang, and O. Akkus, Molecular spectroscopic identification of the water compartments in bone. Bone, 2014. 67: p. 228-236.
66. Leikin, S., et al., Raman spectral evidence for hydration forces between collagen triple helices. Proceedings of the National Academy of Sciences, 1997. 94(21): p. 11312-11317.
67. Cavatorta, F., M.P. Fontana, and A. Vecli, Raman spectroscopy of protein–water interactions in aqueous solutions. The Journal of Chemical Physics, 1976. 65(9): p. 3635-3640.
68. Sun, Q., The Raman OH stretching bands of liquid water. Vibrational Spectroscopy, 2009. 51(2): p. 213-217.
69. Walrafen, G. and Y. Chu, Linearity between structural correlation length and correlated-proton Raman intensity from amorphous ice and supercooled water up to dense supercritical steam. The Journal of Physical Chemistry, 1995. 99(28): p. 11225-11229.
70. Lin, K., et al., Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy. Biomedical optics express, 2016. 7(9): p. 3705-3715.
71. Gullekson, C., et al., Surface-sensitive Raman spectroscopy of collagen I fibrils. Biophysical journal, 2011. 100(7): p. 1837-1845.
72. Pande, J., et al., Raman, infrared, and circular dichroism spectroscopic studies on metallothionein: a predominantly' turn'-containing protein. Biochemistry, 1986. 25(19): p. 5526-5532.
73. Unal, M., H. Jung, and O. Akkus, Novel Raman spectroscopic biomarkers indicate that postyield damage denatures bone's collagen. Journal of Bone and Mineral Research, 2016. 31(5): p. 1015-1025.
74. Devitt, G., et al., Raman Spectroscopy: An emerging tool in neurodegenerative disease research and diagnosis. ACS chemical neuroscience, 2018. 9(3): p. 404-420.
75. Lefèvre, T., M.-E. Rousseau, and M. Pézolet, Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophysical journal, 2007. 92(8): p. 2885-2895.
76. Dehring, K.A., et al., Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy. Applied spectroscopy, 2006. 60(10): p. 1134-1141.
77. Dong, R., et al., Temperature-dependent Raman spectra of collagen and DNA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004. 60(3): p. 557-561.
78. Bonifacio, A. and V. Sergo, Effects of sample orientation in Raman microspectroscopy of collagen fibers and their impact on the interpretation of the amide III band. Vibrational Spectroscopy, 2010. 53(2): p. 314-317.
79. Piazza, A., et al., Substrate and atmosphere influence on oxygen p-doped graphene. Carbon, 2016. 107: p. 696-704.
80. Yan, J., et al., Electric field effect tuning of electron-phonon coupling in graphene. Physical review letters, 2007. 98(16): p. 166802.
81. Pisana, S., et al., Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature materials, 2007. 6(3): p. 198-201.
82. Lee, J.E., et al., Optical separation of mechanical strain from charge doping in graphene. Nature communications, 2012. 3: p. 1024.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79166-
dc.description.abstract目前許多研究致力於發展可撓式、耐用、且可以在有水的環境下操作的電子產品,以利於偵測環境變化以及人體健康。然而水的存在對於記憶體裝置有極大的影響,像是傳統的電阻式記憶體或是利用浮動閘極場效電晶體做成的記憶體裝置,很容易受潮濕的環境或是電解質水溶液的存在影響,而流失其存取的資訊。在本論文中,我們利用具有生物相容性的材料來發展水相記憶體裝置,期望未來能應用在穿戴式裝置或是機器及人體間溝通的介面。
首先,我們發現蛋白質明膠可以透過氫鍵形成的網絡來傳遞電子,且傳遞的距離可以達到微米等級。一般飽含水分的明膠只能做為電容,然而當被加熱至融化並且散失水分之後,所形成的明膠-氫鍵網絡則可以導電。由於擁有從電容轉變為高導電度電阻的特性,我們利用明膠來發展非揮發性電阻式記憶體,且其開關電流比值在0.09伏特的讀取電壓下可以高達105;相較於目前擁有的非揮發性電阻式記憶體,此裝置可以在至少小十倍以下的讀取電壓達到高開關電流比值。此外,此明膠記憶體具有高達5天的穩定性,也可以透過恢復其水分含量來刪除已寫入資訊。
接著,我們更進一步發現在明膠中加入視紫蛋白除了可以增加其導電度,也可以提升其記憶體表現。視紫蛋白為光驅動氫離子幫浦,在吸收光能之下可以製造細胞膜兩側的氫離子濃度差異。我們的實驗結果顯示在明膠記憶體中間加入一層具有視紫蛋白的脂質膜,會顯著加強明膠-氫鍵網絡傳遞電子的能力。我們認為視紫蛋白在光驅動後,會讓脂質膜一側的明膠多出氫離子,另一側則是少了氫離子。而我們認為這樣的情況會造成明膠-氫鍵網絡的結構變化,進而增加其電子傳遞的能力。此外,加入視紫蛋白的明膠記憶體也一樣用有長期的穩定性及重新編輯的功能,而且其開關電流比值比單純利用明膠做成的記憶體高了3倍。利用明膠來做為記憶體的材料,讓我們可以透過控制溫度及水分含量來進行寫入、讀取、刪除資訊,且可以透過加入視紫蛋白來提升其表現,相信未來可以進一步被應用於生物相關之電子產品領域。
除了明膠之外,我們也利用石墨烯電晶體來發展水相記憶體。我們發現在石墨烯和玻璃間形成的奈米厚度之水層會大幅影響石墨烯的導電特性;此外,在寫入及刪除的過程中,我們可以透過施加正負不同的閘極電壓來控制此水層的形成,並達到穩定的高導電度態(開)以及低導電度態(關)。此石墨烯記憶體可以進行至少9次的重複寫入-讀取-刪除,且可以維持在開與關的狀態至少104秒。我們也進一步利用原子力顯微鏡和拉曼光譜來檢驗此兩狀態下水層厚度的差異。此利用奈米水層來調控石墨烯與玻璃間相互作用的技術,未來可應用於發展在水中操做之極薄二維型態的非揮發性記憶體。
zh_TW
dc.description.abstractThe development of flexible, robust electronics functional in aqueous systems have attracted great attention owing to their potential abilities for environmental monitoring and health sensing. However, the memory devices are highly sensitive to the existence of water. The stored electrical information can be easily lost when a conventional resistive memory operate in an electrolyte solution or in a wet environment. In this thesis, we devoted to develop water-based memory devices using biocompatible materials for the future applications in wearable devices and human-machine interfaces.
First, we discovered that a natural protein, gelatin, can form a gelatin-hydrogen-bond network that can transfer electrons over a long range (at least hundreds of micron). A typical gelatin hydrogel rich in water can only act as a capacitor with no electron transfer across the gel. We found that an electron-conductive gelatin-hydrogen-bond network can be formed if the water content of the typical wet hydrogel is reduced above its gelling temperature. The switch from a capacitor with low conductivity to a resistor with high conductivity allows us to use a gelatin thin film as a resistor-type memory device. The gelatin thin film exhibits nonvolatile resistive memory features with a high ON/OFF current ratio on the order of 105 at a reading voltage of 0.09V. The high ON/OFF ratio is achieved at the low reading voltage which is at least one order of magnitude lower than the one required by current nonvolatile resistive memory devices. In addition, it has a long-term stability up to 5 days, and the ability to be reprogrammed by water addition.
Second, we discovered that incorporating a lipid membrane rich in a light-driven proton pump, bacteriorhodopsin (BR), into the gelatin device could further increase the conductivity and improve the memory performance. After the light illumination, BR can create additional protons in the gelatin on one side of the membrane and proton vacancies in the gelatin on the other side of the membrane. We think the proton accumulation or proton deficiency may affect the structure of the gelatin-hydrogen-bond network and therefore enhance the electron transport in the gelatin device. The BR-incorporated gelatin memory device also features long-term stability and reprogrammability; furthermore, the ON/OFF current ratio is increased by 3 folds compared with the gelatin memory device with no BR-lipid-membrane. Using a gelatin thin film as a memory device provides a new pathway for writing, reading, and erasing by controlling the structure and water content in the gelatin, and the memory performance can be enhanced by incorporating a BR-lipid-membrane, which can be further used for various bioelectronic applications.
Third, we present a solution-gated graphene memory device based on the interaction between graphene and its silica substrate. We discovered that the water layer thickness between the graphene and the silica substrate can significantly influence the electrical property of the graphene. More importantly, we can construct stable high-conductance state (ON state) and low-conductance state (OFF state) by applying positive and negative gate voltages to control the water layer thickness as the writing and erasing processes. We show that the device can undergo over at least 9 WRER cycles and the ON and OFF states can be maintained at least to 104 s. The AFM and Raman spectroscopy data of the ON and OFF states support the water layer thickness difference of the two states. That the graphene memory device can robustly function in water can make the device suitable for various applications. The manipulation of the interaction between a graphene sheet and silica through a thin water layer can also facilitate the realization of a water-based ultra-compact 2D nonvolatile memory.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:49:32Z (GMT). No. of bitstreams: 1
ntu-107-R05524026-1.pdf: 4789574 bytes, checksum: 88a4b6225b061705be97ece0763a7607 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
Acknowlegement i
摘要 ii
Abstract iv
Table of Content vi
Figure Captions ix
Table Captions xiii
Chapter 1 Introduction 1
1.1 Importance of developing water-based memories 1
1.2 Gelatin as a biocompatible materials for resistive memory devices 1
1.3 Gelatin and the electron transfer 2
1.4 Introduction of bacteriorhodopsin (BR) 3
1.5 Applications of graphene in memory devices 3
1.6 Developing graphene memory devices by controlling water layer thickness 5
Chapter 2 Materials and Methods 6
2.1 Materials 6
2.2 Apparatus 7
2.3 Preparation and measurements of gelatin memory devices 8
2.3.1 Gelatin solution preparation 8
2.3.2 Fabrication of gelatin-based memory devices 8
2.3.3 Electrical performance measurements 9
2.3.4 Steady-state current-voltage characteristic measurements 10
2.3.5 Raman spectroscopy study of water state and gelatin structure 11
2.4 Preparation and measurements of bR-incorporated gelatin memory devices 11
2.4.1 BR-incorporated liposome preparation 11
2.4.2 Formation of BR-SLB on electrodes 12
2.4.3 Fabrication of BR-incorporated gelatin memory devices 13
2.4.4 Light source setup 13
2.5 Preparation and measurements of graphene memory devices 14
2.5.1 Experimental setup of graphene memory devices 14
2.5.2 Raman spectroscopy observation of water intercalation 15
Chapter 3 Conductive gelatin hydrogels for biocompatible resistive memory applications 16
3.1 Electrical memory characteristics of gelatin memory devices 16
3.1.1 Current-voltage (I-V) characteristics 17
3.1.2 Both temperature increase and water loss are required for switching the device to the ON state 18
3.1.3 Stability of gelatin memory devices 19
3.2 Voltage sweep to support the switch of the capacitor behavior to the resistor behavior 20
3.3 Proposed mechanism for the writing and erasing process 21
3.4 Switching mechanism through the gelatin state change 22
3.4.1 Formation of the hydrogen-bond network in gelatin 23
3.4.2 Using Raman spectroscopy to determine water state and gelatin secondary structure 25
Chapter 4 Incorporating BRs with conductive gelatin hydrogels for memory devices 28
4.1 Introduction to BR and the applications 28
4.1.1 Using a light-driven proton pump to develop devices for photocurrent generation 29
4.1.2 Proton transport efficiency increases by around 1000 folds 30
4.1.3 Current increases with BR concentration 31
4.1.4 Current increased by parallel configuration and increasing area 32
4.1.5 Increased area & in-parallel configuration for μA currents 33
4.2 Proposed mechanism for incorporation of BRs into gelatin memory devices 34
4.3 Electrical memory characteristics of BR-incorporated gelatin memory devices 37
4.4 Using Raman spectroscopy to determine gelatin secondary structure 39
Chapter 5 Water Based Graphene Memory Devices 42
5.1 Electrical memory characteristics of the graphene devices 42
5.2 Water layer as an insulator to reduce p-doping effect 44
5.3 Proposed mechanism for writing and erasing process 45
5.4 Stability of graphene memory devices 47
5.5 Using AFM to examine the water layer formation 48
5.6 Using Raman spectrum to examine the water layer formation 49
Chapter 6 Conclusions 50
REFERENCE 53
dc.language.isoen
dc.subject明膠zh_TW
dc.subject生物相容電子產品zh_TW
dc.subject石墨烯zh_TW
dc.subject電子傳輸zh_TW
dc.subject視紫蛋白zh_TW
dc.subject電阻式記憶體zh_TW
dc.subjectgelatinen
dc.subjectbioelectronicsen
dc.subjectgrapheneen
dc.subjectbacteriorhodopsinen
dc.subjectelectron transferen
dc.subjectresistive-type memoryen
dc.title利用明膠與石墨烯發展非揮發性水相記憶體zh_TW
dc.titleNonvolatile water-based memory devices based on gelatin and grapheneen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝之真,李文亞
dc.subject.keyword電阻式記憶體,明膠,電子傳輸,視紫蛋白,石墨烯,生物相容電子產品,zh_TW
dc.subject.keywordresistive-type memory,gelatin,electron transfer,bacteriorhodopsin,graphene,bioelectronics,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201802188
dc.rights.note有償授權
dc.date.accepted2018-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2023-07-31-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05524026-1.pdf
  未授權公開取用
4.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved