請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79161完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉秀慧(Shiou-Hwei Yeh) | |
| dc.contributor.author | YA-YUN LI | en |
| dc.contributor.author | 李亞芸 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:49:05Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1. Patel, S.A. and A.J. Minn, Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity, 2018. 48(3): p. 417-433. 2. Aoki, T., T. Takano, and J.-i. Hikima, DNA vaccine-mediated innate immune response triggered by PRRs in teleosts. Fisheries Science, 2015. 81(2): p. 205-217. 3. Desmet, C.J. and K.J. Ishii, Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nature Reviews Immunology, 2012. 12(7): p. 479-491. 4. Hopcraft, S.E. and B. Damania, Tumour viruses and innate immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1732): p. 20160267. 5. Skorupka, K.A., et al., Hierarchical assembly governs TRIM5α recognition of HIV-1 and retroviral capsids. Science advances, 2019. 5(11): p. eaaw3631. 6. Colomer-Lluch, M., et al., Restriction factors: from intrinsic viral restriction to shaping cellular immunity against HIV-1. Frontiers in immunology, 2018. 9: p. 2876. 7. De Silva, S. and L. Wu, TRIM5 acts as more than a retroviral restriction factor. Viruses, 2011. 3(7): p. 1204-1209. 8. Ganser-Pornillos, B.K. and O. Pornillos, Restriction of HIV-1 and other retroviruses by TRIM5. Nature Reviews Microbiology, 2019. 17(9): p. 546-556. 9. Tomar, D. and R. Singh, TRIM family proteins: emerging class of RING E3 ligases as regulator of NF‐κB pathway. Biology of the Cell, 2015. 107(1): p. 22-40. 10. Lütgehetmann, M., et al., Hepatitis B virus limits response of human hepatocytes to interferon-α in chimeric mice. Gastroenterology, 2011. 140(7): p. 2074-2083. e2. 11. Wieland, S.F. and F.V. Chisari, Stealth and cunning: hepatitis B and hepatitis C viruses. Journal of virology, 2005. 79(15): p. 9369-9380. 12. Hwang, J.-R. and S.-G. Park, Mouse models for hepatitis B virus research. Laboratory animal research, 2018. 34(3): p. 85-91. 13. Pertierra, L.R., et al., High resolution spatial mapping of human footprint across Antarctica and its implications for the strategic conservation of avifauna. PloS one, 2017. 12(1): p. e0168280. 14. Thomsen, M.K., et al., Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology, 2016. 64(3): p. 746-759. 15. Hu, J., et al., Cell and animal models for studying hepatitis B virus infection and drug development. Gastroenterology, 2019. 156(2): p. 338-354. 16. Lin, Y.-J., et al., Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model. Proceedings of the National Academy of Sciences, 2010. 107(20): p. 9340-9345. 17. Hatton, T., S. Zhou, and D. Standring, RNA-and DNA-binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. Journal of virology, 1992. 66(9): p. 5232-5241. 18. Lin, Y.-J., et al., Hepatitis B virus nucleocapsid but not free core antigen controls viral clearance in mice. Journal of virology, 2012. 86(17): p. 9266-9273. 19. Bayliss, J., et al., Hepatitis B virus splicing is enhanced prior to development of hepatocellular carcinoma. Journal of hepatology, 2013. 59(5): p. 1022-1028. 20. Ajiro, M. and Z.-M. Zheng, Oncogenes and RNA splicing of human tumor viruses. Emerging microbes infections, 2014. 3(1): p. 1-16. 21. Ito, N., et al., Cell type diversity in hepatitis B virus RNA splicing and its regulation. Frontiers in microbiology, 2019. 10: p. 207. 22. Yu, X. and J.E. Mertz, Promoters for synthesis of the pre-C and pregenomic mRNAs of human hepatitis B virus are genetically distinct and differentially regulated. Journal of virology, 1996. 70(12): p. 8719-8726. 23. Bertoletti, A. and C. Ferrari, Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut, 2012. 61(12): p. 1754-1764. 24. Morikawa, K., et al., Hepatitis B: progress in understanding chronicity, the innate immune response, and cccDNA protection. Annals of translational medicine, 2016. 4(18). 25. Boeijen, L.L., et al., Hepatitis B virus infection and the immune response: the big questions. Best practice research Clinical gastroenterology, 2017. 31(3): p. 265-272. 26. Kondo, Y., et al., Hepatitis B surface antigen could contribute to the immunopathogenesis of hepatitis B virus infection. International Scholarly Research Notices, 2013. 2013. 27. Cerino, A., et al., Human monoclonal antibodies as adjuvant treatment of chronic hepatitis B virus infection. Frontiers in Immunology, 2019. 10: p. 2290. 28. Yuen, M.-F., et al., Hepatitis B virus infection. Nature Reviews Disease Primers, 2018. 4(1): p. 1-20. 29. Knolle, P.A. and R. Thimme, Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology, 2014. 146(5): p. 1193-1207. 30. Thimme, R., et al., CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. Journal of virology, 2003. 77(1): p. 68-76. 31. Rodgers, J.R. and R.G. Cook, MHC class Ib molecules bridge innate and acquired immunity. Nature Reviews Immunology, 2005. 5(6): p. 459-471. 32. Ganesan, M., et al., Acetaldehyde suppresses the display of HBV-MHC class I complexes on HBV-expressing hepatocytes. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2019. 317(2): p. G127-G140. 33. Chen, X., et al., Tapasin modification on the intracellular epitope HBcAg 18–27 enhances HBV-specific CTL immune response and inhibits hepatitis B virus replication in vivo. Laboratory Investigation, 2014. 94(5): p. 478-490. 34. Perdomo-Celis, F., N.A. TABORDA, and M.T. Rugeles, CD8+ T-cell response to HIV infection in the era of antiretroviral therapy. Frontiers in immunology, 2019. 10: p. 1896. 35. Katze, M.G., et al., Innate immune modulation by RNA viruses: emerging insights from functional genomics. Nature reviews Immunology, 2008. 8(8): p. 644-654. 36. Bhat, M.Y., et al., Comprehensive network map of interferon gamma signaling. Journal of Cell Communication and Signaling, 2018. 12(4): p. 745-751. 37. Kobayashi, K.S. and P.J. Van Den Elsen, NLRC5: a key regulator of MHC class I-dependent immune responses. Nature Reviews Immunology, 2012. 12(12): p. 813-820. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79161 | - |
| dc.description.abstract | 病原體相關小分子 (PAMPs) 主要分成核酸及蛋白質兩類,被專一性受體 (PRRs) 辨認後,會促進干擾素 (interferon) 產生,進而引發後天免疫反應,產生毒殺性 T 細胞 (cytotoxic T cell) 及抗體。根據文獻指出,在利用尾靜脈注射 (hydrodynamic tail vein injection) 包含 HBV genome 的質體,模擬 HBV 感染的小鼠模式中,HBV 被清除的情況並非依靠產生干擾素 (interferon) ,並不會因常見的辨認病毒核酸的 PRRs 被剔除而有所改變。HBV的先天性免疫並非依靠產生干擾素 (interferon),以及促進干擾素刺激基因(interferon-stimulated genes)表現,卻依然能活化後天免疫反應,達到病毒清除的目標。另外根據陳培哲教授團隊先前的研究指出,組成 HBV 核殼 (capsid) 的核殼蛋白 (core protein) 可能對於清除 HBV扮演重要角色,其必須保有最後 10 個氨基酸且在 capsid form 的立體結構中,才有可能作為 PAMP 被 PRR 辨認。本論文目標為進一步找出 HBV 的核殼蛋白最後 10 個氨基酸相關的 PAMP 為何,及其如何引發先天及後天免疫反應清除HBV。由於實驗室先前研究發現核殼蛋白C端最後一個第 183 個氨基酸 Cysteine (183Cys) 會參與形成由雙硫鍵鍵結形成的核殼蛋白 dimer 結構,且 HBV 核殼可以由具有 183 個氨基酸和 182 個氨基酸的核蛋白組成,因此本研究提出一假說,即HBc183形成的雙硫鍵結,於capsid中有可能成為PRR所辨認之特殊結構,影響先天免疫反應。為測試此假說,將利用HDI mouse model,經由尾靜脈注射具有細胞內複製能力的HBV質體,探討HBc與HBc-Cys在HBV引發的免疫反應中是否扮演的不同角色。使用尾靜脈注射有不同核蛋白表現的 AAV-HBV replicon 質體,分別為形成只有 183 個氨基酸、只有 182 個氨基酸、第 183 個氨基酸由 Cysteine 突變成 Alanine 的核蛋白組成的核殼,於每週追蹤血清中 HBV 表面抗原的變化,以代表 HBV 清除效率。結果發現 wild-type 及只有 183 個氨基酸組別HBV清除效率較只有 182 個氨基酸之組別快速。此結果指出HBc183形成的雙硫鍵結之特殊結構,於capsid中的確可能影響免疫反應,值得未來利用此動物模式進一步探討其分子機制。 | zh_TW |
| dc.description.abstract | The pathogen-associated molecular patterns (PAMP), either nucleic acid or protein, recognized by the cellular pattern recognition receptors (PRR) is critical for inducing the immune responses for clearance of pathogens. In most cases, recognition of PAMP by PRR promotes interferon production for activation of subsequent adaptive immune responses. As documented, HBV infection does not induce interferon production but still can activate the adaptive immune responses for viral clearance. Identification of the putative PAMP and PRR is still remained an unsolved issue for HBV. Using the tail vein hydrodynamic injection mouse model, Prof. Pei-Jer Chen’s group has previously identified the critical role of HBV core protein (HBc) in inducing the immune responses, mainly dependent on the intact capsid structure and the 10 amino acids at the C-terminal of HBc. However, the exact structure and underlying mechanism for the C-terminal domain of HBc is not clear yet. In our previous study that the very C terminal cysteine of HBc could contribute to the formation of disulfide bond in capsid, which however is lack in the HBc-Cys protein synthesized by the splicing SP1 RNA. Regarding that both HBc and HBc-Cys is contained in the viral capsid, it will be interesting to test if the disulfide bond structure mediated by the C terminal cysteine of HBc could be the structure responsible for inducing the immune responses. We propose to test this hypothesis by the tail vein hydrodynamic injection mouse model, by injection of the wild type and mutant HBV replicon constructs only expressing either HBc or HBc-Cys protein only and follow up of the serum HBsAg and anti-HBs Ab levels. The results showed a similar clearance rate between the mice injected with wild type and HBc-only replicon constructs, which is intriguingly much faster than the mice injected with HBc-Cys-only replicon construct. The results indicated that the C terminal cysteine of HBc could contribute to the immune clearance of HBV and deserves further dissection of the underlying mechanism in this mouse model. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:49:05Z (GMT). No. of bitstreams: 1 U0001-1708202014524200.pdf: 4113103 bytes, checksum: 308053e44e19aabede068c19428c9472 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝………………………………………………………………..………………..…I 摘要…………………………………………………………………………………...II Abstract........................................................................................................................III 目錄…………………………………………………………….……………………IV 圖表目錄………………………………………………………..…………………. .VI 第一章 序論…………………………………………………………………………..1 1.1 病毒感染細胞引發之PAMP—PRR至干擾素 (interferon) 產生之訊息傳遞路徑……………………………………………………………………………………...1 1.2 病毒核殼 (capsid) 作為 PAMP : 以 HIV-1 核殼被 TRIM5α 辨認為例…….......1 1.3 HBV 獨特先天免疫反應:不促進干擾素產生…………………………………2 1.4 HBV 未知的 PAMP-PRR signaling………………………………………………2 1.5 HBV 核殼蛋白 (HBV core protein) 可能作為 PAMP…………………………...3 1.6 HBc 和剪接RNA (splicing RNA) SP1 轉譯的 HBc-Cys 介紹…………………...5 第二章 研究假說與策略……………………………………………………………..6 第三章 實驗材料與方法……………………………………………………………..8 3.1 質體……………………………………………………………………………….8 3.2 hydrodynamic tail vein injection (HDI)…………………………………………..9 3.3 偵測血清中HBsAg和anti-HBs含量…………………………………………...9 3.4 細胞培養………………………………………………………………………….9 3.5 細胞轉染……………………………………………………………………...….10 3.6 蛋白質抽取……………………………………………………..……………......10 3.7 西方墨點法分析………………………………………………...…………...…..10 3.8 sucrose gradient分析……………………………………………………….........11 3.9 HBV capsid偵測………………………………………………………….……..11 3.10 HBV particle gel分析…………………………………………………………..11 3.11 免疫沈澱法(IP)………………………………………………………..…….…12 第四章、實驗結果………………………………………………………………….13 4.1 在Balb/c品系小鼠的HDI model中再現表現HBc dimer 及缺少capsid結構中HBc的最後十個氨基酸之HBV replicon無法被有效清除……………………….13 4.2 探討capsid中HBc和HBc-Cys是否造成HBV清除效率的差異……………..13 4.3探討HBc 183Cys之間的雙硫鍵結構是否為影響HBV被有效清除的關鍵...14 4.4 capsid結構內183Cys之間的雙硫鍵結結構介導 (mediated) 的影響HBV清除發生在肝細胞內還是肝細胞外…………………………………………………….15 4.5 利用共免疫沈澱法 (co-immunoprecipataion) 尋找與不同組成之capsid中HBc交互作用之蛋白質………………………………………………………………….15 4.6 利用質譜儀分析可能影響HBV清除效率的HBc-interacting protein………..16 4.7尋找capsid結構中183Cys之間的雙硫鍵結構差異對血清中HBsAg數值kinetic變化影響最顯著的時間點……………………………………………………….....17 第五章 討論…………………………………………………………………………19 參考文獻…………………………………………………………………………….23 | |
| dc.language.iso | zh-TW | |
| dc.subject | 核殼蛋白 | zh_TW |
| dc.subject | B 型肝炎病毒 | zh_TW |
| dc.subject | 免疫清除 | zh_TW |
| dc.subject | PRR | zh_TW |
| dc.subject | PAMP | zh_TW |
| dc.subject | PRR | en |
| dc.subject | core protein | en |
| dc.subject | immune-clearance | en |
| dc.subject | Hepatitis B virus | en |
| dc.subject | PAMP | en |
| dc.title | HBV 核殼蛋白的 C 端區域在 HBV 先天免疫反應中所扮演的角色
| zh_TW |
| dc.title | The C terminal domain of HBV core protein inducing the antiviral innate immune response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),楊宏志(Hung-Chih Yang) | |
| dc.subject.keyword | B 型肝炎病毒,PAMP,PRR,免疫清除,核殼蛋白, | zh_TW |
| dc.subject.keyword | Hepatitis B virus,PAMP,PRR,immune-clearance,core protein, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU202003758 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202014524200.pdf 未授權公開取用 | 4.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
