請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79157完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王致恬 | |
| dc.contributor.author | Erh-Chung Chen | en |
| dc.contributor.author | 陳爾中 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:48:44Z | - |
| dc.date.available | 2023-08-03 | |
| dc.date.copyright | 2018-08-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-31 | |
| dc.identifier.citation | Althammer, F., & Grinevich, V. (2017). Diversity of oxytocin neurons: beyond magno- and parvocellular cell types? J Neuroendocrinol. doi:10.1111/jne.12549
Burbach, J. P. H., Luckman, S. M., Murphy, D., & Gainer, H. (2001). Gene Regulation in the Magnocellular Hypothalamo-Neurohypophysial System. Physiological Reviews, 81(3), 1197-1267. doi:10.1152/physrev.2001.81.3.1197 Chang, Y.-C. The role of synapsin Ia in regulating neuropeptide release from the hypothalamic-neurohypophysial system of adult male rats. Chi, P., Greengard, P., & Ryan, T. A. (2003). Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron, 38(1), 69-78. Chini, B., Verhage, M., & Grinevich, V. (2017). The Action Radius of Oxytocin Release in the Mammalian CNS: From Single Vesicles to Behavior. Trends Pharmacol Sci, 38(11), 982-991. doi:10.1016/j.tips.2017.08.005 David, J. C., & Vareed, C. (1929). A Preliminary Note on the Action of Vasopressin and Oxytocin. Ind Med Gaz, 64(2), 73-76. Diker-Cohen, T., Rozen-Zvi, B., Yelin, D., Akirov, A., Robenshtok, E., Gafter-Gvili, A., & Shepshelovich, D. (2018). Endocrinopathy-induced euvolemic hyponatremia. Intern Emerg Med. doi:10.1007/s11739-018-1872-4 Eliava, M., Melchior, M., Knobloch-Bollmann, H. S., Wahis, J., da Silva Gouveia, M., Tang, Y., . . . Grinevich, V. (2016). A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing. Neuron, 89(6), 1291-1304. doi:10.1016/j.neuron.2016.01.041 Gainer, H. (2012). Cell-type specific expression of oxytocin and vasopressin genes: an experimental odyssey. J Neuroendocrinol, 24(4), 528-538. doi:10.1111/j.1365-2826.2011.02236.x Iliff, J. J., Wang, M., Zeppenfeld, D. M., Venkataraman, A., Plog, B. A., Liao, Y., . . . Nedergaard, M. (2013). Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci, 33(46), 18190-18199. doi:10.1523/jneurosci.1592-13.2013 Knobloch, H. S., Charlet, A., Hoffmann, L. C., Eliava, M., Khrulev, S., Cetin, A. H., . . . Grinevich, V. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 73(3), 553-566. doi:10.1016/j.neuron.2011.11.030 Kortus, S., Srinivasan, C., Forostyak, O., Ueta, Y., Sykova, E., Chvatal, A., . . . Dayanithi, G. (2016). Physiology of spontaneous [Ca(2+)]i oscillations in the isolated vasopressin and oxytocin neurones of the rat supraoptic nucleus. Cell Calcium, 59(6), 280-288. doi:10.1016/j.ceca.2016.04.001 Lee, H., Xie, L., Yu, M., Kang, H., Feng, T., Deane, R., . . . Benveniste, H. (2015). The Effect of Body Posture on Brain Glymphatic Transport. J Neurosci, 35(31), 11034-11044. doi:10.1523/jneurosci.1625-15.2015 Loh, S. Y., Jahans-Price, T., Greenwood, M. P., Greenwood, M., Hoe, S. Z., Konopacka, A., . . . Hindmarch, C. C. T. (2017). Unsupervised Network Analysis of the Plastic Supraoptic Nucleus Transcriptome Predicts Caprin2 Regulatory Interactions. eNeuro, 4(6). doi:10.1523/eneuro.0243-17.2017 Scheller, E. L., & Krebsbach, P. H. (2009). Gene therapy: design and prospects for craniofacial regeneration. J Dent Res, 88(7), 585-596. doi:10.1177/0022034509337480 Shi, L., Fan, Y., & Xu, Z. (2012). Development of oxytocin- and vasopressin-network in the supraoptic and paraventricular nuclei of fetal sheep. Physiol Res, 61(3), 277-286. Song, S. H., & Augustine, G. J. (2015). Synapsin Isoforms and Synaptic Vesicle Trafficking. Mol Cells, 38(11), 936-940. doi:10.14348/molcells.2015.0233 Szymanska, M., Schneider, M., Chateau-Smith, C., Nezelof, S., & Vulliez-Coady, L. (2017). Psychophysiological effects of oxytocin on parent-child interactions: A literature review on oxytocin and parent-child interactions. Psychiatry Clin Neurosci. doi:10.1111/pcn.12544 Tang, L. T., Craig, T. J., & Henley, J. M. (2015). SUMOylation of synapsin Ia maintains synaptic vesicle availability and is reduced in an autism mutation. Nat Commun, 6, 7728. doi:10.1038/ncomms8728 Uvnas-Moberg, K. (1998). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23(8), 819-835. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79157 | - |
| dc.description.abstract | 催產素(OT)由下視丘-神經垂體系統中的室旁核(PVN)及視上核(SON)的magnocellular neurons (MCNs)所製造。最初,催產素被發現具有調控生理方面的功能;隨著對催產素有更深入的研究,發現催產素還具有調控情緒反應以及社交行為等功能。然而,調控如此重要神經胜肽的釋放機制卻仍然不明確。目前已知,位於催產素神經元軸突末梢的腦下垂體後葉有兩種類型的囊泡,一種為大小約100-300奈米,具有緻密核心的large dense-core vesicles (LDCVs),另一種為型態及生化特性都與synaptic vesicles (SVs)相似的microvesicles (MVs)。這些囊泡除了能夠受到Ca2+-dependent exocytosis所調控。SV/MV上的Syn Ia也能夠藉由磷酸化與否來調控囊泡的釋放。因此,我們想探討專一表現在SV/MV上的Syn Ia除了能夠調控SV/MV的釋放,是否也能夠調控LDCV的釋放,進而使催產素的釋放量上升。因此,我們首先設計了一系列由催產素啟動子所驅動的囊泡報導蛋白(VAMP2-pHVenus or neurophysin I-pHVenus)並帶有Syn Ia或是Syn Ia突變體(S62A)的DNA。接著,我們利用活體電穿孔(in vivo electroporation)的方式將這些DNA轉染進入成年雄性大鼠的SON中。為了觀察DNA在SON當中表現的情形,我們使用免疫螢光染色來標定在SON中表現的囊泡報導蛋白。我們發現兩種囊泡報導蛋白都能夠成功表現,而neurophysin I-pHVenus所表現的囊泡型態較VAMP2-pHVenus更大,並且訊號和催產素更加重疊。除了螢光染色外,我們也利用酵素連結免疫吸附測定(ELISA)來檢測實驗前後催產素在腦脊髓液(CSF)及血清(plasma)中的濃度。我們發現Syn Ia能夠提高血清中的催產素濃度,而在腦脊髓液中則沒有太大改變。除此之外,我們也檢測了與催產素結構相似的血管加壓素(VP)在血清中的濃度變化。有趣的是,血管加壓素在實驗後的濃度也提高了;並且使得大鼠保留了更多水分在體內而使得體重有些微的上升,我們認為這或許是有部分的DNA被轉染進入SON中一種能夠同時表現催產素及血管加壓素的神經元中所造成。總結我們的實驗結果顯示,催產素專一性的DNA能夠專一的被表現在SON中的催產素神經元,且Syn Ia能夠使釋放到血清中的催產素濃度上升。 | zh_TW |
| dc.description.abstract | Oxytocin (OT), synthesized from the magnocellular neurons (MCNs) of paraventricular nucleus (PVN) and supraoptic nucleus (SON) in hypothalamic-neurohypophysis system (HNS), is initially found to regulate physiological functions in mammalian species. Along with the deep investigation of OT, this nonapeptide can also regulate emotional responses and social behaviors. However, the mechanism regulating the OT release remains unclear. The axon terminals of OT neurons in posterior pituitary contain two types of vesicles. One is called large dense-core vesicles (LDCVs), 100-300 nm in diameter, containing dense particles. The other is called microvesicles (MVs) which are morphologically and biochemically similar to synaptic vesicles (SVs). Though the exocytosis of both vesicles are Ca2+-dependent, a SV/MV-specific protein Syn Ia is only expressed on synaptic vesicles to regulate the exocytosis in a phosphorylation-dependent manner. Here, we aimed to determine the role of Syn Ia in OT neurons and examine whether the SV/MV-specific protein can also regulate the exocytosis of LDCVs. We first designed a series of OT neuron-specific constructs containing the exocytosis reporter and Syn Ia/its mutant. We next expressed the constructs in OT neurons of SON by using in vivo electroporation. To detect the expression of the constructs, we performed immunostaining and labeled the exocytosis reporter by the antibody against green fluorescent protein (GFP). In addition, the patterns of immunoreactivity in the LDCV-specific reporter were larger than the general vesicle reporter, with relatively localized to OT. Furthermore, we also detected the OT levels in CSF and plasma before and after in vivo electroporation by using ELISA. We found that the overexpression of Syn Ia can increase the release of OT to plasma rather than to CSF. However, the overexpression of Syn Ia mutant cannot significantly affect the release of OT to either plasma or CSF. In addition to detecting the levels of OT, we also detected the levels of VP in plasma. Interestingly, the levels of VP were increased after in vivo electroporation, suggesting that the constructs may be partially expressed in the SON neurons co-expressing both OT and VP. Moreover, the increase of VP may allow the rats to retain body fluid, so that the body weight was slightly increased by overexpressing Syn Ia in the HNS. In conclusion, the constructs can be specifically expressed into the OT neurons and the SV/MV-specific protein Syn Ia can increase the OT release to peripheral plasma. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:48:44Z (GMT). No. of bitstreams: 1 ntu-107-R05b43034-1.pdf: 4686886 bytes, checksum: ea7c96478c0e2902126297bf43885039 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書 錯誤! 尚未定義書籤。
致謝 ii 中文摘要 iv Abstract vi Abbreviations viii Contents xi Chapter I Introduction 1.1 The hypothalamic-neurohypophysial system (HNS) 1 1.2 The supraoptic nucleus (SON) 2 1.3 Oxytocin (OT): Axonal projections and functions 2 1.4 Large dense-core vesicles and synaptic vesicles 4 1.5 Ca2+-dependent exocytosis: SNAREs and Ca2+ sensor 4 1.6 Synapsin 5 1.7 The exocytosis reporters: VAMP2-pHVenus for general vesicles and Neurophysin I-pHVenus for LDCVs 6 1.8 In vivo electroporation 7 1.9 The hypothesis 8 1.10 Objectives of the study 9 Chapter II Materials and Methods 2.1 Animals 11 2.2 Plasmid construction 11 2.3 Stereotaxic surgery and in vivo electroporation 13 2.4 Heart perfusion 14 2.5 Coronal brain section 15 2.6 Immunofluorescence staining for brain slices 15 2.7 Confocal microscopy 16 2.8 Collection of CSF and plasma 16 2.9 Enzyme-linked immunosorbent assay (ELISA) 17 2.10 Statistics 18 Chapter III Results 3.1 The antibody of GFP colocalizes with VAMP2-pHVenus in large dense-core vesicles and synaptic vesicles 19 3.2 The large dense-core vesicles and synaptic vesicles expressing VMAP2-pHVenus can be transported to the OT neuron terminals 20 3.3 Overexpression of Syn Ia or Syn Ia-phosphomutant (S62A) can affect the distribution of vesicles in the HNS 20 3.4 Overexpression of Syn Ia or Syn Ia-phosphomutant (S62A) cannot affect the transport of vesicles from SON to pituitary 21 3.5 The constructs containing the LDCV-specific reporter can be specifically transfected to SON 22 3.6 Overexpression of Syn Ia or Syn Ia-phosphomutant (S62A) can affect the distribution of LDCVs 23 3.7 Overexpression of Syn Ia or Syn Ia-phosphomutant (S62A) cannot affect the transport of LDCVs from SON to pituitary 23 3.8 The different expression patterns of VAMP2-pHVenus or neurophysin I-pHVenus 24 3.9 Overexpression of Syn Ia affects the OT levels in plasma 25 3.10 Overexpression of Syn Ia affects the VP levels in plasma 26 3.11 The changes in body weight after overexpressing Syn Ia or the Syn Ia-phosphomutant (S62A) 26 Chapter IV Discussion 4.1 The OT neuron-specific constructs can target gene expression in SON by in vivo electroporation 29 4.2 The GFP immunoreactivity appears in both sides of SON 30 4.3 The SV-specific protein Syn Ia can increase the release of OT and VP to peripheral plasma 31 4.4 Future directions 31 Chapter V Conclusion 33 References 34 List of Figures Figures for Introduction Figure 1. The hypothalamic-neurohypophysial system 36 Figure 2. MCNs are composed of OT neurons and VP neurons in SON 37 Figure 3. Large dense-core vesicles and synaptic vesicles in the posterior pituitary 38 Figure 4. SNARE complex and synaptotagmin 39 Figure 5. The molecule structure and phosphorylation sites of Syn Ia 40 Figure 6. The exocytosis reporter pHVenus 41 Figure 7.The LDCV reporter 43 Figure 8. Stereotaxic surgery and in vivo electroporation 43 Figure 9. The SON as the target region for transfection 44 Figure 10. The flow chart for protocol 43 Figures for Results Figure 11. The SON transfected with pOT-VAMP2-pHVenus-T2A-IGR182 for 7 days 46 Figure 12. The pituitary transfected with pOT-VAMP2-pHVenus-T2A-IGR182 for 7 days 47 Figure 13. The SON transfected with pOT-VAMP2-pHVenus-T2A-Syn Ia-IGR182 for 7 days 48 Figure 14. The SON transfected with pOT-VAMP2-pHVenus-T2A-Syn Ia-S62A-IGR182 for 7 days 50 Figure 15. The pituitary transfected with pOT-VAMP2-pHVenus-T2A-Syn Ia-S62A-IGR182 for 7 days 51 Figure 16. The SON transfected with pOT-neurophysin I-pHVenus-T2A-IGR182 for 7 days 53 Figure 17. The SON transfected with pOT-neurophysin I-pHVenus-T2A-Syn Ia -IGR182 for 7 days 55 Figure 18. The pituitary transfected with pOT-neurophysin I-pHVenus-T2A-Syn Ia-IGR182 for 7 days 56 Figure 19. The SON transfected with pOT-neurophysin I-pHVenus-T2A-Syn Ia-S62A-IGR182 for 7 days 58 Figure 20. The pituitary transfected with pOT-neurophysin I-pHVenus-T2A-Syn Ia-S62A-IGR182 for 7 days 59 Figure 21. Comparison of the patterns of the LDCVs expressing Neurophysin I-pHVenus in SON and pituitary 43 Figure 22. The changed OT levels in CSF after in vivo electroporation 62 Figure 23. The changed OT levels in plasma after in vivo electroporation 68 Figure 24. The changed VP levels in plasma after in vivo electroporation 66 Figure 25. The body weight of rats used for measuring OT and VP in CSF and plasma 68 Appendix 69 Appendix 1. The SON transfected with pOT-neurophysin I-pHVenus-T2A-IGR182 for 5 days 69 | |
| dc.language.iso | en | |
| dc.subject | neurophysin I-pHVenus | zh_TW |
| dc.subject | 催產素 | zh_TW |
| dc.subject | Syn Ia | zh_TW |
| dc.subject | 活體電穿孔 | zh_TW |
| dc.subject | microvesicle | zh_TW |
| dc.subject | synaptic vesicle | zh_TW |
| dc.subject | 下視丘-神經垂體系統 | zh_TW |
| dc.subject | VAMP2-pHVenus | zh_TW |
| dc.subject | large dense-core vesicle | zh_TW |
| dc.subject | in vivo electroporation | en |
| dc.subject | oxytocin | en |
| dc.subject | hypothalamic-neurohypophysis system | en |
| dc.subject | large dense-core vesicle | en |
| dc.subject | synaptic vesicle | en |
| dc.subject | microvesicle | en |
| dc.subject | VAMP2-pHVenus | en |
| dc.subject | neurophysin I-pHVenus | en |
| dc.subject | Syn Ia | en |
| dc.title | 運用細胞專一性基因表現技術探討催產素由下視丘神經垂體系統釋放的分子機制 | zh_TW |
| dc.title | Molecular mechanisms underlying oxytocin release from the hypothalamic-neurohypophysis system by using the cell-specific gene expression technique | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧主欽,胡孟君 | |
| dc.subject.keyword | 催產素,下視丘-神經垂體系統,large dense-core vesicle,synaptic vesicle,microvesicle,VAMP2-pHVenus,neurophysin I-pHVenus,Syn Ia,活體電穿孔, | zh_TW |
| dc.subject.keyword | oxytocin,hypothalamic-neurohypophysis system,large dense-core vesicle,synaptic vesicle,microvesicle,VAMP2-pHVenus,neurophysin I-pHVenus,Syn Ia,in vivo electroporation, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201802289 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-03 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05b43034-1.pdf 未授權公開取用 | 4.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
