請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79156完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明學 | zh_TW |
| dc.contributor.author | 黃梓傑 | zh_TW |
| dc.contributor.author | Tzu-Chieh Huang | en |
| dc.date.accessioned | 2021-07-11T15:48:40Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-03 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. U.S. Cancer Statistics Data Visualizations Tool, based on November 2017 submission data (1999-2015). U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute, 2018.
2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2018. CA Cancer J Clin, 2018. 68(1): p. 7-30. 3. 105 年死因統計結果分析. 臺灣衛生福利部, 2017. 4. Kirby, M., C. Hirst, and E.D. Crawford, Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract, 2011. 65(11): p. 1180-92. 5. Mottet, N., J. Bellmunt, M. Bolla, E. Briers, M.G. Cumberbatch, M. De Santis, N. Fossati, T. Gross, A.M. Henry, S. Joniau, T.B. Lam, M.D. Mason, V.B. Matveev, P.C. Moldovan, R.C.N. van den Bergh, T. Van den Broeck, H.G. van der Poel, T.H. van der Kwast, O. Rouviere, I.G. Schoots, T. Wiegel, and P. Cornford, EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol, 2017. 71(4): p. 618-629. 6. Chen, R., X. Dong, and M. Gleave, Molecular model for neuroendocrine prostate cancer progression. BJU Int, 2018. 7. Vlachostergios, P.J., L. Puca, and H. Beltran, Emerging Variants of Castration-Resistant Prostate Cancer. Curr Oncol Rep, 2017. 19(5): p. 32. 8. Roviello, G., S. Sigala, S. Sandhu, A. Bonetta, M.R. Cappelletti, L. Zanotti, A. Bottini, C.N. Sternberg, S.B. Fox, and D. Generali, Role of the novel generation of androgen receptor pathway targeted agents in the management of castration-resistant prostate cancer: A literature based meta-analysis of randomized trials. Eur J Cancer, 2016. 61: p. 111-21. 9. Vilela, R.A., N.F. Navarro, E.T. Faria, E.B. Ferreira, R.Z. Ruzza, R. Gadia, E.N.S. Guerra, and P. Reis, Use of stereotactic body radiation therapy for oligometastatic recurrent prostate cancer: A systematic review. J Med Imaging Radiat Oncol, 2018. 10. Wolff, R.F., S. Ryder, A. Bossi, A. Briganti, J. Crook, A. Henry, J. Karnes, L. Potters, T. de Reijke, N. Stone, M. Burckhardt, S. Duffy, G. Worthy, and J. Kleijnen, A systematic review of randomised controlled trials of radiotherapy for localised prostate cancer. Eur J Cancer, 2015. 51(16): p. 2345-67. 11. Huggins, C. and C.V. Hodges, Studies on Prostatic Cancer. I. The Effect of Castration, of Estrogen and of Androgen Injection on Serum Phosphatases in Metastatic Carcinoma of the Prostate. Cancer Research, 1941. 1(4): p. 293-297. 12. Damber, J.E. and G. Aus, Prostate cancer. Lancet, 2008. 371(9625): p. 1710-21. 13. Watson, P.A., V.K. Arora, and C.L. Sawyers, Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer, 2015. 15(12): p. 701-11. 14. Carver, B.S., C. Chapinski, J. Wongvipat, H. Hieronymus, Y. Chen, S. Chandarlapaty, V.K. Arora, C. Le, J. Koutcher, H. Scher, P.T. Scardino, N. Rosen, and C.L. Sawyers, Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell, 2011. 19(5): p. 575-86. 15. Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 679-95. 16. Valastyan, S. and R.A. Weinberg, Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011. 147(2): p. 275-92. 17. Taylor, S.H., K.W. Merriman, P.E. Spiess, and L. Pisters, Inadequacies of the current American Joint Committee on cancer staging system for prostate cancer. Cancer, 2006. 106(3): p. 559-65. 18. Rycaj, K., H. Li, J. Zhou, X. Chen, and D.G. Tang, Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Semin Cancer Biol, 2017. 44: p. 83-97. 19. van Zijl, F., G. Krupitza, and W. Mikulits, Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res, 2011. 728(1-2): p. 23-34. 20. Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nat Rev Cancer, 2009. 9(4): p. 239-52. 21. Seemuller, E., A. Lupas, D. Stock, J. Lowe, R. Huber, and W. Baumeister, Proteasome from Thermoplasma acidophilum: a threonine protease. Science, 1995. 268(5210): p. 579-82. 22. Ikeda, Y., Y. Ohara-Nemoto, S. Kimura, K. Ishibashi, and K. Kikuchi, PCR-based identification of Staphylococcus epidermidis targeting gseA encoding the glutamic-acid-specific protease. Can J Microbiol, 2004. 50(7): p. 493-8. 23. Rawlings, N.D., A.J. Barrett, and A. Bateman, Asparagine peptide lyases: a seventh catalytic type of proteolytic enzymes. J Biol Chem, 2011. 286(44): p. 38321-8. 24. Yang, Y., H. Hong, Y. Zhang, and W. Cai, Molecular Imaging of Proteases in Cancer. Cancer Growth Metastasis, 2009. 2: p. 13-27. 25. Egeblad, M. and Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2002. 2(3): p. 161-74. 26. Kim, J., W. Yu, K. Kovalski, and L. Ossowski, Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell, 1998. 94(3): p. 353-62. 27. Masterson, J. and S. O'Dea, Posttranslational truncation of E-cadherin and significance for tumour progression. Cells Tissues Organs, 2007. 185(1-3): p. 175-9. 28. Van Damme, J., S. Struyf, and G. Opdenakker, Chemokine-protease interactions in cancer. Semin Cancer Biol, 2004. 14(3): p. 201-8. 29. Basbaum, C.B. and Z. Werb, Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr Opin Cell Biol, 1996. 8(5): p. 731-8. 30. Van Spaendonk, H., H. Ceuleers, L. Witters, E. Patteet, J. Joossens, K. Augustyns, A.M. Lambeir, I. De Meester, J.G. De Man, and B.Y. De Winter, Regulation of intestinal permeability: The role of proteases. World J Gastroenterol, 2017. 23(12): p. 2106-2123. 31. Gettins, P.G., Serpin structure, mechanism, and function. Chem Rev, 2002. 102(12): p. 4751-804. 32. Drag, M. and G.S. Salvesen, Emerging principles in protease-based drug discovery. Nat Rev Drug Discov, 2010. 9(9): p. 690-701. 33. Murray, A.S., F.A. Varela, and K. List, Type II transmembrane serine proteases as potential targets for cancer therapy. Biol Chem, 2016. 397(9): p. 815-26. 34. Takeuchi, T., M.A. Shuman, and C.S. Craik, Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11054-61. 35. Lin, C.Y., J. Anders, M. Johnson, Q.A. Sang, and R.B. Dickson, Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem, 1999. 274(26): p. 18231-6. 36. Hooper, J.D., J.A. Clements, J.P. Quigley, and T.M. Antalis, Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem, 2001. 276(2): p. 857-60. 37. Bugge, T.H., K. List, and R. Szabo, Matriptase-dependent cell surface proteolysis in epithelial development and pathogenesis. Front Biosci, 2007. 12: p. 5060-70. 38. Shi, Y.E., J. Torri, L. Yieh, A. Wellstein, M.E. Lippman, and R.B. Dickson, Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res, 1993. 53(6): p. 1409-15. 39. Lin, C.Y., J.K. Wang, J. Torri, L. Dou, Q.A. Sang, and R.B. Dickson, Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. Monoclonal antibody production, isolation, and localization. J Biol Chem, 1997. 272(14): p. 9147-52. 40. List, K., R. Szabo, P.W. Wertz, J. Segre, C.C. Haudenschild, S.Y. Kim, and T.H. Bugge, Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. J Cell Biol, 2003. 163(4): p. 901-10. 41. Miller, G.S. and K. List, The matriptase-prostasin proteolytic cascade in epithelial development and pathology. Cell Tissue Res, 2013. 351(2): p. 245-53. 42. List, K., C.C. Haudenschild, R. Szabo, W. Chen, S.M. Wahl, W. Swaim, L.H. Engelholm, N. Behrendt, and T.H. Bugge, Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene, 2002. 21(23): p. 3765-79. 43. Avrahami, L., S. Maas, M. Pasmanik-Chor, L. Rainshtein, N. Magal, J. Smitt, J. van Marle, M. Shohat, and L. Basel-Vanagaite, Autosomal recessive ichthyosis with hypotrichosis syndrome: further delineation of the phenotype. Clin Genet, 2008. 74(1): p. 47-53. 44. Tseng, I.C., F.P. Chou, S.F. Su, M. Oberst, N. Madayiputhiya, M.S. Lee, J.K. Wang, D.E. Sloane, M. Johnson, and C.Y. Lin, Purification from human milk of matriptase complexes with secreted serpins: mechanism for inhibition of matriptase other than HAI-1. Am J Physiol Cell Physiol, 2008. 295(2): p. C423-31. 45. Camerer, E., A. Barker, D.N. Duong, R. Ganesan, H. Kataoka, I. Cornelissen, M.R. Darragh, A. Hussain, Y.W. Zheng, Y. Srinivasan, C. Brown, S.M. Xu, J.B. Regard, C.Y. Lin, C.S. Craik, D. Kirchhofer, and S.R. Coughlin, Local protease signaling contributes to neural tube closure in the mouse embryo. Dev Cell, 2010. 18(1): p. 25-38. 46. Ko, C.J., C.C. Huang, H.Y. Lin, C.P. Juan, S.W. Lan, H.Y. Shyu, S.R. Wu, P.W. Hsiao, H.P. Huang, C.T. Shun, and M.S. Lee, Androgen-Induced TMPRSS2 Activates Matriptase and Promotes Extracellular Matrix Degradation, Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis. Cancer Res, 2015. 75(14): p. 2949-60. 47. Lee, M.S., I.C. Tseng, Y. Wang, K. Kiyomiya, M.D. Johnson, R.B. Dickson, and C.Y. Lin, Autoactivation of matriptase in vitro: requirement for biomembrane and LDL receptor domain. Am J Physiol Cell Physiol, 2007. 293(1): p. C95-105. 48. Benaud, C., M. Oberst, J.P. Hobson, S. Spiegel, R.B. Dickson, and C.Y. Lin, Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase. J Biol Chem, 2002. 277(12): p. 10539-46. 49. Hung, R.J., W. Hsu Ia, J.L. Dreiling, M.J. Lee, C.A. Williams, M.D. Oberst, R.B. Dickson, and C.Y. Lin, Assembly of adherens junctions is required for sphingosine 1-phosphate-induced matriptase accumulation and activation at mammary epithelial cell-cell contacts. Am J Physiol Cell Physiol, 2004. 286(5): p. C1159-69. 50. Tseng, I.C., H. Xu, F.P. Chou, G. Li, A.P. Vazzano, J.P. Kao, M.D. Johnson, and C.Y. Lin, Matriptase activation, an early cellular response to acidosis. J Biol Chem, 2010. 285(5): p. 3261-70. 51. Benaud, C., R.B. Dickson, and C.Y. Lin, Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor. Eur J Biochem, 2001. 268(5): p. 1439-47. 52. Lee, M.S., Matrix-Degrading Type II Transmembrane Serine Protease Matriptase: Its Role in Cancer Development and Malignancy. Journal of cancer molecules 2006. 2(5): p. 183-90. 53. Oberst, M.D., M.D. Johnson, R.B. Dickson, C.Y. Lin, B. Singh, M. Stewart, A. Williams, A. al-Nafussi, J.F. Smyth, H. Gabra, and G.C. Sellar, Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res, 2002. 8(4): p. 1101-7. 54. Jin, J.S., T.F. Cheng, W.C. Tsai, L.F. Sheu, H. Chiang, and C.P. Yu, Expression of the serine protease, matriptase, in breast ductal carcinoma of Chinese women: correlation with clinicopathological parameters. Histol Histopathol, 2007. 22(3): p. 305-9. 55. Kang, J.Y., M. Dolled-Filhart, I.T. Ocal, B. Singh, C.Y. Lin, R.B. Dickson, D.L. Rimm, and R.L. Camp, Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res, 2003. 63(5): p. 1101-5. 56. Lee, J.W., S. Yong Song, J.J. Choi, S.J. Lee, B.G. Kim, C.S. Park, J.H. Lee, C.Y. Lin, R.B. Dickson, and D.S. Bae, Increased expression of matriptase is associated with histopathologic grades of cervical neoplasia. Hum Pathol, 2005. 36(6): p. 626-33. 57. Cheng, M.F., C. Tzao, W.C. Tsai, W.H. Lee, A. Chen, H. Chiang, L.F. Sheu, and J.S. Jin, Expression of EMMPRIN and matriptase in esophageal squamous cell carcinoma: correlation with clinicopathological parameters. Dis Esophagus, 2006. 19(6): p. 482-6. 58. Tanimoto, H., K. Shigemasa, X. Tian, L. Gu, J.B. Beard, T. Sawasaki, and T.J. O'Brien, Transmembrane serine protease TADG-15 (ST14/Matriptase/MT-SP1): expression and prognostic value in ovarian cancer. Br J Cancer, 2005. 92(2): p. 278-83. 59. Hoang, C.D., J. D'Cunha, M.G. Kratzke, C.E. Casmey, S.P. Frizelle, M.A. Maddaus, and R.A. Kratzke, Gene expression profiling identifies matriptase overexpression in malignant mesothelioma. Chest, 2004. 125(5): p. 1843-52. 60. Tsai, W.C., Y.C. Chao, W.H. Lee, A. Chen, L.F. Sheu, and J.S. Jin, Increasing EMMPRIN and matriptase expression in hepatocellular carcinoma: tissue microarray analysis of immunohistochemical scores with clinicopathological parameters. Histopathology, 2006. 49(4): p. 388-95. 61. Riddick, A.C., C.J. Shukla, C.J. Pennington, R. Bass, R.K. Nuttall, A. Hogan, K.K. Sethia, V. Ellis, A.T. Collins, N.J. Maitland, R.Y. Ball, and D.R. Edwards, Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer, 2005. 92(12): p. 2171-80. 62. List, K., Matriptase: a culprit in cancer? Future Oncol, 2009. 5(1): p. 97-104. 63. Vogel, L.K., M. Saebo, C.F. Skjelbred, K. Abell, E.D. Pedersen, U. Vogel, and E.H. Kure, The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer, 2006. 6: p. 176. 64. Tsai, C.H., C.H. Teng, Y.T. Tu, T.S. Cheng, S.R. Wu, C.J. Ko, H.Y. Shyu, S.W. Lan, H.P. Huang, S.F. Tzeng, M.D. Johnson, C.Y. Lin, P.W. Hsiao, and M.S. Lee, HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase. Oncogene, 2014. 33(38): p. 4643-52. 65. List, K., R. Szabo, A. Molinolo, V. Sriuranpong, V. Redeye, T. Murdock, B. Burke, B.S. Nielsen, J.S. Gutkind, and T.H. Bugge, Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev, 2005. 19(16): p. 1934-50. 66. Ihara, S., E. Miyoshi, J.H. Ko, K. Murata, S. Nakahara, K. Honke, R.B. Dickson, C.Y. Lin, and N. Taniguchi, Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching. J Biol Chem, 2002. 277(19): p. 16960-7. 67. Suzuki, M., H. Kobayashi, N. Kanayama, Y. Saga, M. Suzuki, C.Y. Lin, R.B. Dickson, and T. Terao, Inhibition of tumor invasion by genomic down-regulation of matriptase through suppression of activation of receptor-bound pro-urokinase. J Biol Chem, 2004. 279(15): p. 14899-908. 68. Zoratti, G.L., L.M. Tanabe, F.A. Varela, A.S. Murray, C. Bergum, E. Colombo, J.E. Lang, A.A. Molinolo, R. Leduc, E. Marsault, J. Boerner, and K. List, Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling. Nat Commun, 2015. 6: p. 6776. 69. Sales, K.U., S. Friis, J.E. Konkel, S. Godiksen, M. Hatakeyama, K.K. Hansen, S.R. Rogatto, R. Szabo, L.K. Vogel, W. Chen, J.S. Gutkind, and T.H. Bugge, Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis. Oncogene, 2015. 34(3): p. 346-56. 70. Lee, S.L., R.B. Dickson, and C.Y. Lin, Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem, 2000. 275(47): p. 36720-5. 71. Ustach, C.V., W. Huang, M.K. Conley-LaComb, C.Y. Lin, M. Che, J. Abrams, and H.R. Kim, A novel signaling axis of matriptase/PDGF-D/ss-PDGFR in human prostate cancer. Cancer Res, 2010. 70(23): p. 9631-40. 72. Yu, J.X., L. Chao, and J. Chao, Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland. J Biol Chem, 1994. 269(29): p. 18843-8. 73. Chen, L.M., M.L. Skinner, S.W. Kauffman, J. Chao, L. Chao, C.D. Thaler, and K.X. Chai, Prostasin is a glycosylphosphatidylinositol-anchored active serine protease. J Biol Chem, 2001. 276(24): p. 21434-42. 74. Yu, J.X., L. Chao, and J. Chao, Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mRNA. J Biol Chem, 1995. 270(22): p. 13483-9. 75. Yu, J.X., L. Chao, D.C. Ward, and J. Chao, Structure and chromosomal localization of the human prostasin (PRSS8) gene. Genomics, 1996. 32(3): p. 334-40. 76. Leyvraz, C., R.P. Charles, I. Rubera, M. Guitard, S. Rotman, B. Breiden, K. Sandhoff, and E. Hummler, The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol, 2005. 170(3): p. 487-96. 77. Vallet, V., A. Chraibi, H.P. Gaeggeler, J.D. Horisberger, and B.C. Rossier, An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature, 1997. 389(6651): p. 607-10. 78. Tong, Z., B. Illek, V.J. Bhagwandin, G.M. Verghese, and G.H. Caughey, Prostasin, a membrane-anchored serine peptidase, regulates sodium currents in JME/CF15 cells, a cystic fibrosis airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol, 2004. 287(5): p. L928-35. 79. Vuagniaux, G., V. Vallet, N.F. Jaeger, C. Pfister, M. Bens, N. Farman, N. Courtois-Coutry, A. Vandewalle, B.C. Rossier, and E. Hummler, Activation of the amiloride-sensitive epithelial sodium channel by the serine protease mCAP1 expressed in a mouse cortical collecting duct cell line. J Am Soc Nephrol, 2000. 11(5): p. 828-34. 80. Bruns, J.B., M.D. Carattino, S. Sheng, A.B. Maarouf, O.A. Weisz, J.M. Pilewski, R.P. Hughey, and T.R. Kleyman, Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. J Biol Chem, 2007. 282(9): p. 6153-60. 81. Donaldson, S.H., A. Hirsh, D.C. Li, G. Holloway, J. Chao, R.C. Boucher, and S.E. Gabriel, Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem, 2002. 277(10): p. 8338-45. 82. Shipway, A., H. Danahay, J.A. Williams, D.C. Tully, B.J. Backes, and J.L. Harris, Biochemical characterization of prostasin, a channel activating protease. Biochem Biophys Res Commun, 2004. 324(2): p. 953-63. 83. Chen, L.M., X. Zhang, and K.X. Chai, Regulation of prostasin expression and function in the prostate. Prostate, 2004. 59(1): p. 1-12. 84. Chen, Y.W., J.K. Wang, F.P. Chou, C.Y. Chen, E.A. Rorke, L.M. Chen, K.X. Chai, R.L. Eckert, M.D. Johnson, and C.Y. Lin, Regulation of the matriptase-prostasin cell surface proteolytic cascade by hepatocyte growth factor activator inhibitor-1 during epidermal differentiation. J Biol Chem, 2010. 285(41): p. 31755-62. 85. Fan, B., T.D. Wu, W. Li, and D. Kirchhofer, Identification of hepatocyte growth factor activator inhibitor-1B as a potential physiological inhibitor of prostasin. J Biol Chem, 2005. 280(41): p. 34513-20. 86. Peters, D.E., R. Szabo, S. Friis, N.A. Shylo, K. Uzzun Sales, K. Holmbeck, and T.H. Bugge, The membrane-anchored serine protease prostasin (CAP1/PRSS8) supports epidermal development and postnatal homeostasis independent of its enzymatic activity. J Biol Chem, 2014. 289(21): p. 14740-9. 87. Verghese, G.M., M.F. Gutknecht, and G.H. Caughey, Prostasin regulates epithelial monolayer function: cell-specific Gpld1-mediated secretion and functional role for GPI anchor. Am J Physiol Cell Physiol, 2006. 291(6): p. C1258-70. 88. Takahashi, S., S. Suzuki, S. Inaguma, Y. Ikeda, Y.M. Cho, N. Hayashi, T. Inoue, Y. Sugimura, N. Nishiyama, T. Fujita, J. Chao, T. Ushijima, and T. Shirai, Down-regulated expression of prostasin in high-grade or hormone-refractory human prostate cancers. Prostate, 2003. 54(3): p. 187-93. 89. Chen, L.M., G.B. Hodge, L.A. Guarda, J.L. Welch, N.M. Greenberg, and K.X. Chai, Down-regulation of prostasin serine protease: a potential invasion suppressor in prostate cancer. Prostate, 2001. 48(2): p. 93-103. 90. Sakashita, K., K. Mimori, F. Tanaka, K. Tahara, H. Inoue, T. Sawada, M. Ohira, K. Hirakawa, and M. Mori, Clinical significance of low expression of Prostasin mRNA in human gastric cancer. J Surg Oncol, 2008. 98(7): p. 559-64. 91. Chen, L.M. and K.X. Chai, Prostasin serine protease inhibits breast cancer invasiveness and is transcriptionally regulated by promoter DNA methylation. Int J Cancer, 2002. 97(3): p. 323-9. 92. Bao, Y., Q. Wang, Y. Guo, Z. Chen, K. Li, Y. Yang, H. Zhang, H. Dong, K. Shen, and W. Yang, PRSS8 methylation and its significance in esophageal squamous cell carcinoma. Oncotarget, 2016. 7(19): p. 28540-55. 93. Bao, Y., K. Li, Y. Guo, Q. Wang, Z. Li, Y. Yang, Z. Chen, J. Wang, W. Zhao, H. Zhang, J. Chen, H. Dong, K. Shen, A.M. Diamond, and W. Yang, Tumor suppressor PRSS8 targets Sphk1/S1P/Stat3/Akt signaling in colorectal cancer. Oncotarget, 2016. 7(18): p. 26780-92. 94. Ma, C., W. Ma, N. Zhou, N. Chen, L. An, and Y. Zhang, Protease Serine S1 Family Member 8 (PRSS8) Inhibits Tumor Growth In Vitro and In Vivo in Human Non-Small Cell Lung Cancer. Oncol Res, 2017. 25(5): p. 781-787. 95. Chen, L.M., N.J. Verity, and K.X. Chai, Loss of prostasin (PRSS8) in human bladder transitional cell carcinoma cell lines is associated with epithelial-mesenchymal transition (EMT). BMC Cancer, 2009. 9: p. 377. 96. Mok, S.C., J. Chao, S. Skates, K. Wong, G.K. Yiu, M.G. Muto, R.S. Berkowitz, and D.W. Cramer, Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst, 2001. 93(19): p. 1458-64. 97. Chen, M., L.M. Chen, C.Y. Lin, and K.X. Chai, The epidermal growth factor receptor (EGFR) is proteolytically modified by the Matriptase-Prostasin serine protease cascade in cultured epithelial cells. Biochim Biophys Acta, 2008. 1783(5): p. 896-903. 98. Chen, L.M., M.L. Hatfield, Y.Y. Fu, and K.X. Chai, Prostasin regulates iNOS and cyclin D1 expression by modulating protease-activated receptor-2 signaling in prostate epithelial cells. Prostate, 2009. 69(16): p. 1790-801. 99. Netzel-Arnett, S., B.M. Currie, R. Szabo, C.Y. Lin, L.M. Chen, K.X. Chai, T.M. Antalis, T.H. Bugge, and K. List, Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem, 2006. 281(44): p. 32941-5. 100. List, K., P. Kosa, R. Szabo, A.L. Bey, C.B. Wang, A. Molinolo, and T.H. Bugge, Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. Am J Pathol, 2009. 175(4): p. 1453-63. 101. Friis, S., K. Uzzun Sales, S. Godiksen, D.E. Peters, C.Y. Lin, L.K. Vogel, and T.H. Bugge, A matriptase-prostasin reciprocal zymogen activation complex with unique features: prostasin as a non-enzymatic co-factor for matriptase activation. J Biol Chem, 2013. 288(26): p. 19028-39. 102. Su, H.C., Y.A. Liang, Y.J. Lai, Y.L. Chiu, R.B. Barndt, F. Shiao, H.D. Chang, D.D. Lu, N. Huang, C.C. Tseng, J.K. Wang, M.S. Lee, M.D. Johnson, S.M. Huang, and C.Y. Lin, Natural Endogenous Human Matriptase and Prostasin Undergo Zymogen Activation via Independent Mechanisms in an Uncoupled Manner. PLoS One, 2016. 11(12): p. e0167894. 103. Hara, T., H. Miyazaki, A. Lee, C.P. Tran, and R.E. Reiter, Androgen receptor and invasion in prostate cancer. Cancer Res, 2008. 68(4): p. 1128-35. 104. Liao, X., J.B. Thrasher, J. Pelling, J. Holzbeierlein, Q.X. Sang, and B. Li, Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Endocrinology, 2003. 144(5): p. 1656-63. 105. Augello, M.A., R.B. Den, and K.E. Knudsen, AR function in promoting metastatic prostate cancer. Cancer Metastasis Rev, 2014. 33(2-3): p. 399-411. 106. Chen, M., L.M. Chen, and K.X. Chai, Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG. Prostate, 2006. 66(9): p. 911-20. 107. Igawa, T., F.F. Lin, M.S. Lee, D. Karan, S.K. Batra, and M.F. Lin, Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate, 2002. 50(4): p. 222-35. 108. Lin, C.Y., I.C. Tseng, F.P. Chou, S.F. Su, Y.W. Chen, M.D. Johnson, and R.B. Dickson, Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci, 2008. 13: p. 621-35. 109. Lai, C.H., Y.J. Lai, F.P. Chou, H.H. Chang, C.C. Tseng, M.D. Johnson, J.K. Wang, and C.Y. Lin, Matriptase Complexes and Prostasin Complexes with HAI-1 and HAI-2 in Human Milk: Significant Proteolysis in Lactation. PLoS One, 2016. 11(4): p. e0152904. 110. Shiao, F., L.O. Liu, N. Huang, Y.J. Lai, R.J. Barndt, C.C. Tseng, J.K. Wang, B. Jia, M.D. Johnson, and C.Y. Lin, Selective Inhibition of Prostasin in Human Enterocytes by the Integral Membrane Kunitz-Type Serine Protease Inhibitor HAI-2. PLoS One, 2017. 12(1): p. e0170944. 111. Chang, H.H., Y. Xu, H. Lai, X. Yang, C.C. Tseng, Y.J. Lai, Y. Pan, E. Zhou, M.D. Johnson, J.K. Wang, and C.Y. Lin, Differential subcellular localization renders HAI-2 a matriptase inhibitor in breast cancer cells but not in mammary epithelial cells. PLoS One, 2015. 10(3): p. e0120489. 112. Kawaguchi, T., L. Qin, T. Shimomura, J. Kondo, K. Matsumoto, K. Denda, and N. Kitamura, Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J Biol Chem, 1997. 272(44): p. 27558-64. 113. Chen, Y.W., M.S. Lee, A. Lucht, F.P. Chou, W. Huang, T.C. Havighurst, K. Kim, J.K. Wang, T.M. Antalis, M.D. Johnson, and C.Y. Lin, TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am J Pathol, 2010. 176(6): p. 2986-96. 114. Buzza, M.S., E.W. Martin, K.H. Driesbaugh, A. Desilets, R. Leduc, and T.M. Antalis, Prostasin is required for matriptase activation in intestinal epithelial cells to regulate closure of the paracellular pathway. J Biol Chem, 2013. 288(15): p. 10328-37. 115. List, K., J.P. Hobson, A. Molinolo, and T.H. Bugge, Co-localization of the channel activating protease prostasin/(CAP1/PRSS8) with its candidate activator, matriptase. J Cell Physiol, 2007. 213(1): p. 237-45. 116. Saleem, M., V.M. Adhami, W. Zhong, B.J. Longley, C.Y. Lin, R.B. Dickson, S. Reagan-Shaw, D.F. Jarrard, and H. Mukhtar, A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev, 2006. 15(2): p. 217-27. 117. Wu, S.R., T.S. Cheng, W.C. Chen, H.Y. Shyu, C.J. Ko, H.P. Huang, C.H. Teng, C.H. Lin, M.D. Johnson, C.Y. Lin, and M.S. Lee, Matriptase is involved in ErbB-2-induced prostate cancer cell invasion. Am J Pathol, 2010. 177(6): p. 3145-58. 118. Ko, C.J., S.W. Lan, Y.C. Lu, T.S. Cheng, P.F. Lai, C.H. Tsai, T.W. Hsu, H.Y. Lin, H.Y. Shyu, S.R. Wu, H.H. Lin, P.W. Hsiao, C.H. Chen, H.P. Huang, and M.S. Lee, Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene, 2017. 36(32): p. 4597-4609. 119. Lin, C.Y., J. Anders, M. Johnson, and R.B. Dickson, Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem, 1999. 274(26): p. 18237-42. 120. Benaud, C.M., M. Oberst, R.B. Dickson, and C.Y. Lin, Deregulated activation of matriptase in breast cancer cells. Clin Exp Metastasis, 2002. 19(7): p. 639-49. 121. Chen, M., L.M. Chen, C.Y. Lin, and K.X. Chai, Hepsin activates prostasin and cleaves the extracellular domain of the epidermal growth factor receptor. Mol Cell Biochem, 2010. 337(1-2): p. 259-66. 122. Oberst, M.D., C.A. Williams, R.B. Dickson, M.D. Johnson, and C.Y. Lin, The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem, 2003. 278(29): p. 26773-9. 123. Cho, E.G., M.G. Kim, C. Kim, S.R. Kim, I.S. Seong, C. Chung, R.H. Schwartz, and D. Park, N-terminal processing is essential for release of epithin, a mouse type II membrane serine protease. J Biol Chem, 2001. 276(48): p. 44581-9. 124. Rock, K.L., C. Gramm, L. Rothstein, K. Clark, R. Stein, L. Dick, D. Hwang, and A.L. Goldberg, Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell, 1994. 78(5): p. 761-71. 125. Obrig, T.G., W.J. Culp, W.L. McKeehan, and B. Hardesty, The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem, 1971. 246(1): p. 174-81. 126. Edgar, R., M. Domrachev, and A.E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 2002. 30(1): p. 207-10. 127. Buzza, M.S., S. Netzel-Arnett, T. Shea-Donohue, A. Zhao, C.Y. Lin, K. List, R. Szabo, A. Fasano, T.H. Bugge, and T.M. Antalis, Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci U S A, 2010. 107(9): p. 4200-5. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79156 | - |
| dc.description.abstract | 攝護腺蛋白酶 (Prostasin) 屬於多醣磷脂肌醇錨定 (glycosylphosphatidylinositol (GPI)-anchored) 的絲胺酸蛋白酶,能夠與間質蛋白酶 (matriptase) 共同調控表皮細胞的發育以及恆定。但是目前還不清楚prostasin在人類攝護腺癌上扮演的角色。在我的研究當中,我致力探討prostasin是否調控攝護腺癌的侵襲能力,並且釐清是透過甚麼分子機制。結果顯示在攝護腺癌上過度表達prostasin能夠抑制癌細胞的侵襲能力,相反的如果抑制 prostasin的表達,則會促進癌細胞的侵襲。深入探討發現,prostasin切割未活化matriptase的位點並非在第614號的精氨酸,這個結果顯示matriptase在受prostasin調控後,在生理上或病理上可能會有不同的功能。更進一步發現 prostasin能夠透過促進細胞膜上的matriptase釋放到細胞外的,降低細胞內matriptase的蛋白量。除此之外,我也發現prostasin能夠抑制雄激素 (androgens) 所引導促進的攝護腺癌LNCaP細胞的侵襲,顯示prostasin在雄激素的訊息傳導當中,也扮演負向調控者的角色。總結來說,這些研究結果顯示prostasin具有抑制攝護腺癌細胞發展的能力,並且對抗雄激素所促進的攝護腺癌細胞侵襲。 | zh_TW |
| dc.description.abstract | Prostasin is a glycosylphosphatidylinositol (GPI)-anchored serine protease and plays a pivotal role in the development and homeostasis of normal epithelial cells. However, the role of prostasin in human prostate cancer is still unclear. In this study, I investigated to elucidate the role of prostasin in prostate cancer cell invasion, and the molecular mechanism how prostasin exhibited its role in prostate cancer cells. The results showed that overexpression of prostasin reduced prostate cancer cell invasion, while prostasin silencing enhanced prostate cancer cell motility. Moreover, I found that prostasin cleaves matriptase zymogen at an unknown site rather than the R614 residue of matriptase which imply prostasin has distinct regulation on matriptase physiologically or pathologically. Further, prostasin decreases the cellular protein levels of matriptase by promoting matriptase shedding into the conditioned media. These results indicate prostasin moderates matriptase to suppress cancer cell invasion. In addition, prostasin was able to inhibit androgen-induced prostate cancer LNCaP cell invasion, indicating prostasin also plays as a negative regulator in androgen signaling. In summary, the results together indicate that prostasin functions as a suppressor for human prostate cancer cells and can conquer androgen-induced prostate cancer cell invasion. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:48:40Z (GMT). No. of bitstreams: 1 ntu-107-R05442001-1.pdf: 4562371 bytes, checksum: 40974489dbc3f7aadc0594e2504c91c0 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Chapter.1 Introduction 1 1.1 Prostate cancer 2 1.2 Cancer metastasis and proteolytic enzyme 3 1.3 Matriptase 4 1.4 Prostasin 7 1.5 A proteolytic relationship between prostasin and matriptase 9 1.6 Androgen signaling 10 1.7 The purpose for this study 11 Chapter 2. Materials and Methods 12 Chapter 3. Results 26 3.1 Protein expression levels of prostasin and related proteins in prostate cancer cells 27 3.2 Prostasin is a negative regulator in prostate cancer cell invasion 27 3.3 Prostasin promotes MTX/HAI-1 complex formation in prostate cancer cells 28 3.4 Enzymatic prostasin cleaves matriptase catalytic domain 29 3.5 Prostasin plays a pivotal role in the cleavage of matriptase’s protease domain 30 3.6 Prostasin-cleavaged site on matriptase was different from the canonical cleavage site for matriptase zymogen activation 30 3.7 Prostasin interacts with matriptase intracellularly, not intercellularly 32 3.8 Prostasin decreased the cellular protein levels of matriptase 32 3.9 Prostasin decreases the cellular levels of matriptase via promotion of matriptase shedding, not degradation 33 3.10 Prostasin suppresses DHT-induced prostate cancer cell invasion 35 Chapter 4. Discussion 36 Chapter 5. Figures 42 Chapter 6. References 71 | - |
| dc.language.iso | en | - |
| dc.subject | 攝護腺蛋白? | zh_TW |
| dc.subject | 間質蛋白? | zh_TW |
| dc.subject | 雄激素訊息傳導 | zh_TW |
| dc.subject | 攝護腺癌轉移 | zh_TW |
| dc.subject | matriptase | en |
| dc.subject | prostate cancer | en |
| dc.subject | Prostasin | en |
| dc.subject | androgen signaling | en |
| dc.subject | metastasis | en |
| dc.title | 探討攝護腺蛋白酶在攝護腺癌發展中扮演的角色 | zh_TW |
| dc.title | Role of prostasin in prostate cancer cell progression | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王正康;黃祥博;劉旻禕 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 攝護腺蛋白?,間質蛋白?,雄激素訊息傳導,攝護腺癌轉移, | zh_TW |
| dc.subject.keyword | Prostasin,matriptase,androgen signaling,prostate cancer,metastasis, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU201802302 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-01 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | - |
| dc.date.embargo-lift | 2023-10-03 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 4.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
